HIGH-FREQUENCY ANALYSIS OF A TRADING GAME
WITH TRANSIENT PRICE IMPACT

MARCEL NUTZ AND ALESSANDRO PROSPERI

ABSTRACT. We study the high-frequency limit of an n-trader optimal execution game in discrete time. Traders
face transient price impact of Obizhaeva—Wang type in addition to quadratic instantaneous trading costs
6(AX:)? on each transaction AX;. There is a unique Nash equilibrium in which traders choose liquidation
strategies minimizing expected execution costs. In the high-frequency limit where the grid of trading dates
converges to the continuous interval [0, 7], the discrete equilibrium inventories converge at rate 1/N to the
continuous-time equilibrium of an Obizhaeva-Wang model with additional quadratic costs 9o(AXo)? and
97(AXr)? on initial and terminal block trades, where ¥ = (n — 1)/2 and 97 = 1/2. The latter model was
introduced by Campbell and Nutz as the limit of continuous-time equilibria with vanishing instantaneous
costs. Our results extend and refine previous results of Schied, Strehle, and Zhang for the particular case
n = 2 where 99 = 97 = 1/2. In particular, we show how the coefficients Yo = (n — 1)/2 and ¥ = 1/2 arise
endogenously in the high-frequency limit: the initial and terminal block costs of the continuous-time model
are identified as the limits of the cumulative discrete instantaneous costs incurred over small neighborhoods
of 0 and T, respectively, and these limits are independent of 6 > 0. By contrast, when 6 = 0 the discrete-time
equilibrium strategies and costs exhibit persistent oscillations and admit no high-frequency limit, mirroring
the non-existence of continuous-time equilibria without boundary block costs. Our results show that two
different types of trading frictions—a fine time discretization and small instantaneous costs in continuous
time—have similar regularizing effects and, in the limiting regime, select a canonical continuous-time model
with transient price impact and endogenous block costs.

1. INTRODUCTION

Transaction costs are a key consideration for financial institutions. In equity trading, the lion’s share of
costs is due to price impact, i.e., the fact that buy (sell) orders tend to push prices up (down). Following [2],
price impact is often modeled in reduced form, positing that each atomic trade mechanically leads to a
price change. Later models incorporate price resilience (transient impact), meaning that prices revert over
time once the buying or selling pressure ceases. The most tractable formulation is the Obizhaeva—Wang
model [17], which uses an exponential decay kernel. Starting with [9, 11|, numerous works have added
quadratic instantaneous costs on the trading rate to the Obizhaeva—Wang impact cost. As illustrated in [11],
this “regularizes” the problem and leads to smoother optimal trading strategies; see also [13]. We refer
to [6, 25| for further background and extensive references on price impact. Strategic interactions between
several large traders are studied in game-theoretic models. This branch of the literature emerged to study
predatory trading, where one trader exploits the price impact of a second trader who needs to unwind a
position [18, 5]. For the Obizhaeva—Wang model regularized by quadratic instantaneous costs, [23| shows
that there is a unique Nash equilibrium, whose closed form is provided in [3]. While these works follow
the optimal execution literature in assuming that the unaffected price is a martingale, they have been
generalized in several directions, such as incorporating alpha signals [16], alpha signals and non-exponential
decay kernels [1], or self-exciting order flow [8].

The goal of the present paper is to shed light on the Nash equilibria of trading games in the Obizhaeva—
Wang model without regularization. Surprisingly, a naive formulation in continuous time does not admit an
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equilibrium, as established by [19] and [3]. They further show that existence is restored if very specific costs
on block trades are added to the Obizhaeva—Wang impact cost. Namely, in a game with n traders, a block
trade of size AXp at the initial time ¢t = 0 is charged Jo(AXp)?, where ¥y := (n — 1)/2, and a block trade
AXr at the terminal time t = T is charged 97(AX7r)?, where ¥ := 1/2 (up to reparametrizing time). On
the open interval (0,7"), no additional costs are charged. For n = 2 traders, as studied in [19], the initial
and terminal costs coincide. For general n, as studied in [3], the two costs differ, with 9y depending directly
on n, making this adjustment even more surprising. Conversely, these works show that for general initial
inventories of the traders, no equilibrium exists unless ¥g and Y7 have exactly the stated values. The two
works further motivate their models by asymptotic considerations. On the one hand, [19] shows that their
continuous-time equilibrium strategies are the high-frequency limits of discrete-time equilibria. The discrete-
time models use Obizhaeva-Wang impact and an additional quadratic instantaneous cost §(AX;)?, where
0 > 0 is arbitrary and fixed. The authors further show that without instantaneous costs, the high-frequency
limit does not exist because strategies oscillate. These results build on [21, 22, 20|, which documented such
oscillations in different contexts; see also [15]. On the other hand, [3] shows that their equilibrium is the
limit of continuous-time equilibria with quadratic instantaneous costs e(dX;/dt)? as ¢ — 0.

The present work refines and extends the analysis of [19] in several ways. First, we generalize from n = 2
to an arbitrary number n of traders. We show that the high-frequency limits of discrete-time equilibria with
instantaneous costs #(AX;)? recover the continuous-time model of [3] with the block cost coefficients 9
and ¥p, which are distinct for n > 2. Second, refining the results of [19], we show not only that the total
execution costs converge, but also how the different parts of the continuous-time model emerge in the high-
frequency limit: The initial block costs are identified as the limits of the instantaneous costs accrued over
an initial interval [0,¢o] with arbitrary 0 < to < T'; similarly, the terminal block costs are the limits of the
instantaneous costs accrued over an interval [tg,T]. Moreover, the “regular” Obizhaeva—Wang impact costs
of the continuous-time model are the limits of the Obizhaeva—Wang costs of the discrete-time models. Third,
we not only show the qualitative convergence of the equilibria, but also establish the convergence rate 1/N
for the trading strategies, where N is the number of trading periods in [0,7]. Finally, we show that when
the discrete-time models are formulated without instantaneous costs (f = 0), the equilibrium strategies
oscillate in the high-frequency limit. This yields a one-to-one correspondence between non-existence of
the high-frequency limits and non-existence of the continuous-time equilibria without block costs. This
correspondence is robust and even extends to fine details: For n > 2, [3] shows that an equilibrium can exist
for particular initial inventories of the traders even when only one of the two coefficients ¥y and ¥ has the
“correct” value—mamely, when initial inventories are symmetric or sum to zero, respectively. We further link
this to high-frequency limits of discrete-time models where instantaneous costs are charged only on an initial
or terminal portion of the time interval.

Our results complement the analysis of [3] for vanishing instantaneous costs in continuous time. Taken
together, a high-level picture emerges: discretizing time has the same regularizing effect as adding a small
instantaneous cost in continuous time, and yields the same limit. This leads us to conjecture a universality
phenomenon: a broad class of trading frictions can be introduced to obtain existence of equilibria in trading
games with Obizhaeva—Wang price impact, and the small-friction limits of such regularizations all yield the
same model, namely Obizhaeva-Wang price impact with additional block costs as specified in [19] and [3].

