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Abstract

We study stochastic di�erential equations (SDEs) whose drift and
di�usion coe�cients are path-dependent and controlled. We construct
a value process on the canonical path space, considered simultaneously
under a family of singular measures, rather than the usual family of
processes indexed by the controls. This value process is character-
ized by a second order backward SDE, which can be seen as a non-
Markovian analogue of the Hamilton-Jacobi-Bellman partial di�eren-
tial equation. Moreover, our value process yields a generalization of
the G-expectation to the context of SDEs.
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1 Introduction

We consider a controlled stochastic di�erential equation (SDE) of the form

Xt = x+

∫ t

0
�(r,X, �r) dr +

∫ t

0
�(r,X, �r) dWr, 0 ≤ t ≤ T, (1.1)

where � is an adapted control process, W is a Brownian motion and the
Lipschitz-continuous coe�cients �(r,X, �r) and �(r,X, �r) may depend on
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the past trajectory {Xs, 0 ≤ s ≤ r} of the solution. Denoting by X� the so-
lution corresponding to �, we are interested in the stochastic optimal control
problem

V0 := sup
�
E[�(X�)], (1.2)

where � is a given functional. The standard approach to such a non-Markovian
control problem (cf. [9, 10]) is to consider for each control � the associated
value process

J�t = ess sup
�̃: �̃=� on [0,t]

E[�(X �̃)∣ℱt], (1.3)

where (ℱt) is the given �ltration. The dependence on � re�ects the presence
of a forward component in the optimization problem.

The situation is quite di�erent in Markovian optimal control (cf. [12]),
where one uses a single value function which depends on certain state vari-
ables but not on a control. This is essential to describe the value function by
a di�erential equation, such as the Hamilton-Jacobi-Bellman PDE, which is
the main merit of the dynamic programming approach. It is worth noting
that this equation is always backward in time. An analogous description
for (1.3) via backward SDEs (BSDEs, cf. [20]) is available for certain popu-
lar problems such as utility maximization with power or exponential utility
functions (e.g., [13, 18]) or drift control (e.g., [10]). However, this relies on a
very particular algebraic structure which allows for a separation of J� into
a backward part independent of � and a forward part depending on �.

In this paper, we consider the problem (1.2) on the canonical space by
recasting it as

V0 = sup
�
EP

�
[�(B)], (1.4)

where P � is the distribution of X� and B is the canonical process, and we
describe its dynamic value by a single value process V = {Vt(!)}. Formally,
V corresponds to a value function in the Markovian sense if we see the whole
trajectory of the controlled system as a state variable. Even though (1.2)
has features of coupled forward-backward type, the value process is de�ned
in a purely backward manner: one may say that by constructing V on the
whole canonical space, we essentially calculate the value for all possible out-
comes of the forward part. An important ingredient in the same vein is that
V is de�ned �quasi-surely� under the family of mutually singular measures
{P �}. Rather than forming a family of processes as in (1.3), the necessary
information is stored in a single process which is de�ned on a �large� part
of the probability space; indeed, the process V �seen under P �� should be
thought of as an analogue of J� . Clearly, this is a necessary step to ob-
tain a (second order) backward SDE. We remark that [22] considered the
same control problem (1.2) and also made a connection to nonlinear expec-
tations. However, in [22], the value process was considered only under the
given probability measure.
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We �rst consider a fairly regular functional � and de�ne Vt(!) as a con-
ditional version of (1.4). Applying and advancing ideas from [28] and [17],
regular conditional probability distributions are used to de�ne Vt(!) for ev-
ery ! and prove a pathwise dynamic programming principle (Theorem 3.2).
In a second step, we enlarge the class of functionals � to an L1-type space
and prove that the value process admits a (quasi-sure) càdlàg modi�cation
(Theorem 5.1).

We also show that the value process falls into the class of sublinear ex-
pectations studied in [19]. Indeed, if � is considered as a random variable on
the canonical space, the mapping � 7→ Vt can be seen as a generalization of
the G-expectation [23, 24], which, by [7], corresponds to the case � ≡ 0 and
�(r,X, �r) = �r, where the SDE (1.1) degenerates to a stochastic integral.
Moreover, Vt can be seen as a variant of the random G-expectation [17]; cf.
Remark 6.5.

Finally, we characterize V by a second order backward SDE (2BSDE) in
the spirit of [19]; cf. Theorem 6.4. The second order is clearly necessary since
the Hamilton-Jacobi-Bellman PDE for the Markovian case is fully nonlinear,
while ordinary BSDEs correspond to semilinear equations. 2BSDEs were
introduced in [5], and in [27] for the non-Markovian case. We refer to [27]
for the precise relation between 2BSDEs in the quasi-sure formulation and
fully nonlinear parabolic PDEs.

We remark that our approach is quite di�erent from the (backward)
stochastic partial di�erential equations studied in [21] for a similar con-
trol problem (mainly for uncontrolled volatility) and in [14, 15, 2, 3, 4] for
so-called pathwise stochastic control problems. The relation to the path-
dependent PDEs, introduced very recently in [25], is yet to be explored.

The remainder of the paper is organized as follows. In Section 2 we detail
the controlled SDE and its conditional versions, de�ne the value process for
the case when � is uniformly continuous and establish its regularity. The
pathwise dynamic programming principle is proved in Section 3. In Section 4
we extend the value process to a more general class of functionals � and
state its quasi-sure representation. The càdlàg modi�cation is constructed
in Section 5. In the concluding Section 6, we provide the Hamilton-Jacobi-
Bellman 2BSDE and interpret the value process as a variant of the random
G-expectation.

2 Construction of the Value Function

In this section, we �rst introduce the setting and notation. Then, we de�ne
the value function Vt(!) for a uniformly continuous reward functional � and
examine the regularity of Vt.
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2.1 Notation

We �x a constant T > 0 and let Ω := C([0, T ];Rd) be the canonical space of
continuous paths equipped with the uniform norm ∥!∥T := sup0≤s≤T ∣!s∣,
where ∣ ⋅ ∣ is the Euclidean norm. We denote by B the canonical process
Bt(!) = !t, by P0 the Wiener measure, and by F = {ℱt}0≤t≤T the (raw)
�ltration generated by B. Unless otherwise stated, probabilistic notions
requiring a �ltration (such as adaptedness) refer to F.

For any probability measure P on Ω and any (t, !) ∈ [0, T ]× Ω, we can
construct the corresponding regular conditional probability distribution P!t ;
cf. [29, Theorem 1.3.4]. We recall that P!t is a probability kernel on ℱt×ℱT ;
i.e., P!t is a probability measure on (Ω,ℱT ) for �xed ! and ! 7→ P!t (A) is
ℱt-measurable for each A ∈ ℱT . Moreover, the expectation under P!t is the
conditional expectation under P :

EP
!
t [�] = EP [�∣ℱt](!) P -a.s.

whenever � is ℱT -measurable and bounded. Finally, P!t is concentrated on
the set of paths that coincide with ! up to t,

P!t
{
!′ ∈ Ω : !′ = ! on [0, t]

}
= 1. (2.1)

While P!t is not de�ned uniquely by these properties, we choose and �x one
version for each triplet (t, !, P ).

Let t ∈ [0, T ]. We denote by Ωt := {! ∈ C([t, T ];ℝd) : !t = 0} the
shifted canonical space of paths starting at the origin. For ! ∈ Ω, the
shifted path !t ∈ Ωt is de�ned by !tr := !r − !t for t ≤ r ≤ T , so that
Ωt = {!t : ! ∈ Ω}. Moreover, we denote by P t0 the Wiener measure on Ωt

and by Ft = {ℱ tr}t≤r≤T the (raw) �ltration generated by Bt, which can be
identi�ed with the canonical process on Ωt.

Given two paths ! and !̃, their concatenation at t is the (continuous)
path de�ned by

(! ⊗t !̃)r := !r1[0,t)(r) + (!t + !̃tr)1[t,T ](r), 0 ≤ r ≤ T.

Given an ℱT -measurable random variable � on Ω and ! ∈ Ω, we de�ne the
conditioned random variable �t,! on Ω by

�t,!(!̃) := �(! ⊗t !̃), !̃ ∈ Ω.