The remainder of this paper is organized as follows. Section 2 formulates and solves the discrete-time
models, while Section 3 recalls the corresponding continuous-time results. Section 4 states our main results:
the high-frequency limits of the discrete-time equilibrium strategies and costs (Theorems 4.1 and 4.2), as
well as the corresponding oscillatory asymptotics for § = 0 (Theorems 4.3 and 4.4). Appendix A provides a
closed-form expression for the discrete-time equilibrium strategies that is used in the high-frequency proofs.
Appendix B contains the proofs for the discrete-time results in Section 2, while Appendix C collects the
proofs for the main results in Section 4. Finally, Appendix D analyzes the high-frequency asymptotics when
instantaneous costs are charged only on an initial or terminal portion of the time interval.



2. DISCRETE-TIME EQUILIBRIUM

2.1. Model Specifications. We consider n > 2 agents trading a single risky asset on the discrete time
grid 0 =tp < t; < --- <ty =T, and a filtered probability space (2, .%, (%¢)t>0,P) where %y is P-trivial.
The unaffected price S° = (SP)¢>0 is a square-integrable, right-continuous martingale. The definitions below
detail how trading generates transient price impact governed by the exponential decay kernel G : Ry — Ry,

G(t) =e ",

where p > 0. (A more general form is G(t) = Ae™”, but we set A = 1 without loss of generality as all other
quantities can be rescaled accordingly.)

Definition 2.1 (Admissible trading strategy). Given a grid T = {#,...,txy} and an initial inventory x € R,
an admissible trading strategy is a vector & = (&, ...,£n) " of random variables such that

(a) each & is .%;,-measurable and bounded,;

(b) =& + - +&n P-as.
We write 2 (z, T) for the set of admissible strategies.

Intuitively, agent i chooses & = (&.0,---,&.n) | € Z (2i,T), where x; denotes the agent’s initial inventory
and & is the number of shares traded at time ¢, with the sign convention that &, > 0 is a sell and

&k < 01is a buy. Condition (b) enforces liquidation by ¢ty = 7. Collecting agents’ strategies in the matrix
E=[&,...,&)], the (affected) price process is

S; =50 - Z G(t - tk)Z&,k.
1

<t i=

We fix an instantaneous cost parameter § > 0 and define the execution cost of agent i as follows.

Definition 2.2 (Execution cost). Given a grid T and inventories (z1, ..., ), the execution cost of &; given
opponents’ strategies €_; = [€1,...,&i—1,&i+1,...,&n] Is
N
G(0 = G(0
(2.1) wriei e =ms§+ 30 (CWe - szen+ S S e+ 02).
k=0 j#i

In (2.1), the cross-term describes the standard (symmetric) tie-breaking rule that applies when agents
place orders at the same instant; see [20, 15|. In addition to the cost of transient impact, each trade incurs
quadratic instantaneous (or “temporary impact”) costs 0@2 i; see [10] for a related discussion.

2.2. Nash Equilibrium. Fix a grid T and initial inventories (x1,...,z,). Each agent ¢ is risk-neutral and
chooses an admissible strategy to minimize the expected execution cost (2.1), where we may assume S; =
without loss of generality. This leads to the standard notion of Nash equilibrium.

Definition 2.3 (Nash equilibrium). A Nash equilibrium is a profile (§7,...,&}) € [, 2 (4, T) such that

E[¢r(& | £55)] = ge,grl(igg,T)E[(gT(E | €21 for every i = 1,...,n.

To state a more explicit expression for the objective functional, let ¢;; denote the Kronecker delta and
define, for ¢,5 =0,..., N,

0, i <,
(2.2) I = G([ti — tj]) + 205,  Tij =1 1G(0), i=j,
o i>j.

Moreover, we introduce the vectors
T+ (n— 1) 11 _(-nM

(2.3) v = - , wi=——>">—.
17T+ (n—1)T)"11 17(rY—1)-11
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Remark 2.4. We observe that w does not depend on n, whereas v depends on n through I'? + (n — 1)f
An interpretation for v and w will be given in Remark 2.8.

The next lemma ensures that (2.3) is well-defined. We call a (possibly non-symmetric) square matrix A
positive if & Az > 0 for all nonzero . Then, A is invertible, and A™! is positive as well.

Lemma 2.5. For all § > 0, the matrices T% and T% + (n — 1)f and T —T are positive. In particular, the
denominators in (2.3) are strictly positive.

The proof is analogous to [20, Lemma 3.2| and omitted. The next result gives an explicit expression for
agent 7’s objective functional.

Lemma 2.6 (Explicit objective). For & € 2 (x;,T) and competitors’ strategies £ € Z (x;,T),
1 ~
Eler(& | €0 = E[5& 6+ €T (3 &)
J#i

The proof follows [15, Lemma 3.1] and is omitted. The final result of this section establishes existence
and uniqueness of a Nash equilibrium; it is deterministic and described by v and w of (2.3).

Theorem 2.7 (Discrete equilibrium). For any grid T, 6 > 0, and initial inventories (x1,...,x,) € R™, there
exists a unique Nash equilibrium (&7,...,&)) € [[; Z (x4, T). The equilibrium strategies are deterministic
and given by

1 n
(2.4) & =zv+ (r; — 2w, where T = . Zazj.
j=1

(Theorem A.J in Appendiz A provides fully explicit expressions for v and w, for equidistant grids T.)
The proof is detailed in Appendix B.

Remark 2.8. We observe the following special cases of Theorem 2.7. In the symmetric case z; = - - - = xy,
we have & = x1v for all 7, whereas in the case x1 + - -+, = 0 of zero net supply, §; = x;w for all i. Thus,
v and w can be interpreted as the strategies for an agent with unit initial inventory in each of those cases.

3. CONTINUOUS-TIME EQUILIBRIUM

This section recalls the continuous-time setting with boundary block costs. We refer to [3, Section 2| for
further details and proofs.

3.1. Model Specifications. There are n traders with inventory processes X* = (Xti)te[O,T]- An admissible
inventory X' is cadlag, predictable, has (essentially) bounded total variation, and satisfies Xé_ =z, €R
and X = 0. The unaffected price S = (St)i>0 is a cadlag local martingale with E[[S,S]r] < co. By

risk-neutrality (see [3, Proposition 2.2] for a detailed proof), we may assume S = 0. As in the discrete-time
model, trading generates transient impact I = (I3)¢>o with the Obizhaeva—Wang dynamics

dl; = —pLdt + XY _dX],  Ip- =0.
=1

Collecting agents’ inventories in the vector X = (X!,..., X™) and setting A\ = 1 without loss of generality,
the (affected) price process is

t n
= [[enen S
0 i=1

In addition to the cost of transient impact, we charge quadratic boundary block costs at t = 0 and ¢ = T
with coefficients 9, 97 > 0. Given opponents’ strategies X ~*, the execution cost of X* is then defined as

A A T | | , A
31)  @X|X ) =FE / SEaxi+ 5 S ASIAX] 4 (I0(AX(? + I (AXD)?)
0 t€[0,7]



5

Thus, block trades at the initial and terminal times incur an additional quadratic cost governed by 9 and 9,
respectively. The cross-term has the same interpretation as the discrete-time model.

3.2. Nash Equilibrium. A profile X* = (X*!,..., X*") is a Nash equilibrium if each X*? is admissible
and
CZ| X H >E(X | X7 for all admissible Z.

Existence of an equilibrium depends crucially on the initial and terminal block cost coefficients ¥y and Jp—
there is a single choice yielding existence for general initial inventories.

Theorem 3.1 (Continuous equilibrium, |3, Theorem 4.4, Corollary 4.6]). Let ¥g = (n —1)/2 and 97 = 1/2.
Then the unique Nash equilibrium is given by

*,0 - - . - 1 -
(3.2) X' =1(t)(x; — ) + g(t)z, tel0,T], i=1,...,n, wherex:;ij
j=1
and
T—-t)+1
(3.3) f(t) = u, t e [O,T), fo_ =1, fr =0,

pTr+1

_n(pt+1)(n+ 1)6’)%T + opePuTt - (n—1)
n((pT +1)(n+1) +2)e” v 17 — (n—1)

Moreover, the equilibrium execution cost is given by

(3.5) (XM | X5 = 7 + By + PBr,

where .Z is impact cost

(3.4) g(t):=1 , tel0,T], go- = 1.

2(n+1)pT _ (n+1)pT
2203 (n + 1) (((pT +Hn+1)+3) - <ne Ty }1>>

(n+1)pT

[((pT +1)(n+1)+2)e =1~ —(n—1)]
and By, Br are the initial and terminal block costs

(3.6) 7 = an+ —F(a; — 7) +

(n—1)(n + 1)%(1 + nePi17)232

%o = praT 2’
(3.7) 4([n((pT_; D(n+1)+2)e’ 1" — (n—1)]
%T = 74(;7_, i 1)2.

Remark 3.2. The stated values for the block cost coefficients 9y, Y7 are the unique “correct” choice for
this model. Indeed, for different values of ¥g, 7, equilibrium does not exist, except for particular initial
inventories. Specifically, [3, Theorem 4.4] shows that if 97 = 1/2 but 99 # (n — 1)/2, an equilibrium exists
if and only if # = 0, and if 99 = (n — 1)/2 but V7 # 1/2, an equilibrium exists if and only if 21 = -+ = zy,.
Thus, if both ¥y # (n — 1)/2 and Y1 # 1/2, then the only case with equilibrium is z; = 0, which yields the
trivial no-trade solution X** = 0. In the cases with existence, the equilibrium is given by (3.2).

4. HIGH-FREQUENCY LIMITS

We can now present our main results on the high-frequency limits of the discrete equilibrium strategies
and costs. In the case # > 0 of non-zero instantaneous costs, we show that the discrete equilibria converge to
the continuous-time equilibrium of Theorem 3.1 including the particular boundary block costs. Whereas for
0 = 0, the limit does not exist, and this will be linked to the non-existence of a continuous-time equilibrium
when there are no boundary block costs (Remark 3.2). We fix initial inventories (z1,...,z,) € R™ and
consider equidistant grids

(4.1) Ty :={kT/N | k=0,1,...,N}, N=23, ...



For t € [0, 77, define
nt ne i

(42) n =[N/, VY =1-%w, W =1-3w, XM =@V 4 (@ - myw,
k=1 k=1

where v and w are the vectors from (2.3). Note that time ¢ corresponds to the n-th trading date in Ty

In view of Remark 2.8, V;(N)

case 1 = -+ = Xp. Similarly, Wt(N) is the time-t inventory of an agent with unit initial inventory in the

is the time-¢ inventory of an agent with unit initial inventory in the symmetric

case of zero net supply. Finally, Xt(N)’l is the time-t inventory of agent ¢ with initial inventory x;.

We first focus on the case 8 > 0. The first result states the convergence of the strategies. More precisely,
the time-t inventory Xt(N)’Z converges pointwise to the continuous-time inventory X;* of Theorem 3.1 for
t € (0,7), and we establish the rate 1/N. Given the form of the strategies, convergence boils down to
V;(N) — g(t) and Wt(N) — f(¢), where f and g are defined in (3.3) and (3.4). At each of the boundaries
(t =0 and t = T'), one of these limits fails, whence the convergence of the strategies only on the open

interval (0,7).
Theorem 4.1 (Convergence of strategies for § > 0). If 0 > 0, we have
Xt(N)’i — X for any t € (0,T).

More precisely:

(a) For any t € (0,T], the sequence N]Vt(N) — g(t)| is bounded, and VO(N) =1 for all N.
(b) For anyt € [0,T), the sequence N]Wt(N) — ()] is bounded, and N|W:(FN) — | =0(1).

(204 1)(pT+1)

We emphasize that the limits are independent of the specific value of 6 > 0.

‘/1‘,(25) . Vt(wo) Vt(qoo) S

1.0

0.8

0.6

0.4

0.2

0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

(N)

FIGURE 1. Convergence of V" for # = 0.1, n = 10, and p = 1.

A similar conclusion holds for the costs. We show not only the convergence of the total cost, but also that
the specific boundary block costs %y and A arise as the limits of the instantaneous costs incurred near the
boundaries t = 0 and t = T, respectively. Hence, the coefficients 99 and 97 in Theorem 3.1 arise naturally
from the high-frequency limit, and they are canonical in that the limit does not depend on the value of 8 as
long as 6 > 0.



Wt(zs) W,UOO) Wt(mu) £(t)

1.0

0.84

0.6

0.4+

0.2+

0.0 w \ : \ w ‘ : : :
0.0 0.2 0.4 0.6 0.8 1.0

F1GURE 2. Convergence of Wt(N) for # = 0.1, n =10, and p = 1.

Theorem 4.2 (Convergence of costs for § > 0). Let 6 > 0 and let (E*gN), ey e [T, 2 (2, Tn) be
the equilibrium strategies. The discrete execution cost converges to its continuous counterpart,

More precisely, for any split my = [e¢N] with ¢ € (0,1), the cumulative initial/terminal instantaneous costs
converge to the initial/terminal block costs of the continuous equilibrium,
mN—l N
N)\2 N)\2
(4.9 0> (&) — A0 3 (EN) — 2

and the discrete impact cost

N
(e ™M 1) =Eler, €M 1€ D) - 0> (67)]
k=0

converges to its continuous counterpart,
(N) (N)
(4.5) InEG L) = S

Figures 1 and 2 illustrate the persistent oscillations of the inventories V™) and W) near the boundaries
t =0 and t = T, whereas in the interior (0,7") the jumps of the inventories are O(1/N); see Theorem 4.1.
The cumulative instantaneous costs of the oscillations near the boundaries tend to %y and %Br; see (4.4).

Theorems 4.1 and 4.2 show convergence to a limit (independent of #) whenever # > 0. By contrast,
without instantaneous costs (0 = 0), the optimal strategies and the costs both oscillate and do not converge.
The following theorems make this precise; for brevity, we use the constants 91,02, ax(t), b(¢), ¢(t) detailed in
Table 1.

Theorem 4.3 (Divergence of strategies for § = 0). Assume 6 = 0.
(a) Define the functions By,v+ : [0,T] — R by

ai(t) + b(t) + C(t)
07

ar(t)+b(t) —c(t)
02 .

B+(t) == , v (t) =

Then VO(N) =1, and for 0 <t < T the subsequence (Vt(2N))N€N has exactly the two cluster points
B+(t) and B_(t), while (‘/;(2N+1))N€N has exactly the two cluster points v+ (t) and vy—(t).



Constant Definition
2ntl,m 9 nEl,T
0 ne =17 (n+1)pT +n+3)+ (n—1)%e—1"" +(n+1)pT +3n+1
2ntl,p 9y “EL,T
09 ne 17 (n+ DpT 4+ n+3)+ (1 —n)en1"" —(n+1)pT —3n—1
ax (1) +(n+ Den1?TD £ p(n 4 1)en1PCT)
b(t) GQ%pT(n(” +1Dp(T —t)+2n) — onen-1°T+)
ﬂilpT pﬁiit
«(t) (n+ 1)p(T —t) + n(n — Den1”" 4 2pe’n=1" 4 n + 1

TABLE 1. Constants for oscillatory limits.