Note that �t,!(!̃) = �t,!(!̃t); in particular, �t,! can also be seen as a ran-
dom variable on Ωt. Then !̃ 7→ �t,!(!̃) is ℱ tT -measurable and moreover,
�t,! depends only on the restriction of ! to [0, t]. We note that for an F-
progressively measurable process {Xr, r ∈ [s, T ]}, the conditioned process
{Xt,!

r , r ∈ [t, T ]} is Ft-progressively measurable. If P is a probability on Ω,
the measure P t,! on ℱ tT de�ned by

P t,!(A) := P!t (! ⊗t A), A ∈ ℱ tT , where ! ⊗t A := {! ⊗t !̃ : !̃ ∈ A},
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is again a probability by (2.1). We then have

EP
t,!

[�t,!] = EP
!
t [�] = EP [�∣ℱt](!) P -a.s.

Analogous notation will be used when � is a random variable on Ωs and
! ∈ Ωs, where 0 ≤ s ≤ t ≤ T . We denote by Ωs

t := {!∣[s,t] : ! ∈ Ωs} the
restriction of Ωs to [s, t], equipped with ∥!∥[s,t] := supr∈[s,t] ∣!r∣. Note that
Ωs
t can be identi�ed with {! ∈ Ωs : !r = !t for r ∈ [t, T ]}. The meaning of

Ωt is analogous.

2.2 The Controlled SDE

Let U be a nonempty Borel subset of ℝm for some m ∈ ℕ. We consider two
given functions

� : [0, T ]× Ω× U → ℝd and � : [0, T ]× Ω× U → ℝd×d,

the drift and di�usion coe�cients, such that (t, !) 7→ �(t,X(!), �t(!)) and
(t, !) 7→ �(t,X(!), �t(!)) are progressively measurable for any continuous
adapted process X and any U -valued progressively measurable process �.
In particular, �(t, !, u) and �(t, !, u) depend only on the past trajectory
{!r, r ∈ [0, t]}, for any u ∈ U . Moreover, we assume that there exists a
constant K > 0 such that

∣�(t, !, u)− �(t, !′, u)∣+ ∣�(t, !, u)− �(t, !′, u)∣ ≤ K∥! − !′∥t (2.2)

for all (t, !, !′, u) ∈ [0, T ]×Ω×Ω×U . We denote by U the set of all U -valued
progressively measurable processes � such that∫ T

0
∣�(r,X, �r)∣ dr <∞ and

∫ T

0
∣�(r,X, �r)∣2 dr <∞ (2.3)

hold path-by-path for any continuous adapted process X. Given � ∈ U , the
stochastic di�erential equation

Xt = x+

∫ t

0
�(r,X, �r) dr +

∫ t

0
�(r,X, �r) dBr, 0 ≤ t ≤ T under P0

has a P0-a.s. unique strong solution for any initial condition x ∈ ℝd, which
we denote by X(0, x, �). We shall denote by

P̄ (0, x, �) := P0 ∘X(0, x, �)−1 (2.4)

the distribution of X(0, x, �) on Ω and by

P (0, x, �) := P0 ∘
(
X(0, x, �)0

)−1

the distribution of X(0, x, �)0 ≡ X(0, x, �) − x; i.e., the solution which is
translated to start at the origin. Note that P (0, x, �) is concentrated on Ω0

and can therefore be seen as a probability measure on Ω0.
We shall work under the following nondegeneracy condition.
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Assumption 2.1. Throughout this paper, we assume that

FX
P0 ⊇ F for all X = X(0, x, �), (2.5)

where FX
P0

is the P0-augmentation of the �ltration generated by X and
(x, �) varies over ℝd × U .

One can construct situations where Assumption 2.1 fails. For example,
if x = 0, � ≡ 1 and �(r,X, �r) = �r, then (2.5) fails for a suitable choice
of �; see, e.g., [11]. The following is a positive result which covers many
applications.

Remark 2.2. Let � be strictly positive de�nite and assume that �(r,X, �r)
is a progressively measurable functional of X and �(r,X, �r). Then (2.5)
holds true.

Note that the latter assumption is satis�ed in particular when � is un-
controlled; i.e., �(r, !, u) = �(r, !).

Proof. Let X = X(0, x, �). As the quadratic variation of X, the process∫
��⊤(r,X, �r) dr is adapted to the �ltration generated by X. In view of

our assumptions, it follows that

M :=

∫
�(r,X, �r) dBr = X − x−

∫
�(r,X, �t) dr

has the same property. Hence B =
∫
�(r,X, �r)

−1 dMr is again adapted to
the �ltration generated by X.

Remark 2.3. For some applications, in particular when the SDE is of ge-
ometric form, requiring (2.5) to hold for all x ∈ ℝd is too strong. One can
instead �x the initial condition x throughout the paper, then it su�ces to
require (2.5) only for that x.

Next, we introduce for �xed t ∈ [0, T ] an SDE on [t, T ]×Ωt induced by �
and �. Of course, the second argument of � and � requires a path on [0, T ],
so that it is necessary to specify a �history� for the SDE on [0, t]. This role
is played by an arbitrary path � ∈ Ω. Given �, we de�ne the conditioned
coe�cients

�t,� : [0, T ]× Ωt × U → ℝd, �t,�(r, !, u) := �(r, � ⊗t !, u),

�t,� : [0, T ]× Ωt × U → ℝd×d, �t,�(r, !, u) := �(r, � ⊗t !, u).

(More precisely, these functions are de�ned also when ! is a path not neces-
sarily starting at the origin, but clearly their value at (r, !, u) depends only
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on !t.) We observe that the Lipschitz condition (2.2) is inherited; indeed,

∣�t,�(r, !, u)− �t,�(r, !′, u)∣+∣�t,�(r, !, u)− �t,�(r, !′, u)∣
≤ K∥� ⊗t ! − � ⊗t !′∥[t,r]
= K∥!t − !′t∥[t,r]
≤ 2K∥! − !′∥[t,r].

We denote by U t the set of all Ft-progressively measurable, U -valued pro-
cesses � such that

∫ T
t ∣�(r,X, �r)∣ dr < ∞ and

∫ T
t ∣�(r,X, �r)∣2 dr < ∞ for

any continuous Ft-adapted process X = {Xr, r ∈ [0, T ]}. For � ∈ U t, the
SDE

Xs = �t+

∫ s

t
�t,�(r,X, �r) dr+

∫ s

t
�t,�(r,X, �r) dB

t
r, t ≤ s ≤ T under P t0

(2.6)
has a unique solution X(t, �, �) on [t, T ]. Similarly as above, we de�ne

P (t, �, �) := P t0 ∘
(
X(t, �, �)t

)−1

to be the distribution of X(t, �, �)t ≡ X(t, �, �)− �t on Ωt. Note that this is
consistent with the notation P (0, x, �) if x is seen as a constant path.

2.3 The Value Function

We can now de�ne the value function for the case when the reward func-
tional � is an element of UCb(Ω), the space of bounded uniformly continuous
functions on Ω.

De�nition 2.4. Given t ∈ [0, T ] and � ∈ UCb(Ω), we de�ne the value
function

Vt(!) = Vt(�;!) = sup
�∈Ut

EP (t,!,�)[�t,!], (t, !) ∈ [0, T ]× Ω. (2.7)

The function � is �xed throughout Sections 2 and 3 and hence often
suppressed in the notation. In view of the double dependence on ! in (2.7),
the measurability of Vt is not obvious. We have the following regularity
result.

Proposition 2.5. Let t ∈ [0, T ] and � ∈ UCb(Ω). Then Vt ∈ UCb(Ωt) and

in particular Vt is ℱt-measurable. More precisely,

∣Vt(!)− Vt(!′)∣ ≤ �(∥! − !′∥t) for all !, !′ ∈ Ω

with a modulus of continuity � depending only on �, the Lipschitz constant

K and the time horizon T .
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The �rst source of regularity for Vt is our assumption that � is uniformly
continuous; the second one is the Lipschitz property of the SDE. Before
stating the proof of the proposition, we examine the latter aspect in detail.

Lemma 2.6. Let  ∈ UCb(Ω
t). There exists a modulus of continuity �K,T, ,

depending only on K,T and the minimal modulus of continuity of  , such
that ∣∣EP (t,!,�)[ ]− EP (t,!′,�)[ ]

∣∣ ≤ �K,T, (∥! − !′∥t)
for all t ∈ [0, T ], � ∈ U t and !, !′ ∈ Ω.

Proof. We set E[ ⋅ ] := EP
t
0 [ ⋅ ] to alleviate the notation. Let !, !̄ ∈ Ω, set

X := X(t, !, �) and X̄ := X(t, !̄, �), and recall that Xt = X −Xt = X −!t
and similarly X̄t = X̄ − !̄t.

(i) We begin with a standard SDE estimate. Let Xt = M t + At and
X̄t = M̄ t + Āt be the semimartingale decompositions and t ≤ � ≤ T be
a stopping time such that M t, M̄ t, At, Āt are bounded on [t, � ]. Then Itô's
formula and the Lipschitz property (2.2) of � yield that

E[∣M t
� − M̄ t

� ∣2] ≤ E
∫ �

t
∣�(r, ! ⊗t X, �r)− �(r, !̄ ⊗t X̄, �r)∣2 dr

≤ K2E

∫ �

t
∥! ⊗t X − !̄ ⊗t X̄∥2r dr

≤ K2E

∫ �

t

(
∥! − !̄∥t + ∥Xt − X̄t∥[t,r]

)2
dr

≤ 2K2T∥! − !̄∥2t + 2K2

∫ T

t
E
[
∥Xt − X̄t∥2[t,r∧� ]

]
dr.

Hence, Doob's maximal inequality implies that

E
[
∥M t − M̄ t∥2[t,� ]

]
≤ 4E[∣M t

� − M̄ t
� ∣2]

≤ 8K2T∥! − !̄∥2t + 8K2

∫ T

t
E
[
∥Xt − X̄t∥2[t,r∧� ]

]
dr.

Moreover, using the Lipschitz property (2.2) of �, we also have that

∣Ats − Āts∣ ≤
∫ s

t
∣�(r, ! ⊗t X, �r)− �(r, !̄ ⊗t X̄, �r)∣ dr

≤ K
∫ s

t

(
∥! − !̄∥t + ∥Xt − X̄t∥[t,r]

)
dr

for all t ≤ s ≤ T and then Jensen's inequality yields that

E
[
∥At − Āt∥2[t,� ]

]
≤ 2K2T 2∥! − !̄∥2t + 2K2T

∫ T

t
E
[
∥Xt − X̄t∥2[t,r∧� ]

]
dr.
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Hence, we have shown that

E
[
∥Xt − X̄t∥2[t,� ]

]
≤ C0∥! − !̄∥2t + C0

∫ T

t
E
[
∥Xt − X̄t∥2[t,r∧� ]

]
dr,

where C0 depends only on K and T , and we conclude by Gronwall's lemma
that

E
[
∥Xt − X̄t∥2[t,� ]

]
≤ C∥! − !̄∥2t , C := C0e

C0T .

By the continuity of their sample paths, there exists a localizing sequence
(�n)n≥1 of stopping times such thatM t, M̄ t, At, Āt are bounded on [t, �n] for
each n. Therefore, monotone convergence and the previous inequality yield
that

E
[
∥Xt − X̄t∥2[t,T ]

]
≤ C∥! − !̄∥2t . (2.8)

(ii) Let �̃ be the minimal (nondecreasing) modulus of continuity for  ,

�̃(z) := sup
{
∣ (!̃)−  (!̃′)∣ : !̃, !̃′ ∈ Ωt, ∥!̃ − !̃′∥[t,T ] ≤ z

}
,

and let � be the concave hull of �̃. Then � is a bounded continuous function
satisfying �(0) = 0 and � ≥ �̃. Let P := P (t, !, �) and P̄ := P (t, !̄, �), then
P and P̄ are the distributions of Xt and X̄t, respectively; therefore,∣∣EP [ ]− EP̄ [ ]

∣∣ =
∣∣E[ (Xt)−  (X̄t)]

∣∣ ≤ E[�(∥Xt − X̄t∥[t,T ]

)]
. (2.9)

Moreover, Jensen's inequality and (2.8) yield that

E
[
�
(
∥Xt − X̄t∥[t,T ]

)]
≤ �
(
E
[
∥Xt − X̄t∥[t,T ]

])
≤ �
(
E
[
∥Xt − X̄t∥2[t,T ]

]1/2)
≤ �
(√
C∥! − !̄∥t

)
for every n. In view of (2.9), we have ∣EP [ ] − EP̄ [ ]∣ ≤ �(

√
C∥! − !̄∥t);

i.e., the result holds for �K,T, (z) := �(
√
Cz).

After these preparations, we can prove the continuity of Vt.

Proof of Proposition 2.5. To disentangle the double dependence on ! in (2.7),
we �rst consider the function

(�, !) 7→ EP (t,�,�)[�t,!], (�, !) ∈ Ω× Ω.

Since � ∈ UCb(Ω), there exists a modulus of continuity �(�) for �; i.e.,

∣�(!)− �(!′)∣ ≤ �(�)(∥! − !′∥T ), !, !′ ∈ Ω.

Therefore, we have for all !̃ ∈ Ωt that

∣�t,!(!̃)− �t,!′(!̃)∣ = ∣�(! ⊗t !̃)− �(!′ ⊗t !̃)∣
≤ �(�)(∥! ⊗t !̃ − !′ ⊗t !̃∥T )

= �(�)(∥! − !′∥t). (2.10)
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For �xed � ∈ Ω, it follows that∣∣EP (t,�,�)[�t,!]− EP (t,�,�)[�t,!
′
]
∣∣ ≤ �(�)(∥! − !′∥t). (2.11)

Fix ! ∈ Ω and let  ! := �t,!. Then �(�) yields a modulus of continuity
for  !; in particular, this modulus of continuity is uniform in !. Thus
Lemma 2.6 implies that the mapping � 7→ EP (t,�,�)[ !] admits a modulus of
continuity �T,K,� depending only on T,K, �. In view of (2.11), we conclude
that∣∣EP (t,�,�)[�t,!]− EP (t,�′,�)[�t,!

′
]
∣∣ ≤ �(�)(∥! − !′∥t) + �T,K,�(∥� − �′∥t)

for all �, �′, !, !′ ∈ Ω and in particular that∣∣EP (t,!,�)[�t,!]−EP (t,!′,�)[�t,!
′
]
∣∣ ≤ �(∥!−!′∥t), � := �(�) + �T,K,� (2.12)

for all !, !′ ∈ Ω. Passing to the supremum over � ∈ U t, we obtain that
∣Vt(!)− Vt(!′)∣ ≤ �(∥! − !′∥t) for all !, !′ ∈ Ω, which was the claim.

3 Pathwise Dynamic Programming

In this section, we provide a pathwise dynamic programming principle which
is fundamental for the subsequent sections. As we are working in the weak
formulation (1.4), the arguments used here are similar to, e.g., [26], while
[22] gives a related construction in the strong formulation (i.e., working only
under P0).

We assume in this section that the following conditional version of As-
sumption 2.1 holds true; however, we shall see later (Lemma 4.4) that this
extended assumption holds automatically outside certain nullsets.

Assumption 3.1. Throughout Section 3, we assume that

FX
P t0 ⊇ Ft for X := X(t, �, �), (3.1)

for all (t, �, �) ∈ [0, T ]× Ω× U t.

The main result of this section is the following dynamic programming
principle. We shall also provide more general, quasi-sure versions of this
result later (the �nal form being Theorem 5.2).

Theorem 3.2. Let 0 ≤ s ≤ t ≤ T , � ∈ UCb(Ω) and set Vr(⋅) = Vr(�; ⋅).
Then

Vs(!) = sup
�∈Us

EP (s,!,�)
[
(Vt)

s,!
]

for all ! ∈ Ω. (3.2)

10



We remark that in view of Proposition 2.5, we may see � 7→ Vr(�; ⋅) as a
mapping UCb(Ω)→ UCb(Ω) and recast (3.2) as the semigroup property

Vs = Vs ∘ Vt on UCb(Ω) for all 0 ≤ s ≤ t ≤ T. (3.3)

Some auxiliary results are needed for the proof of Theorem 3.2, which is
stated at the end of this section. We start with the (well known) observation
that conditioning the solution of an SDE yields the solution of a suitably
conditioned SDE.