(b) Define the functions i,y :[0,T] — R by
14 p(T —t) £ e PTY
t) = t):
P (t) il =)
Then WéN) =1, and for 0 <t < T the sequence (Wt(ZN))NeN has exactly the two cluster points ¢4 (t)

and @_(t), while (Wt(2N+1))N€N has exactly the two cluster points 14 (t) and ¥_(t). Fort =T we
have W}QN) — @4+ (T) and WéQNH) — Y (T).

1+ p(T —t) e T
N 1+ pT —ePT

VIO eem Bi(t) === B(t) (A 74 (t) y-(2)

10d 1.0
\\\
T 0.81
0.8 hETS
T 0.6
0.6 M ol
0.4 e 0.21
TNad 0.0
0.2 U
0.0 : : : i ‘ ! ! !
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

t t

Ficure 3. V;"% (left) and V'™V (right) for n = 10, & = 0, and p = 1, together with the
corresponding cluster points from Theorem 4.3 (a).

Likewise, the equilibrium costs oscillate when 6 = 0, approaching different limits along subsequences of
time grids with an even or odd number of steps.

Theorem 4.4 (Divergence of costs for § = 0). Using the same notation as in Theorem 4.2, the equilibrium
costs satisfy

=2 1 2p2tlT 1 .
lim E[gy, (¢ EV) | g2V = n2((n+ Lne +n+1)  ni(w—3)
Nfoo 01 e PT 4+ pT +1
and
=2 Dne2rssT _ 1 o
lim [chQNﬂ(g*l@N—i-l) |€*£2;V+1))] _nx ((n+ 1)ne n—1) ni(z; — ) |
Ntoo 02 pT +1—erT

Recall that Remark 3.2 identified two special configurations of the initial inventories where continuous-
time equilibrium exists even though one of the two boundary block costs ¥y, ¥ does not have the “correct”
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value. That phenomenon has no analogue in Theorems 4.3 and 4.4, which feature a single parameter 6
for the entire time interval. Appendix D analyzes the behavior of the equilibrium inventories in a richer
discrete-time model where the cost functional is modified by charging instantaneous costs only on either the
first or the second half of the time interval; this amounts to a time-dependent 8. When the cost is charged
only on the second half (and there is no cost on the first half), the discrete-time inventories converge to the
continuous-time equilibrium in the zero-net-supply case, whereas when the cost is charged only on the first
half, convergence holds in the symmetric case. Thus, for those special configurations of the initial inventories,
convergence of the discrete-time models with costs on the first/second half is in one-to-one correspondence
with the existence of a continuous-time equilibrium when the initial /terminal block cost is specified correctly.

This completes the overall picture that emerges from the preceding theorems: any positive instantaneous
costs give rise to the “correct” boundary block costs in the limit, whereas absence of instantaneous costs
leads to failure of convergence, corresponding to non-existence of equilibrium in the continuous-time setting.

APPENDIX A. CLOSED FORM OF THE DISCRETE-TIME EQUILIBRIUM

The goal of this section is to obtain an explicit formula for the discrete-time equilibrium of Theorem 2.7.
For that, we only need to derive a formula for v. The formula for w is the same as in [19] which treats the
case of n = 2 traders; indeed, by Remark 2.4, w does not depend on n. Recall the time grid Ty in (4.1) and
the matrices T'Y, T in (2.2). Define the following column vectors of length N + 1,

(A1) vi=C'+n-1D0)", w:=@0"-0)""1.
Then, by (2.3),

(A.2) v=-—U, W= -—w
Generalizing [19], we set

o= PTIN, k:=20+(n—-1)/2, r:=19°
and introduce the matrix
B:=(1-a®)(Id+I"'((n— 1T + 201d)).
From (A.1) we then have
(A.3) v=C'+n-1I)""1=01-a®)B I 1

Moreover, the inverse of the Kac—Murdock—Szegs matrix I" is the tridiagonal matrix

1 —a 0o - 0
—a 1+a®> —a 0 0

1 0

: - —a 14+a® —a
0 o0 —a 1

see, e.g., [12, Section 7.2, Problems 12-13|. From this expression, we find that

(A.4) 1-aHr'1=(1-0a,0-a)%...,0-a)%1-a)".
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In view of (A.3), our main task is then to determine B~!. To that end, we first compute that

B=(1-0*1d
1 —a 0o .- 0 & 0 0
—a 1+a®> —a 0 0 (n—1a K 0o .- 0
0 (n—1)a? (n—1)a ;
+ . .
0
—a 1+a® -« =1t (n-1a" 2 . . K 0
0 0 —a 1 n—1a" (-1 (n—1a &
1—na®+k —akK 0 0
—a(k+1—-n) 1+a*(k—n)+r —ar 0 0
0
: . 0 —ak+1l-n) 1+a%*(k—n)+sk —ak
0 0 —a(k+1—mn) 1—-a?+&

Lemma A.1. For k < N, the kth leading principal minor 6, of B is given by
0 = chml_‘;F +c_m”,
where, defining the real number
R:=/a4(k —n)? —2a2(k(k + 1) + n(l — &)) + (k + 1)2,

the real numbers c. and my are given by

+(1-a?(k+n)+k)+R 1+a?(k—n)+k+R
cy = , my = )
2R 2
Proof. We have
(A.5) Si=1-na’+k
and
(A.6) 6y = —nat(k —n) —na®(k +2) + (k + 1)

For k € {3,..., N}, the kth principal minor ¢ satisfies the recursion
6 = (14+a?(k —n) + K)0k_1 — a*k(k + 1 —n)dp_a.
This is a homogeneous linear difference equation of second-order. Its characteristic equation is
(A.7) m? — (14 a?(k —n)+K)m+k(k+1—n) =0.
The roots of (A.7) are
l1+a?(k—n)+Kk+R
2

We first claim that my and m_ are real for « € [0,1] and k >
of the radicand in R, which in turn is equivalent to

f@):=t*(k —n)* = 2t(k(k + 1) +n(l — k) + (k+1)>>0, 0<t<1,
after setting t = 2. The claim is clear for x = n since

—2t(n® +2n—n?)+n 4+ 2n+1=n’+1+2n(1—2t) > (n—1)>>0.

miy =

”T_l. This is equivalent to the nonnegativity

Otherwise, f is minimized at
k(k+1)+n(l—k)

N PR
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We have tg < 1 iff k < 7;12;12. In this case, f(t) > f(to) = 7(”(““””(1(;”_)5);(”7")2(”+1)2 > 0 for all t. For

K > 7:12;12, we have ¢y > 1 and, in turn, f/(t) <0 for 0 <t <1, s0 f(t) > f(1) = (n — 1)?> > 0. This proves
that my are real.

By the theory of second-order linear difference equations, every solution of (A.7) has the form clmi +com
with real constants ci, co; see [14, Theorem 3.7|. Imposing the initial conditions (A.5)-(A.6) yields ¢; = ¢4

and ¢y = c_, as stated. O

k

Lemma A.2. Define the sequence ¢y recursively by
dny2 =1, oN1=1—a® +k,
and, fork=N,N —1,...,2,
dp = (1+*(k —n) + K)dry1 — 2Rk + 1 —n)dpyo.
Then, for k € {2,...,N + 2},
o = dymi T 4 d_mN TR

where m+ are as in Lemma A.1 and

+(1+(1—-a?)k—a?2-n))+ R.

d = 2R
Proof. Let
(A.8) o = 1, v =1—a?+k,
and, for [ € {2,..., N}, set
(A.9) = (14 a’(k—n) + K)o — k(K + 1 — )i _a.