Lemma 3.3. Let 0 ≤ s ≤ t ≤ T , � ∈ Us and !̄ ∈ Ω. If X̄ := X(s, !̄, �),
then

X̄t,! = X
(
t, !̄ ⊗s X̄(!), �t,!

)
P t0-a.s.

for all ! ∈ Ωs.

Proof. Let ! ∈ Ωs. Using the de�nition and the �ow property of X̄, we have

X̄r = !̄s +

∫ r

s
�s,!̄(u, X̄, �u) du+

∫ r

s
�s,!̄(u, X̄, �u) dBs

u

= X̄t +

∫ r

t
�(u, !̄ ⊗s X̄, �u) du+

∫ r

t
�(u, !̄ ⊗s X̄, �u) dBs

u P s0 -a.s.

for all r ∈ [t, T ]. Hence, using that (P s0 )t,! = P t0 by the P s0 -independence of
the increments of Bs,

X̄t,!
r = X̄t,!

t +

∫ r

t
�(u, !̄⊗sX̄t,!, �t,!u ) du+

∫ r

t
�(u, !̄⊗sX̄t,!, �t,!u ) dBt

u P t0-a.s.

(3.4)
Since X̄ is adapted, we have X̄t,!(⋅) = X̄(! ⊗t ⋅) = X̄(!) on [s, t] and in
particular

!̄ ⊗s X̄t,! = !̄ ⊗s X̄(!)⊗t X̄t,! = � ⊗t X̄t,!, for � := !̄ ⊗s X̄(!).

Therefore, recalling that X̄s = !̄s, (3.4) can be stated as

X̄t,!
r = �t +

∫ r

t
�t,�(u, X̄t,!, �t,!) du+

∫ r

t
�t,�(u, X̄t,!, �t,!) dBt

u P t0-a.s.;

i.e., X̄t,! solves the SDE (2.6) for the parameters (t, �, �t,!). Now the result
follows by the uniqueness of the solution to this SDE.

Given t ∈ [0, T ] and ! ∈ Ω, we de�ne

P(t, !) =
{
P (t, !, �) : � ∈ U t

}
. (3.5)

These sets have the following invariance property.
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Lemma 3.4. Let 0 ≤ s ≤ t ≤ T and !̄ ∈ Ω. If P ∈ P(s, !̄), then

P t,! ∈ P(t, !̄ ⊗s !) for P -a.e. ! ∈ Ωs.

Proof. Since P ∈ P(s, !̄), we have P = P (s, !̄, �) for some � ∈ Us; i.e.,
setting X := X(s, !̄, �), P is the distribution of

Xs =

∫ ⋅
s
�(r, !̄ ⊗s X, �r) dr +

∫ ⋅
s
�(r, !̄ ⊗s X, �r) dBs

r under P s0 .

We set �̂r := �(r, !̄⊗sX, �r) and �̂r := �(r, !̄⊗sX, �r) and see the above as
the integral

∫ ⋅
s �̂r dr+

∫ ⋅
s �̂r dB

s
r rather than an SDE. As in [26, Lemma 2.2],

the nondegeneracy assumption (3.1) implies the existence of a progressively
measurable transformation �� : Ωs → Ωs (depending on s, !̄, �) such that

��(Xs) = Bs P s0 -a.s. (3.6)

Furthermore, a rather tedious calculation as in the proof of [26, Lemma 4.1]
shows that

P t,! = P t0 ∘
(∫ ⋅

s
�̂t,��(!)
r dr +

∫ ⋅
s
�̂t,��(!)
r dBt

r

)−1

for P -a.e. ! ∈ Ωs.

Note that, abbreviating !̌ := ��(!), we have

�̂t,��(!)
r = �

(
r, !̄ ⊗s Xt,!̌, �t,!̌r

)
= �

(
r, !̄ ⊗s X(!̌)⊗t Xt,!̌, �t,!̌r

)
and similarly for �̂t,��(!). Hence, we deduce by Lemma 3.3 that

P t,! = P (t, !̄ ⊗s X(!̌), �t,!̌) for P -a.e. ! ∈ Ωs.

In view of (3.6), we have

Xs(��(Bs)) = Bs P -a.s.; (3.7)

i.e., X(!̌)s = Xs(!̌) = ! for P -a.e. ! ∈ Ωs, and we conclude that

P t,! = P (t, !̄ ⊗s !, �t,!̌) for P -a.e. ! ∈ Ωs. (3.8)

In particular, P t,! ∈ P(t, !̄ ⊗s !).

Lemma 3.5 (Pasting). Let 0 ≤ s ≤ t ≤ T , !̄ ∈ Ω, � ∈ Us and set

P := P (s, !̄, �), X := X(s, !̄, �). Let (Ei)0≤i≤N be a �nite ℱst -measurable

partition of Ωs, �i ∈ U t for 1 ≤ i ≤ N and de�ne �̄ ∈ Us by

�̄(!) := 1[s,t)�(!) + 1[t,T ]

[
�(!)1E0(X(!)s) +

N∑
i=1

�i(!t)1Ei(X(!)s)

]
.

Then P̄ := P (s, !̄, �̄) satis�es P̄ = P on ℱst and

P̄ t,! = P (t, !̄ ⊗s !, �i) for P -a.e. ! ∈ Ei, 1 ≤ i ≤ N.
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Proof. As �̄ = � on [s, t), we have X(s, !̄, �̄) = X on [s, t] and in particular
P̄ = P on ℱst . Let 1 ≤ i ≤ N , we show that P̄ t,! = P (t, !̄ ⊗s !, �i) for
P -a.e. ! ∈ Ei. Recall from (3.8) that

P̄ t,! = P (t, !̄ ⊗s !, �̄t,��̄(!)) for P̄ -a.e. ! ∈ Ωs,

where ��̄ is de�ned as in (3.6). Since both sides of this equality depend only
on the restriction of ! to [s, t] and X(s, !̄, �̄) = X on [s, t], we also have that

P̄ t,! = P (t, !̄ ⊗s !, �̄t,!̌) for P -a.e. ! ∈ Ωs, (3.9)

where !̌ = ��(!) is de�ned as below (3.6). Note that by (3.7), ! ∈ Ei

implies X(!̌)s ∈ Ei under P . (More precisely, if A ⊆ Ωs is a set such that
A ⊆ Ei P -a.s., then {X(!̌)s : ! ∈ A} ⊆ Ei P -a.s.) In fact, since X is
adapted and Ei ∈ ℱst , we even have that

X(!̌ ⊗t !̃)s ∈ Ei for all !̃ ∈ Ωt, for P -a.e. ! ∈ Ei.

By the de�nition of �̄, we conclude that

�̄t,!̌(!̃) = �̄(!̌⊗t !̃) = �i((!̌⊗t !̃)t) = �i(!̃), !̃ ∈ Ωt, for P -a.e. ! ∈ Ei.

In view of (3.9), this yields the claim.

Remark 3.6. In [26] and [17], it was possible to use a pasting of measures
as follows: in the notation of Lemma 3.5, it was possible to specify measures
P i on Ωt, corresponding to certain admissible controls, and use the pasting
P̂ (A) := P (A ∩ E0) +

∑N
i=1E

P
[
P i(At,!)1Ei(!)

]
to obtain a measure in Ωs

which again corresponded to some admissible control and satis�ed

P̂ t,! = P i for P̂ -a.e. ! ∈ Ei, (3.10)

which was then used in the proof of the dynamic programming principle.
This is not possible in our SDE-driven setting. Indeed, suppose that

P̂ is of the form P (s, !̄, �) for some !̄ and �, then we see from (3.8) that,
when � is general, P̂ t,! will depend explicitly on !, which contradicts (3.10).
Therefore, the subsequent proof uses an argument where (3.10) holds only
at one speci�c ! ∈ Ei; on the rest of Ei, we con�ne ourselves to controlling
the error.

We can now show the dynamic programming principle. Apart from the
di�erence remarked above, the basic pattern of the proof is the same as in
[26, Proposition 4.7].

Proof of Theorem 3.2. Using the notation (3.5), our claim (3.2) can be stated
as

sup
P∈P(s,!̄)

EP
[
�s,!̄

]
= sup

P∈P(s,!̄)
EP
[
(Vt)

s,!̄
]

for all !̄ ∈ Ω. (3.11)
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(i) We �rst show the inequality �≤� in (3.11). Fix !̄ ∈ Ω and P ∈ P(s, !̄).
Lemma 3.4 shows that P t,! ∈ P(t, !̄⊗s !) for P -a.e. ! ∈ Ωs and hence that

EP
t,![

(�s,!̄)t,!
]

= EP
t,![

�t,!̄⊗s!
]

≤ sup
P ′∈P(t,!̄⊗s!)

EP
′[
�t,!̄⊗s!

]
= Vt(!̄ ⊗s !)

= V s,!̄
t (!) for P -a.e. ! ∈ Ωs.

Since Vt is measurable by Proposition 2.5, we can take P (d!)-expectations
on both sides to obtain that

EP
[
�s,!̄

]
= EP

[
EP

t,![
(�s,!̄)t,!

]]
≤ EP

[
V s,!̄
t

]
.

We take the supremum over P ∈ P(s, !̄) on both sides and obtain the claim.
(ii) We now show the inequality �≥� in (3.11). Fix !̄ ∈ Ω, � ∈ Us and

let P = P (s, !̄, �). We �x " > 0 and construct a countable cover of the state
space as follows.

Let !̂ ∈ Ωs. By the de�nition of Vt(!̄ ⊗s !̂), there exists �(!̂) ∈ U t such
that P (!̂) := P (t, !̄ ⊗s !̂, �(!̂)) satis�es

Vt(!̄ ⊗s !̂) ≤ EP (!̂)
[�t,!̄⊗s!̂] + ". (3.12)

Let B(", !̂) ⊆ Ωs denote the open ∥ ⋅ ∥[s,t]-ball of radius " around !̂. Since
(Ωs, ∥ ⋅∥[s,t]) is a separable (quasi-)metric space and therefore Lindelöf, there
exists a sequence (!̂i)i≥1 in Ωs such that the balls Bi := B(", !̂i) form a
cover of Ωs. As an ∥ ⋅ ∥[s,t]-open set, each Bi is ℱst -measurable and hence

E1 := B1, Ei+1 := Bi+1 ∖ (E1 ∪ ⋅ ⋅ ⋅ ∪ Ei), i ≥ 1

de�nes a partition (Ei)i≥1 of Ωs. Replacing Ei by(
Ei ∪ {!̂i}

)
∖ {!̂j : j ≥ 1, j ∕= i}

if necessary, we may assume that !̂i ∈ Ei for i ≥ 1. We set �i := �(!̂i) and
P i := P (t, !̄ ⊗s !̂i, �i).

Next, we paste the controls �i. Fix N ∈ ℕ and let AN := E1 ∪ ⋅ ⋅ ⋅ ∪EN ,
then {AcN , E1, . . . , EN} is a �nite partition of Ωs. LetX := X(s, !̄, �), de�ne

�̄(!) := 1[s,t)�(!) + 1[t,T ]

[
�(!)1AcN (X(!)s) +

N∑
i=1

�i(!t)1Ei(X(!)s)

]
and let P̄ := P (s, !̄, �̄). Then, by Lemma 3.5, we have P̄ = P on ℱst and
P̄ t,! = P (t, !̄⊗s!, �i) for all ! ∈ Ẽi, for some subset Ẽi ⊆ Ei of full measure
P . Let us assume for the moment that

!̂i ∈ Ẽi for 1 ≤ i ≤ N, (3.13)
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then we may conclude that

P̄ t,!̂
i

= P i for 1 ≤ i ≤ N. (3.14)

Recall from Proposition 2.5 that Vt admits a modulus of continuity �(Vt).
Moreover, we obtain similarly as in (2.10) that there exists a modulus of
continuity �(�) such that

∣�t,!̄⊗s! − �t,!̄⊗s!′ ∣ ≤ �(�)(∥! − !′∥[s,t]).

Let ! ∈ Ei ⊆ Ωs for some 1 ≤ i ≤ N , then ∥! − !̂i∥[s,t] < ". Together
with (3.12) and (3.14), we obtain that

V s,!̄
t (!) ≤ V s,!̄

t (!̂i) + �(Vt)(")

≤ EP i [�t,!̄⊗s!̂i ] + "+ �(Vt)(")

= EP̄
t,!̂i

[�t,!̄⊗s!̂
i
] + "+ �(Vt)("). (3.15)

Recall from (2.12) that the mapping

!′ 7→ EP (t,!′,�i)[�t,!
′
]

is uniformly continuous with a modulus �̃ independent of i and N . Since
! ∈ Ei, it follows that

EP̄
t,!̂i

[�t,!̄⊗s!̂
i
]− EP̄ t,! [�t,!̄⊗s!]

= EP (t,!̄⊗s!̂i,�i)[�t,!̄⊗s!̂
i
]− EP (t,!̄⊗s!,�i)[�t,!̄⊗s!]

≤ �̃(") for P̄ -a.e. ! ∈ Ei. (3.16)

Setting �(") := �̃(") + "+ �(Vt)(") and noting that

EP̄
t,!

[�t,!̄⊗s!] = EP̄
t,!

[(�s,!̄)t,!] = EP̄ [�s,!̄∣ℱst ](!),

the inequalities (3.15) and (3.16) imply that

V s,!̄
t (!) ≤ EP̄

[
�s,!̄

∣∣ℱst ](!) + �(") (3.17)

for P̄ -a.e. (and thus P -a.e.) ! ∈ Ei. This holds for all 1 ≤ i ≤ N . As P = P̄
on ℱst , taking P -expectations yields

EP [V s,!̄
t 1AN ] ≤ EP̄N [�s,!̄1AN ] + �("), (3.18)

where we write P̄N = P̄ to recall the dependence on N . Since AN ↑ Ωs, we
have P̄N (AcN ) = P (AcN )→ 0 as N →∞. In view of

EP̄N [�s,!̄1AN ] = EP̄N [�s,!̄]− EP̄N [�s,!̄1AcN ] ≤ EP̄N [�s,!̄] + ∥�∥∞PN (AcN ),

15



we conclude from (3.18) that

EP [V s,!̄
t ] ≤ lim sup

N→∞
EP̄N [�s,!̄] + �(") ≤ sup

P ′∈P(s,!̄)
EP

′
[�s,!̄] + �(").

Since P ∈ P(s, !̄) was arbitrary, letting "→ 0 completes the proof of (3.11).
It remains to argue that our assumption (3.13) does not entail a loss of

generality. Indeed, assume that !̂i /∈ Ẽi for some i. Then there are two
possible cases. The case P (Ei) = 0 is easily seen to be harmless; recall
that the measure P was �xed throughout the proof. In the case P (Ei) > 0,
we also have P (Ẽi) > 0 and in particular Ẽi ∕= ∅. Thus we can replace
!̂i by an arbitrary element of Ẽi (which can be chosen independently of
N). Using the continuity of the value function (Proposition 2.5) and of the
reward function (2.12), we see that the above arguments still apply if we add
an additional modulus of continuity in (3.15).

4 Extension of the Value Function

In this section, we extend the value function � 7→ Vt(�; ⋅) to an L1-type space
of random variables �, in the spirit of, e.g., [8]. While the construction of
Vt in the previous section required a precise analysis �! by !�, we can now
move towards a more probabilistic presentation. In particular, we shall often
write Vt(�) for the random variable ! 7→ Vt(�;!).

For reasons explained in Remark 4.2 below, we �x from now on an initial
condition x ∈ ℝd and let

Px := {P (0, x, �) : � ∈ U}

be the corresponding set of measures at time s = 0. Given a random variable
 on Ω, we write  x as a shorthand for  0,x ≡  (x⊗0 ⋅). We also write V x

t (�)
for (Vt(�))

x.
Given p ∈ [1,∞), we de�ne LpPx to be the space of ℱT -measurable random

variables X satisfying

∥X∥LpPx := sup
P∈Px

∥X∥Lp(P ) <∞,

where ∥X∥pLp(P ) := EP [∣X∣p]. More precisely, we identify functions which are

equal Px-quasi-surely, so that LpPx becomes a Banach space. (Two functions
are equal Px-quasi-surely, Px-q.s. for short, if they are equal P -a.s. for all
P ∈ Px.) Furthermore, given t ∈ [0, T ],

LpPx(ℱt) is de�ned as the ∥ ⋅ ∥LpPx -closure of UCb(Ωt) ⊆ LpPx .