Then ¢ = ¢n12-k. As in the proof of Lemma A.1, the general solution to (A.9) is dlmf|r + dym! with m4
as above. Choosing d; = dy and dy = d_ satisfies the initial conditions (A.8) and completes the proof. [

Lemma A.3. The matriz B is nonsingular and its inverse s
(A.10) (B):; = {(O{Ii)j_i&lﬁbjfl_é.]v},_p » Zfl < ]:a
(a(k+1-=n))"76j-10i+10n5,1, f P27,
where dg = 1 and dy1 = det B.
Proof. We have shown in Lemma 2.5 that both T and T'% 4 (n — l)f are invertible. Thus
B=(1-a>)I" I+ (n—1)T)

is also invertible. Hence dn41 # 0, so the right-hand side of (A.10) is well defined. In view of Lemmas A.1
and A.2, the explicit form follows from Usmani’s formula for the inverse of a tridiagonal Jacobi matrix

[24]. 0

Theorem A.4 (Explicit form of w and v). Recall that the vectors v and w of the discrete-time equilibrium
in Theorem 2.7 have been written as

1 1
v=—v W= —w
1Ty’ 1Tw

Let k =20 + % Then the components of w are

(1 —a)k+« (@)
Rk —a(k—1)) ’

N+1—i

(A.ll) W; =

ie{l,...,N+1},
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and in particular wn41 = 1/k. The components of v are

N
vy = }5_ - (¢2 +(1—a)) (ar)'gj1+ ((M)N)
N+1 =
1— N
N = (<a<n +1=n)V+ (=) (als+1—n)V 175, + 5N> :
ON+1 =

and, fori =2,..., N,

11—« i—1
vi = (a(s +1=n) " g+ (1= ) D _(als+1=n) 0 a6in
5N+1 j=2

N
+ (1 - Oé) Z(Ozl‘i)j_i(sifld)ﬁrl + (CXI{)N+1_i5¢1) .
j=i

Proof. The representation (A.11) for the components of w was proved in [20, Equation (16)] in the case
n = 2. (Note that our vector w is denoted by u in [20], our « corresponds to a'/N there, and we have A = 1
here.) By Remark 2.4, w does not depend on n, so the same formula holds for any n. For v, recall from
(A.3) that

v=0C"+mn-1)I)""1=(1-a*)B I 1.
Using the explicit expression for (1 —a?)I'"!1 from (A.4) and the formula for B~! in Lemma A.3, we obtain
the stated formulas for the components of v. O

APPENDIX B. PROOFS FOR SECTION 2
We first show uniqueness.
Lemma B.1. For a given time grid T and initial inventories (z1,...,xy), there exists at most one Nash
equilibrium in the class [[; Z (z;, T).

Proof. This is a special case of the uniqueness result stated in [4, Theorem 5.1] for a general class of models.
To embed the present discrete-time model in that continuous-time setting, we specify an infinite cost for
strategies acting outside the grid T; cf. [4, Section 2.3]. O

Next, we reduce the existence proof to the class
Zaet(x, T) :={& € Z'(x,T) | £ is deterministic}
of deterministic strategies. A Nash equilibrium in the class Zget(z1, T) X - -+ X Zget(zn, T) is defined in the

same way as in Definition 2.3 and called a deterministic Nash equilibrium.

Lemma B.2. A Nash equilibrium in the class Zget(z1,T) X - -+ X Zget(xn, T) of deterministic strategies is
also a Nash equilibrium in the class Z (x1,T) X -+ x X (zpn,T) of adapted strategies.

Proof. We follow [20, Lemma 3.4|. Assume that (£5,...,€}) is a Nash equilibrium in the class Zget(z1, T) X
-+ X Zget(zp, T) of deterministic strategies. We need to show that & minimizes E[¢1(§|£*;)] over 2 (x;, T),
for any i. To this end, fix £ € 2 (2;,T) and define €& € Zyet(x;, T) by &, = E[&] for k = 0,1,..., N.
Applying Jensen’s inequality to the convex map RVt 5 & — x 'T% gives
sy _ml[leTro T s _mlLleTre riks *
E[6n(¢ | §°)] =E[5€ T + €T ) & =E[5€'T%] +E T D¢
J#i J#i
1T s | T * E | ¢*
> 6 TE+E T) & =E[6rn(€] )]
J#i
> E[er(& | €2)],
showing that £ minimizes E[¢7(§ | £*,)] over £ € 2 (x;, T). O
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We can now establish the main theorem on the discrete-time equilibrium.

Proof of Theorem 2.7. We adapt [15, Theorem 2.4|. Recall that uniqueness was shown in Lemma B.1. By
Lemma B.2, it then suffices to show that the strategies stated in Theorem 2.7 form a deterministic Nash
equilibrium. In view of Lemma 2.6, we thus need to show that

Blee 1€ = _min  (G6T6+€TY8)

giexdet (xz 7T

JFi
The constraint & € Zqet(2;, T) is the linear equality 1T€; = x;. By Lagrange multiplier theory, a necessary
condition for (&7,...,&)) to be a deterministic Nash equilibrium is the existence of a; € R, i = 1,...,n,
such that
I +T) & =al,
(B.1) j#i

We will show below that these equations are also sufficient for our optimization problem. Summing the first

line of (B.1) over i yields
(Fe (n—1)T Z 53 (Z ]>

J=1
By Lemma 2.5, I'Y + (n — 1)T is invertible. Hence

g = a;+m-1)M1
j=1 j=1

17" (0% + (n— 1))~ 11 -
L~
n 1T£;<

; 1T(T0 + (n— D)1
n

= ij'v,
j=1

using the second line of (B.1) in the last step. Next, take the ith equation in (B.1), multiply by n — 1, and
subtract the sum of the remaining n — 1 equations. This gives

F9< ZQ) <n—1§z Z£J>:<n—1)ai—2aj)1.

J#i

(B.2)

T+ (-1

Further simplifications show that

(rf (néz ZEJ) = (naz '" aj>1.

J=1

Since I'? — T is invertible (Lemma 2.5), we obtain

n n
(B.3) ng =3 & = (nri =Y )w
j=1 J=1
Combining (B.2) and (B.3) yields
& =zv+ (v, — T)w.
It remains to show that (B.1) is sufficient. Write

E*Tregz +£*TFZ$ I *TF9£ _}_g;rsz’ gi = fzéj
J#i J#i
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For any n; € %det (z;,T), using (B.1) and the symmetry of I'Y,
m {0+ g mi — fE*TF"E —-9/& = §(m +&) (i — &) + g (i — &)
T
( m+£)+gi) (s — &)
.
= (M +90)+ S0 T~ €0)) (i~ &)
oot T
= (01 + 5 (M) (i~ €)) (mi—€0)

:az-ﬂ(mfs;*)ﬁ( — )T (n; — £))
>0,

(B.4)

with equality if and only if n; = £. Therefore, the strategy profile defined by (2.4) is a deterministic Nash
equilibrium and the proof is complete. O

We mention that the proofs in this section remain valid if the exponential kernel G is generalized to an
arbitrary positive definite kernel (in the sense of Bochner).