Since any LpPx-convergent sequence has a Px-q.s. convergent subsequence,
any element of LpPx(ℱt) has an ℱt-measurable representative. For brevity,
we shall often write LpPx for LpPx(ℱT ).
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Remark 4.1. The space LpPx can be described as follows. We say that
� ∈ LpPx is Px-quasi uniformly continuous if � has a representative �′ with
the property that for all " > 0 there exists an open set G ⊆ Ω such that
P (G) < " for all P ∈ P and such that the restriction �′∣Ω∖G is uniformly con-
tinuous. Then LpPx consists of all � ∈ LpPx such that � is Px-quasi uniformly
continuous and limn→∞ ∥�1{∣�∣≥n}∥LpPx = 0. Moreover, If Px is weakly rela-

tively compact, then LpPx contains all bounded continuous functions on Ω.
The proof is the same as in [17, Proposition 5.2], which, in turn, followed

an argument of [7].

Before extending the value function to L1
Px , let us explain why we are

working under a �xed initial condition x ∈ ℝd.

Remark 4.2. There is no fundamental obstruction to writing the theory
without �xing the initial condition x; in fact, most of the results would
be more elegant if stated using P̄ instead of Px, where P̄ is the set of all
distributions of the form (2.4), with arbitrary initial condition. However, the
set P̄ is very large and therefore the corresponding space L1

P̄ is very small,
which is undesirable for the domain of our extended value function. As an
illustration, consider a random variable of the form �(!) := f(!0) on Ω,
where f : ℝd → ℝ is a measurable function. Then

∥�∥L1
P̄

= sup
x∈ℝd

∣f(x)∣;

i.e., � is in L1
P̄ only when f is uniformly bounded. As a second issue in the

same vein, it follows from the Arzelà-Ascoli theorem that the set P̄ is never
weakly relatively compact. The latter property, which is satis�ed by Px for
example when � and � are bounded, is sometimes useful in the context of
quasi-sure analysis.

Lemma 4.3. Let p ∈ [1,∞). The mapping V x
t on UCb(Ω) is 1-Lipschitz,

∥V x
t (�)− V x

t ( )∥LpPx ≤ ∥� −  ∥L
p
Px

for all �,  ∈ UCb(Ω).

As a consequence, V x
t uniquely extends to a Lipschitz-continuous mapping

V x
t : LpPx(ℱT )→ LpPx(ℱt).

Proof. The argument is standard and included only for completeness. Note
that ∣�− ∣p is again in UCb(Ω). The de�nition of V x

t and Jensen's inequality
imply that ∣V x

t (�)− V x
t ( )∣p ≤ V x

t (∣� −  ∣)p ≤ V x
t (∣� −  ∣p). Therefore,

∥V x
t (�)− V x

t ( )∥LpPx ≤ sup
P∈Px

EP
[
V x
t (∣� −  ∣p)

]1/p
= sup

P∈Px
EP [∣� −  ∣p]1/p,

where the equality is due to (3.2) applied with s = 0. (For the case s = 0, the
additional Assumption 3.1 was not used in the previous section.) Recalling
from Proposition 2.5 that V x

t maps UCb(Ω) to UCb(Ωt), it follows that the
extension maps LpPx to LpPx(ℱt).
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4.1 Quasi-Sure Properties of the Extension

In this section, we provide some auxiliary results of technical nature. The
�rst one will (quasi-surely) allow us to appeal to the results in the previous
section without imposing Assumption 3.1. This is desirable since we would
like to end up with quasi-sure theorems whose statements do not involve
regular conditional probability distributions.

Lemma 4.4. Assumption 2.1 implies that Assumption 3.1 holds for Px-
quasi-every � ∈ Ω satisfying �0 = x.

For the proof of this lemma, we shall use the following result.

Lemma 4.5. Let Y and Z be continuous adapted processes, t ∈ [0, T ] and

let P be a probability measure on Ω. Then FY
P
⊇ FZ implies that

FY t,!
P t,!

⊇ FZ
t,!

for P -a.e. ! ∈ Ω.

Proof. The assumption implies that there exists a progressively measurable
transformation � : Ω → Ω such that Z = �(Y ) P -a.s. For P -a.e. ! ∈ Ω,
it follows that Z(! ⊗t ⋅) = �(Y (! ⊗t ⋅)) P t,!-a.s., which, in turn, yields the
result.

Proof of Lemma 4.4. Let X := X(t, �, �) with �0 = x, we have to show that

FX
P t0 ⊇ Ft whenever �0 is outside some Px-polar set. Hence we shall �x an

arbitrary P̂ ∈ Px and show that the result holds on a set of full measure P̂ .
Let P̂ ∈ Px, then P̂ = P (0, x, �̂) for some �̂ ∈ U and P̂ is concentrated on

the image of X̂0, where X̂ := X(0, x, �̂). That is, recalling that �0 = X̂0 = x,
we may assume that � = X̂(!) for some ! ∈ Ω. Let

�̄(!̃) := 1[0,t)�̂(!̃) + 1[t,T ]�(!̃t). (4.1)

Then X̄ := X(0, x, �̄) satis�es X̄ = X̂ on [0, t] and hence we may assume
that � = X̄(!) on [0, t]. Using Lemma 3.3 and (4.1), we deduce that

X̄t,! = X
(
t, x⊗ X̄(!), �̄t,!

)
= X(t, �, �) = X.

Since F ⊆ FX̄
P0

by Assumption 2.1, we conclude that

FtP
t
0 ⊆ FX̄t,!

P t0
= FX

P t0

by using Lemma 4.5 with Z being the canonical process.

The next two results show that (for � ≡ 0 and � positive de�nite) the
mapping � 7→ V x

t (�) on L1
Px falls into the general class of sublinear expecta-

tions considered in [19], whose techniques we shall apply in the subsequent
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section. More precisely, the two lemmas below yield the validity of its main
condition [19, Assumption 4.1].

The following property is known as stability under pasting and well known
to be important in non-Markovian control. It should not be confused with the
pasting discussed in Remark 3.6, where the considered measures correspond
to di�erent points in time.

Lemma 4.6. Let � be an F-stopping time and let Λ ∈ ℱ� . Let P, P 1, P 2 ∈ Px
satisfy P 1 = P 2 = P on ℱ� . Then

P̄ (A) := EP
[
P 1(A∣ℱ� )1Λ + P 2(A∣ℱ� )1Λc

]
, A ∈ ℱT

de�nes an element of Px.

Proof. It follows from the de�nition of the conditional expectation that P̄ is
a probability measure which is characterized by the properties

P̄ = P on ℱ� and P̄ �(!),! =

{
(P 1)�(!),! for P -a.e. ! ∈ Λ,

(P 2)�(!),! for P -a.e. ! ∈ Λc.
(4.2)

Let �, �1, �2 ∈ U be such that P = P (0, x, �) and P i = P (0, x, �i) for i = 1, 2.
Moreover, let X := X(0, x, �), de�ne �̄ ∈ U by

�̄r(!) := 1[0,�(X(!)0))(r)�r(!)

+ 1[�(X(!)0),T ](r)
[
�1
r (!)1Λ(X(!)0) + �2

r (!)1Λc(X(!)0)
]

and let P∗ := P (0, x, �̄) ∈ Px. We show that P∗ satis�es the three prop-
erties from (4.2). Indeed, � = �̄ on [0, �(X0)) implies that P∗ = P on ℱ� .
Moreover, as in (3.8),

P
�(!),!
∗ = P

(
�(!), x⊗0 !, �̄

�(X(!)0),!̌
)

for P -a.e. ! ∈ Ω.

Similarly as below (3.9), we also have that

�̄�(X(!)0),!̌ = �1
(
!̌ ⊗�(X(!)0) ⋅

)
= (�1)�(X(!)0),!̌ for P -a.e. ! ∈ Λ.

Therefore,

P
�(!),!
∗ = P

(
�(!), x⊗0 !, (�

1)�(X(!)0),!̌
)

= (P 1)�(!),! for P -a.e. ! ∈ Λ.

An analogous argument establishes the third property from (4.2) and we
conclude that P̄ = P∗ ∈ Px.

The second property is the quasi-sure representation of V x
t (�) on L1

Px , a
result which will be generalized in Theorem 5.2 below.
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Lemma 4.7. Let t ∈ [0, T ] and � ∈ L1
Px . Then

V x
t (�) = ess supP

P ′∈Px(ℱt,P )
EP

′
[�x∣ℱt] P -a.s. for all P ∈ Px, (4.3)

where Px(ℱt, P ) := {P ′ ∈ Px : P ′ = P on ℱt}.

Proof. Recall that Lemma 4.4 allows us to appeal to the results of Section 3.
(i) We �rst prove the inequality �≤� for � ∈ UCb(Ω). Fix P ∈ Px. We

use Step (ii) of the proof of Theorem 3.2, in particular (3.17), for the special
case s = 0 and obtain that for given " > 0 and N ≥ 1 there exists a measure
P̄N ∈ Px(ℱt, P ) such that

V x
t (!) ≤ EP̄N [�x∣ℱt](!) + �(") for P -a.s. ! ∈ E1 ∪ ⋅ ⋅ ⋅ ∪ EN ,

where V x
t (!) := V x

t (�;!). Since
∪
i≥1E

i = Ω0 = Ω P -a.s., we deduce that

V x
t (!) ≤ sup

N≥1
EP̄N [�x∣ℱt](!) + �(") for P -a.s. ! ∈ Ω.

The claim follows by letting "→ 0.
(ii) Next, we show the inequality �≥� in (4.3) for � ∈ UCb(Ω). Fix

P, P ′ ∈ Px and recall that (P ′)t,! ∈ P(t, x ⊗0 !) for P ′-a.s. ! ∈ Ω by
Lemma 3.4. Therefore, (3.2) applied with s := t and t := T yields that

V x
t (!) = Vt(x⊗0 !) ≥ E(P ′)t,! [�t,x⊗0!] = E(P ′)t,! [(�x)t,!] = EP

′
[�x∣ℱs](!)

P ′-a.s. on ℱt. If P ′ ∈ Px(ℱt, P ), then P ′ = P on ℱt and the inequality holds
also P -a.s. The claim follows as P ′ ∈ Px(ℱt, P ) was arbitrary.

(iii) So far, we have proved the result for � ∈ UCb(Ω). The general
case � ∈ L1

Px can be derived by an approximation argument exploiting the
stability under pasting (Lemma 4.6). We omit the details since the proof is
exactly the same as in [17, Theorem 5.4].

5 Path Regularity for the Value Process

In this section, we construct a càdlàg Px-modi�cation for V x(�); that is, a
càdlàg process Y x such that Y x

t = V x
t (�) Px-q.s. for all t ∈ [0, T ]. (Recall

that the initial condition x ∈ ℝd has been �xed.) To this end, we extend the
raw �ltration F as in [19]: we let F+ = {ℱt+}0≤t≤T be the minimal right-
continuous �ltration containing F and we augment F+ by the collection NPx
of (Px,ℱT )-polar sets to obtain the �ltration

G = {Gt}0≤t≤T , Gt := ℱt+ ∨NPx .

We note that G depends on x ∈ ℝd since NPx does, but for brevity, we shall
not indicate this in the notation. In fact, the dependence on x is not crucial:
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we could also work with F+, at the expense of obtaining a modi�cation which
is Px-q.s. equal to a càdlàg process rather than being càdlàg itself.

We recall that in the quasi-sure setting, value processes similar to the one
under consideration do not admit càdlàg modi�cations in general; indeed,
while the right limit exists quasi-surely, it need not be a modi�cation (cf.
[19]). Both the regularity of � ∈ L1

Px and the regularity induced by the SDE
are crucial for the following result.

Theorem 5.1. Let � ∈ L1
Px . There exists a (Px-q.s. unique) G-adapted

càdlàg Px-modi�cation ℰx(�) = {ℰxt (�)}t∈[0,T ] of {V x
t (�)}t∈[0,T ]. Moreover,

ℰxt (�) = ess supP

P ′∈Px(Gt,P )
EP

′
[�x∣Gt] P -a.s. for all P ∈ Px, (5.1)

for all t ∈ [0, T ].

Proof. In view of Lemmata 4.6 and 4.7, we obtain exactly as in [19, Propo-
sition 4.5] that there exists a Px-q.s. unique G-adapted càdlàg process ℰx(�)
satisfying (5.1) and

ℰxt (�) = V x
t+(�) := lim

r↓t
V x
r (�) Px-q.s. for all 0 ≤ t < T. (5.2)

The observation made there is that (4.3) implies that V x(�) is a (P,F)-
supermartingale for all P ∈ Px, so that one can use the standard modi-
�cation argument for supermartingales under each P . This argument, cf.
[6, Theorem VI.2], also yields that EP [ℰxt (�)∣ℱt+] ≤ V x

t (�) P -a.s. and in
particular

EP [ℰxt (�)] ≤ EP [V x
t (�)] for all P ∈ Px.

Hence, it remains to show that

ℰxt (�) ≥ V x
t (�) Px-q.s. (5.3)

for t ∈ [0, T ), which is the part that is known to fail in a more general setting.
We give the proof in several steps.

(i) We �rst show that ℰxt maps UCb(Ω) to L1
Px(ℱt), and in fact even to

UCb(Ωt) if a suitable representative is chosen. Let � ∈ UCb(Ω), r ∈ (t, T ] and
set V x

r := V x
r (�). By Proposition 2.5, there exists a modulus of continuity �

independent of r such that

∣V x
r (!)− V x

r (!′)∣ ≤ �(∥! − !′∥r).

Hence the Px-q.s. limit from (5.2) satis�es

∣Vt+(!)− Vt+(!′)∣ ≤ �(∥! − !′∥r) for all r ∈ (t, T ] ∩ℚ, Px-q.s.

Since ℰxt (�) = Vt+(�), taking the limit r ↓ t yields that

∣ℰxt (�)(!)− ℰxt (�)(!′)∣ ≤ �(∥! − !′∥t) Px-q.s.
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By a variant of Tietze's extension theorem, cf. [16], this implies that ℰxt (�) co-
incides Px-q.s. with an element of UCb(Ωt). In particular, ℰxt (�) ∈ L1

Px(ℱt).
(ii) Next, we show that ℰxt is Lipschitz-continuous. Let �,  ∈ L1

Px and
tn ↓ t. Using (5.2), Fatou's lemma and Lemma 4.3, we obtain that

∥ℰxt (�)− ℰxt ( )∥L1
Px

=
∥∥limn∣V x

tn(�)− V x
tn( )∣

∥∥
L1
Px

= sup
P∈Px

EP
[
limn∣V x

tn(�)− V x
tn( )∣

]
≤ sup

P∈Px
lim inf

n
EP
[
∣V x
tn(�)− V x

tn( )∣
]

≤ ∥� −  ∥L1
Px
.

(iii) Let � ∈ L1
Px . Then there exist �n ∈ UCb(Ω) such that �n → � in L1

Px
and in thus ℰxt (�n)→ ℰxt (�) in L1

Px by Step (ii). Since ℰxt (�n) ∈ L1
Px(ℱt) by

Step (i) and since L1
Px(ℱt) is closed in L1

Px , we conclude that

ℰxt (�) ∈ L1
Px(ℱt) for all � ∈ L1

Px .

(iv) Let � ∈ L1
Px . Since V

x
t is the identity on L1

Px(ℱt), Step (iii) implies
that ℰxt (�) = V x

t (ℰxt (�)). Moreover, the representations (4.3) and (5.1) yield

V x
t (ℰxt (�)) = ess supP

P ′∈Px(ℱt,P )
EP

′
[ℰxt (�)∣ℱt]

≥ ess supP

P ′∈Px(ℱt,P )
EP

′[
EP

′
[�x∣Gt]

∣∣ℱt]
= ess supP

P ′∈Px(ℱt,P )
EP

′
[�x∣ℱt]

= V x
t (�) P -a.s. for all P ∈ Px.

We conclude that (5.3) holds true.

Since ℰx(�) is a càdlàg process, its value ℰx� (�) at a stopping time � is well
de�ned. The following result states the quasi-sure representation of ℰx� (�)
and the quasi-sure version of the dynamic programming principle in its �nal
form.