APPENDIX C. PROOFS FOR SECTION 4

The proofs for the high-frequency asymptotics of Section 4 involve rather lengthy expressions. We start
with some abstract remarks and notation intended to make the exposition more concise. While the quantities
introduced in Appendix A (e.g., o, v, w) depend on the trading frequency N, we usually suppress this
dependence for brevity. Throughout, we let N 1 oo, so, for example, we write

lim o = lim e ?T/N = 1.

N1Too N1too
For ¢t € [0,T] we recall the discrete trading index n; = [INt/T'] and denote the distance between Nt/T and
the subsequent grid point by

Nt
771{\[ =Ny — ? € [0,1)

This will appear, for example, when first-order terms depend on n;.
Rather than expanding every expression directly in powers of N~1, it will be often convenient to introduce
the small parameter A :=1—a =1— e ?T/N_ A Taylor expansion at 0 yields

pT  (pT)? 3 3
A="—— O(N7?), —=—+— 1+ 0O(A”).
Hence o(N~P) and o(AP) are interchangeable; we switch between these two symbols as convenient.
All the functions we manipulate are real-analytic in the neighborhoods we consider. Two consequences,
often used without further comment, are the following.

(a) Stability under algebraic operations. If Ay = ag+ o(N~P) and By = by + o(/N"P), then
AN:i:BN:(aoztbo)+0(N_p), ANBN:CLobo—f-O(N_p),
and, provided by # 0,
AN ao
BN bo
Thus sums, products, and quotients preserve the error order.
(b) Stability under composition. If Xy = xo + ry with ry = o(N"P) and h is real-analytic on a
neighborhood U of xg, then by Taylor’s formula with Lagrange remainder, for any fixed ¢ € N and
all sufficiently large N,

+o(N7P).

i A (xO)Tk n R (2 + CNTN) g1

h(Xn) = N (¢ +1)! "N

(N € (0, 1).

k=0
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Hence, if rxy = O(N™™) and (¢ + 1)m > p, the remainder is o(N7P). In particular, in our setting,
compositions of finitely many analytic maps preserve o(N~P) remainders (equivalently o(AP)). Typ-
ical uses below include h(x) = 1/z (with z¢ # 0), h(z) = /z (with zo > 0), logz (with 29 > 0), and
their compositions.

Whenever a quotient of two analytic expansions is required, we identify the coefficients via the standard

series-division rule below; see also [7, § 67]. This will be used repeatedly when taking quotients of closed
forms and extracting leading constants.

Lemma C.1 (Quotient of analytic Taylor series). Let I C R be an open interval containing a, and let f,g
be real-analytic on I with

f@) =) alz—a)*,  glx)=> belx—a),
k>0 k>0
both converging on some interval (a—R,a+R) C I. Ifby = g(a) # 0, then f/g is real-analytic on (a—r,a+r)
for some r € (0, R) with

&— cp(z —a)F

k>0

~—

and the coefficients {ci}r>0 are uniquely determined by
m
bOCO = aop, Z b]Cmfj = Qm (m Z 1)
§=0

Remark C.2. In particular, at first order one has

f(x) ap  arbgp — aohy .
C.1 —r = —+4+ —~—————(x — a) + higher-order terms.
(1) ) e ) + i

The subsequent proofs proceed by expanding all discrete objects using the conventions above, together
with (C.1), to organize remainders into o(N~P) at the target order.

C.1. Proof of Theorem 4.1 (b). We remark that the convergence of Wt(N) to £(t) for ¢t € [0,T"), without
a rate, already follows from [19, Theorem 3.1(c)|] as W) is independent of n by Remark 2.4. Next, we
establish the 1/N rate and recover their result as a by-product. We observe that (in contrast to the statement

in {19, Theorem 3.1(c)|, which seems to have a glitch) the sequence W}N) does not converge to (7).

Proof of Theorem 4.1 (b). Using the closed-form expression in Theorem A .4,

1_((¥(R_71))N+1—nt

1-«a a .
w1 R (N+1- nt)f;_(a(f-c—)l) G
(C.2) W= g 2 k= ()
2 . N (=%
t+ (N + 1),%—(04(1%—)1) + R(k—a(k—1)) 1—@

We first treat t = 7. With & = 20 + 3 and using (C.1),

(N)  WN+1 1 1 1 (k= 3)p*T? — 2pT (% — 1)(pT + 1) +O<1)

1w 17w  R(PT+1) N R(pT + 1)?
which yields the stated claim at t = T.
Now fix t € [0,7") and apply (C.1)-(C.2). A direct calculation (whose details we omit for the sake of
brevity) yields

(V) pT | N, pt(20 —1)
N|\W. — ()| =
‘ t ()’ pT—i—lnt T+ 1

This proves the claimed O(N~1) rate of convergence to f(t) for every fixed t € [0,T). O

+ o(1), N — .
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C.2. Proof of Theorem 4.1 (a). We state separately the proofs for k = n — 1 and kK # n — 1. The
details are different because the general representation for the sum of the components of v in (C.7) involves
denominators that vanish exactly at Kk = n — 1, and therefore is not well defined at this value.

C.2.1. Proof for k = n — 1. Adapting arguments from [19]|, we first consider the case kK = n — 1, which
corresponds to 0 = "Tfl. The proof of Theorem 4.1(a) for this particular value of x will be given after the
following lemma.

Lemma C.3. Let k =n —1. Then, form e {1,...,N + 1},

(C.3) i”i: 1 <(1_a)m+a+oz(a2—n)<a(n_1))N+1+a(1—|—a)<a(n—1)>N+1m>.

— n+ o nn+a) \ n—a? n+ o n— a?
1=

Proof. Plugging in k = n — 1 yields R = n — o2, 6, = n(1 — a®)(n — o®)F~! for k € {1,...,N + 1}, and
dr = (n — a®)N*2"k for k € {2,..., N + 2}. Therefore,

e 1 14 n—a? an—1)\ M
YTt n(n —1) n— a? ’

(C4)
1 )\ V2= 2
n—+a« n—ao n—1
Summing (C.4) over ¢ = 1,...,m yields (C.3). O

Proof of Theorem 4.1 (a) for Kk =n — 1. Recall that o = e~ PT/N  Therefore,

(1 —a)ny = pt+ N(nt pT — £52) +O<N> ,

a(n -\ 1< n+1  2np?T? 1
atn=D\Y™' _ e () Lo g 1) +o( L),
(n—a2> ‘ AN n—1+(n—1)2 tow

_ N+1-mn¢ n 2 _
(@WU) _ T <1+1(W<Tﬂ_(1_¢v)ﬂn+1)> +0<1>,
=

n—a? N (n—1)2

1 Y e
= ol —
n+a n+1 N(n+1)2 N)’

ol 1
=1-" —
o N+O(N>’

a(a? —n) 1—n 1 pT(n? —3n —2) 1
nin+a) nn+1) N nn+1)2 <N> '
al+a) 2 1pT@Bn+1) <1>

n+ n+1 N (n+4+1)2

N
for all t € (0,T]. Moreover,

pT — 55~ 1
(1—a)(N+1):pT+T+O - | -

Putting everything together in (C.3) yields

! e = ntlp 1 1
(C.5) Z v = m(n((pT+ D(n+1)+2)e 1" = (n— 1)) + QN +o <N> ,

=1
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where
pT 9 e+t [ 2pT(n—1) 2p°T?
327(T1— —4 —1) T _
21 \PTIA =) —dln—1) ) +e 417 1m0
and
nt —p”—‘HT
e n—1 n+1 n+1 1 1
= paaT _ Pr—gt il il
(C.6) ;uz R (n(pt+ 1)(n+1)efn—1 (n—1) + 2ne’»—1 ) —i—%N(t)N +o <N> ,
where
1 pT
AN (t) = by (t,m bo (t
with
—_n n4+1 2 n+1
b t — t ]_ _P7L71T _pﬁ(T_t)
o(t) =pt +1+ T t o
and
2 22
p°Tt _ntip 1—n pT(n+1)  2np*T
bi(t,n) = npT — — T + e Pnt -
1(t,m) =np 5 —rT+e n(n+1)< — 1)
_ntip pT(n? — 3n — 2) 2 _nttp_y [ 2np?T(T —t) n+1
pn—lTp P (T—t) p—_ 1— T
te n(n+1)2 +n+1€ ( (n—1)2 (1=m)p n—1

~ /ﬂ(” (3f ;;zl)e—pﬂ(T—t)‘
n

Because nf¥ € [0,1) for all N € N and b; depends linearly on 7/, the sequence %y (t) is bounded for fixed
parameters 6,7, p,n.

Finally, plugging (C.5) and (C.6) into the definition of Vt(N) and applying (C.1) once more yields the
claim. O

C.2.2. Proof for k # n — 1. We now prepare for the proof of Theorem 4.1 (a) for the case k #n — 1. We
introduce the shorthand

1—
[z]™ = <m
ON+1
for x € R and m € N, which is convenient when taking limits of terms such as [:U]N
Lemma C.4. Let k > ”T_l and K # n — 1. Define k == n —1 and Cy = —oalad) Then, for
.%Jrlfa(nf/%fl)
me{l,...,N},
m
dy (mg — a2/<c) N
(1) Y=y e, )
i=1 oc{+—}

+C |1+ E oV k]
oty T
d,my a(k—Fk) _ (a(k—R)\m
+ nCl Z m ( Mo ( Mo ) ) [mo_] N’

My — (kK — k)
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and
co(me — a?(k — i R
(C.8) UNfL= Y (m — a(n(— B ) [mo]™ +nCraN [k — &IV
oe{+~} 7
Proof. For i € {3,..., N} we have
(C.9)

i—1
D (alk = /)65 1941 = ok — &) ( > ﬂmﬁ’

/ me — a(k — k)
j=2 oce{+,—} ) .
cpd_mN Tt my\" c_dymi ! m_\"
+ () 4 (=
my(my —a(k —R)) \m— m_(m_ —a(k —k)) \my

= <a(7n:%)>l)

oe{+,-} Te{+,—}
and
N N+2 i N+2 i
. oy d_m” _d _
(C.10) Z(Oﬂi)ﬁl@‘—lﬁﬁjﬂ — Z c7m5+1+# <m+> ey <m>
j=i o,y T my (m- — ak) - m—(my — ar) \my
demy cr(ar)N L ima\!
- X e —an > om, \aw /)
oce{+,—} Te{+,—}
Using

a(k—f)(m-—ar)+m_(my—a(k—k)) = a(k—&)(my—ak)+my (m-—a(k—F)) = mym_—o’k(k—F) = 0,

the second and third terms in (C.9) and (C.10) cancel. After simplification we obtain, for i € {2,..., N},

(C.11) vi=(l—a) Y  cod, ( ok — R) 4 Mo > gy

me —a(k —R) Mg —akr

oe{+,-}
dyme N [alk— k) ‘ codN Tk v (Mg :
+nCr Y a(ﬂ_&)[mg] ( o ) +C > o WY ()
oce{+,—} oe{+,—-}
Similar computations give
dy(my — ok
(012) v = Z (m_om)[mo]N"‘ClaN[/‘f]Na
oe{t~}y 7
co(my — *(k — ) N N ~1N
(C.13) UN41 = Z my —a(n = 7) [me]”™ +nCia” [k — &Y.
oe{+-} 7
Finally, for m € {2,...,N},
Mo N—-1 . Mo N—m
deMey N Oé(li— H) . dam"(( (/{7,‘%)) (a(nfl-e)) ) N N
Z Z ——[mo] = — o[k — R,
alk — k) My me — a(k — k)
=2 ge{+,—} oe{+,—}
and

m N+1 i CoMe (%)mfl -1
Z Z Ca():n‘7 R [R]N <ZL,Z> — Z (ma — ) OéN[fi]N,
i=2 oc{+,~} oe{+—}

which, together with (C.11), (C.12), and (C.13), proves the claim. O
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The next lemma collects the limiting behavior of all quantities that appear in the derivation of the limiting
strategy and, subsequently, the limiting costs. In addition, for the case § > 0 (equivalently, k > &/2)
we record first or second-order Taylor expansions used to compute the pointwise convergence rate of the
strategies.

For a sequence (an)ycy and a real number a, we use the shorthand

(an)™ = +a = (an)™ = (=1)"|ay|™ and lim |ay|™ = a.
N—oo

Recall that A = (1 — «) and note that A — 0 as N — co. When convenient, we express expansions in the
variable A; see also the discussion at the beginning of Appendix C.

Lemma C.5. For sk > % and Kk # K, we have the following Taylor expansions as N 1 co.

(a)

pT  p?T? 1
:1—7 —
o N+2N2+0 Nz )
N N2
(N Ny pTn  (pTny") 1
" =57 "t)—e”<1— N + SN2 +o0 N2 )
(b)
1 267 + 3n? — 5kn — k —n — 2(k™H — n)?
R —g+A2(H"T —n>+A2“ T Skn — K 2ART ST A2y
K K
2 4 8k —3n* —2n+5
Cy :Agn—Aan rn ok A4n n + 0(A?),
R K
2 4 —3n? -2
. :1—Af2n+A2/<m kN + 8K in n+5+0(A2)7
I 5
2 3R3 — 11/%k + 4k + 8RK? — 16/K + 1252
d, zl—AA—Q(/@—/%)+A2 K KK + 4k 4:4/@/-@ Kk + 12K +0(A2),
R K
2 —3k&3 + 11&%k — 4R? — 8kk? + 16RkKk — 12K>
" ZAq(H—%)—i—A? 3R% + 11k°Kk — 4R A48/m + 16Kk K +o(A2),
R I
2 3R? — dikk + 4k — 4
my :n+AfK+A2li,{ mf;_ il /{—FO(AZ),
K K
(i — 3 42 2
. kR4 A n(ﬁA H)—l—Azn + 4k +/f;1 6/m+5/<a+0(A2)'
R I
(c)
Cy n 2n(k — 2K)
my — K IS K
cp 2n —4kn? — 4kn — 8k +3n® —n? +n —3
my — ar FOES R (n+ 1)%3 +o(8),
c 1 —2Kk —n(26 — k) +n+R2 -1
+ - _ +A ( Ag) +0(A),
M4y — QK n—1 R
2k —n?+1
Cc+ :nn_A2Im/<m+ K—n+ +o(A).

1—a? R? R4



d_

m_ —(k— k)
d_

m_ —a(k — k)

d_
m— —o?(k — R)
d_
1—a?