Theorem 5.2. Let 0 ≤ % ≤ � ≤ T be G-stopping times and � ∈ L1
Px . Then

ℰx% (�) = ess supP

P ′∈Px(G%,P )
EP

′
[ℰx� (�)∣G%] P -a.s. for all P ∈ Px (5.4)

and in particular

ℰx% (�) = ess supP

P ′∈Px(G%,P )
EP

′
[�x∣G%] P -a.s. for all P ∈ Px.

Moreover, there exists for each P ∈ Px a sequence Pn ∈ Px(G%, P ) such that

ℰx% (�) = lim
n→∞

EPn [�x∣G%] P -a.s.

with a P -a.s. increasing limit.
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Proof. In view of Lemmata 4.6 and 4.7, the result is derived exactly as in
[19, Theorem 4.9].

As in (3.3), the relation (5.4) can be seen as a semigroup property

ℰx% (�) = ℰx% (ℰx� (�)),

at least when ℰx� (�) is in the domain L1
Px of ℰx% . The latter is guaranteed by

Lemma 4.3 when � is a deterministic time. However, one cannot expect ℰx� (�)
to be quasi uniformly continuous (cf. Remark 4.1) for a general stopping time,
for which reason we prefer to express the right hand side as in (5.4).

6 Hamilton-Jacobi-Bellman 2BSDE

In this section, we characterize the value process ℰx(�) as the solution of
a 2BSDE. To this end, we �rst examine the properties of B under a �xed
P ∈ Px. The following result is in the spirit of [28, Section 8].

Proposition 6.1. Let x ∈ ℝd, � ∈ U and P := P (0, x, �). There exists a

progressively measurable transformation � : Ω→ Ω (depending on x, �) such

that W := �(B) is a P -Brownian motion and

FP = FW
P
. (6.1)

Moreover, B is the P -a.s. unique strong solution of the SDE

B =

∫ ⋅
0
�(t, x+B, �t(W )) dt+

∫ ⋅
0
�(t, x+B, �t(W )) dWt under P.

Proof. Let X := X(0, x, �). As in Lemma 3.4, Assumption 2.1 implies the
the existence of a progressively measurable transformation � : Ω → Ω such
that

�(X0) = B P0-a.s. (6.2)

Let W := �(B). Then

(B,X0)P0 = (�(X0), X0)P0 = (�(B), B)P = (W,B)P ;

i.e., the distribution of (B,X0) under P0 coincides with the distribution of
(W,B) under P . In particular, W is a P -Brownian motion. Moreover, we

have FX0P0
= F�(X0)

P0
by Assumption 2.1 and therefore

FB
P

= F�(B)
P
,

which is (6.1). Note that

X0 = X0(B) =

∫
�(t, x+X0, �t(B)) dt+

∫
�(t, x+X0, �t(B)) dBt
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under P0. Let Y be the (unique, strong) solution of the analogous SDE

Y =

∫
�(t, x+ Y, �t(W )) dt+

∫
�(t, x+ Y, �t(W )) dWt under P.

Using the de�nition of P and (6.2), we have that

(Y,W )P = (X0(W ),W )P

= (X0(B), B)P0

= (X0, �(X0))P0

= (B, �(B))P

= (B,W )P .

In view of (6.1), it follows that Y = B holds P -a.s.

In the sequel, we denote byMB,P the local martingale part in the canon-
ical semimartingale decomposition of B under P .

Corollary 6.2. Let P ∈ Px. Then the �ltration FP is right-continuous. If,

in addition, � is invertible, then (MB,P , P ) has the predictable representation
property.

The latter statement means that any right-continuous (FP , P )-local mar-
tingale N has a representation N = N0 +

∫
Z dMB,P under P , for some

FP -predictable process Z.

Proof. We have seen in Proposition 6.1 that FP is generated by a Brow-
nian motion W , hence right-continuous, and that MB,P =

∫ ⋅
0 �̂t dWt for

�̂t := �(t, x + B, �t(W )), where � ∈ U . By changing �̂ on a dt × P -nullset,
we may assume that �̂ is FP -predictable. Using the Brownian representation
theorem and W =

∫
�̂−1 dMB,P , we deduce that MB,P has the representa-

tion property.

The following formulation of 2BSDE is, of course, inspired by [27].

De�nition 6.3. Let � ∈ L1
Px and consider a pair (Y, Z) of processes with

values in ℝ× ℝd such that Y is càdlàg G-adapted while Z is G-predictable
and

∫ T
0 ∣Zs∣

2 d⟨B⟩s < ∞ Px-q.s. Then (Y,Z) is called a solution of the

2BSDE (6.3) if there exists a family (KP )P∈Px of FP -adapted increasing
processes satisfying EP [∣KP

T ∣] <∞ such that

Yt = � −
∫ T

t
Zs dM

B,P
s +KP

T −KP
t , 0 ≤ t ≤ T, P -a.s. for all P ∈ Px

(6.3)
and such that the following minimality condition holds for all 0 ≤ t ≤ T :

ess infP
P ′∈Px(Gt,P )

EP
′[
KP ′
T −KP ′

t

∣∣Gt] = 0 P -a.s. for all P ∈ Px. (6.4)
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Moreover, a càdlàg process Y is said to be of class (D,Px) if the family
{Y�}� is uniformly integrable under P for all P ∈ Px, where � runs through
all G-stopping times. The following is our main result.

Theorem 6.4. Assume that � is invertible and let � ∈ L1
Px .

(i) There exists a (dt×Px-q.s. unique) G-predictable process Z� such that

Z� =
(
d⟨B,B⟩P

)−1
d⟨ℰx(�), B⟩P P -a.s. for all P ∈ Px. (6.5)

(ii) The pair (ℰx(�), Z�) is the minimal solution of the 2BSDE (6.3); i.e.,
if (Y,Z) is another solution, then ℰx(�) ≤ Y Px-q.s.

(iii) If (Y,Z) is a solution of (6.3) such that Y is of class (D,Px), then

(Y,Z) = (ℰx(�), Z�).

In particular, if � ∈ LpPx for some p > 1, then (ℰx(�), Z�) is the unique

solution of (6.3) in the class (D,Px).

Proof. Given two processes which are (càdlàg) semimartingales under all
P ∈ Px, their quadratic covariation can be de�ned Px-q.s. by using the
integration-by-parts formula and Bichteler's pathwise stochastic integration
[1, Theorem 7.14]; therefore, the right hand side of (6.5) can be used as a
de�nition of Z�. The details of the argument are as in [19, Proposition 4.10].

Let P ∈ Px. By Proposition 6.1, B is an Itô process under P ; in par-
ticular, we have ⟨B,S⟩P = ⟨MB,P , S⟩P P -a.s. for any P -semimartingale S.
The Doob-Meyer theorem under P and Corollary 6.2 then yield the decom-
position

ℰx(�) = ℰx0 (�) +

∫
Z� dMB,P −KP P -a.s.

and we obtain (ii) and (iii) by following the arguments in [19, Theorem 4.15].
If � ∈ LpPx for some p ∈ (1,∞), then ℰx(�) is of class (D,Px) as a consequence
of Jensen's inequality (cf. [19, Lemma 4.14]). Therefore, the last assertion
follows from the above.

We conclude by interpreting the canonical process B, seen under the
�set of scenarios� Px, as a model for drift and volatility uncertainty in the
Knightian sense.

Remark 6.5. Consider the set-valued process

Dt(!) :=
{(
�(t, !, u), �(t, !, u)

)
: u ∈ U

}
⊆ ℝd × ℝd×d.

In view of Proposition 6.1, each P ∈ Px can be seen as a scenario in which
the drift and the volatility (of B) take values in D, P -a.s. Then, the upper
expectation ℰx(�) is the corresponding worst-case expectation (see [19] for
a connection to superhedging in �nance). Note that D is a random process
although the coe�cients of our controlled SDE are non-random. Indeed,
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the path-dependence of the SDE translates to an !-dependence in the weak
formulation that we are considering.

In particular, for � ≡ 0, we have constructed a sublinear expectation
similar to the random G-expectation of [17]. While the latter is de�ned by
specifying a set-valued process like D in the �rst place, we have started here
from a controlled SDE under P0. It seems that the present construction
is somewhat less technical that the one in [17]; in particular, we did not
work with the process â = d⟨B⟩t/dt which played an important role in [26]
and [17]. However, it seems that the Lipschitz conditions on � and � are
essential, while [17] merely used a notion of uniform continuity.
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