K —

—ﬁ"i‘A
nKk

1 86
(n—1)?

+ o(A),

2 8kn2 +4rn+4k —5n3 +3n2+n+1

(n+ 1)k

1+A2/<;+n(2f<a—/%)—n—/%2+1

R3(n+1)2

i /3

+o(A),

R —&3 4 3k%k — k2 — 2RK2 + 4Rk — 3K?

+ A2

1,%2

/%4

+0o(A),

+o(A).

Fizt € (0,T) and recall Y =0 for all N € N. If k > &/2, the following ezpansions hold.

()

T
(l—a)nt:pt—l—p(

N

pt 1
i =5) o lx):

2pt pT 8nfd 2
- Bl N (S ey
exP(n—1)<+N< p(n—1)3+n—

1 k—R\™" 1
— and more generally =o|—
N m4

1 A\ ™M
=0 <> and more generally (m) =
N K

R

- 2Kn

ex

2k2

~2 Q=
<1+AH 8I€+8K>+O(A>’

2= 2= 2=

N N— 7

and more generally

and more generally

and more generally

(z:)N:O<1

1
N — -
> and more generally [m_]" =o (Np> , Vp €N,
=207\ R T
R 2Kn N k3 2R

]Vp>a Vp €N,

m Y (1
1o~ °\ww) PEN

[k — &N 1
T O

2npt pI'n 86 2 N 1
1 — — .
p(n—l)( TN < pt(n—1)3+n—1nt TN

20
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If, on the other hand, k = /2, then the preceding limits no longer hold. Instead, we have:
2pt 2pt 2npt

() (%)ntail, (BE)™ — en- (@)71 — e n1, (U)o deTn,

my

s nt 2npt
and (m—> — en—1

2npT 2npT
&) [N = —d— PV o e, WY S [k — RPN — S
e 2 Tin ne?n=1°T 11 ne?n—1°T 11 ne n—=1°" 41
2N+1 1 2N+1 1 2N+1 en—
[m] - o, [m—] - IR (<] - LT
2npT
and [k — ’%]2N+1 - SnnJrll ;
—ne?n—1PT 11
2 —& _
(h’) mT]Lr—oiz_Fn Hf-c) - T—i—l’ Tnit—oéz: - ni—&-lf and F»+104_(/;2 g - nTl
Proof. We start with (b). Let
R = \/0/1(/4 —n)? =202 (k(k+ 1) +n(l — k) + (k + 1)2
1 2k2 4+ 3n% — 5kn — k —n — 2(kHL — n)?
i s (L) 2B W
R
for ¢, set R =/ + ALRr + A%2Bg + o(A?) and compute
1-(1-A)2*k+n)+k+R
C =
* 2R
_ AQ2(k+n)+ Lg) + A%(Bg — (k +n)) + o(A?)
2k(1+ ALg/k + A2Br/k + o(A?))
2/<m Rn4nn+8/€—in2—2n+5 +o(A2),
K
Analogous expansions yield d4 and my. For (c), write
ct = ALe, + A?B., +0(A?), My — k= ALy, +A*B,, +0(A?),
and compute
cy L. +AB. +o0(A) n R R
= =(-+A—B A 1-A—B A
my —K Ly, (14+ABy,, /Ly, +0(A)) PRI e+ To(A) 2K me +o(A)
n n R n 2n(k — 2k)

The remaining ratios in (¢)—(d) follow similarly. Item (e) and the limits in (f) are obtained by the same ideas
used in the proof of Theorem 4.1(b). For (g), note that
]N _ A N A

T Cy <1 —a?+kK— 70‘2“(“7'%)) +co <1 —a?+kK— 70‘2“(“*’%)) (&)N

m4 m_— m4

[m

Expanding the denominator in A and observing that the second term decays faster than any power of 1/N,
we only need the expansion of ¢ (1 —a’ 4Kk — %’TN)) Writing

cy = Aay + A2%ag + o(A?), my = k + Aby + A2by + o(A?),
we compute

n <l—a2+/<a— W) = A(a1 + Aas + o(A)) (/%+A((/1—/%)(5+2)+2) —I-O(A)),



where b = b1/k. After some algebra, we arrive at

2 — i 2 10k — 8k —n? +1
C+<1_QQ+K_W>ZA<@+AM foseon 4l o)
K

my %3
thus
A i 2 — 8f + 8k
N
pr— — 1 A h-—Oh T Ol A '
] A (2"”"7” 4+ Akn %3-”24—1 + O(A)) 2Kn < + 242 + o( ))
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The remaining expansions in (g)—(h) follow analogously. Items (f’)—(h’) follow by L’Hépital’s rule and

straightforward algebra.

O

Proof of Theorem 4.1 (a) for k #n — 1. Let k > ”T_l with kK # n— 1. Starting from (C.7)—(C.8), we expand

each term using the asymptotics in Lemma C.5.
Step 1: Expansion of Y it v;.
Let ¢t € (0,7] and consider (C.7) with m = n;; we expand each of the four terms in (C.7) as N 1 co.

1)

dy(my — a?k) _ n—1 1 20T (—n? + 8nf + 1) 1
Z My — QK o] = k(n+1) N (n—1)(n+1)%(n— 1+ 46) o <>

N
U€{+77}
= (1)

2)

=) —1) 3 oy (T e g

il c—a(k—FK) me—ak

o pt 1 pT N_ 4, Pt pt(n —460 + 1) ) 1
T n+1l Na41\" 2 2(n+1) N
R AAO)
3)
como((my/(ar))™ 1 —1
of1e Y Emeltne/ e ) g
oe{+,—} 7
—pET (3)
e Pn-1 ntl 2 () 1
= _(—(n—1)+2ne’n-1t N —
n(n+1>2( (n—1)+2ne’»—17") + N +0<N
where
P () = e T (0 4 ) (1)),
0) _ pT 2 4 3 2 2
= TP 1jp 8T PP — 8Tnpf +n’ 4 dn®f — 20n°0 — 2n® +12nf + 46 + 1),
(1) 20T Ny 4 2 2 2 4 3
ey () = (my' (n® —2n* + 1) — 8pt(n“0 + nb) + 8T pn=0 + 8T pnb — n* — 6n°0

 (n—1)3(n+1)3
+ 14n%0 + 2n% — 10n6 + 260 — 1).
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k—FK 1 pT(n—460 —1)(n* +4nf +2n + 1) (1)
i D) N (n— D+ P(n+a0—1) ¢ '

—. 4

Collecting the first-order coefficients of 1), 2), and 4), set

In(t) =2V 4+ 7P 1)+ 7@
20T (—n% + 8nb + 1) oT
T (n—D(n+1)2(n—1+40) n+1<”f 2 2(n+1)
pT(n — 460 — 1)(n? + 4nf + 2n + 1)
(n—1)(n+1)2%(n+40-1)

t t(n —460 + 1
N P+P<n+>>

Hence
v e_p:ii_}T n+1 n+1
= 1 Defr1T — (n— 1) + 2nefn1!
>0 = G gy (o + Dot DT = (0= 1) 2ne Y
Yy (t) + 2 (1) 1

and X (t) + @]\(,3) (t) is bounded once 0, T, p, n are fixed.
Step 2: Expansion of vni1.
From (C.8) and Lemma C.5,

T 1 T
I/N+1:N+O<N>, 9:/)’%

Step 3: Expansion of ZZ]\Q{I V.

Since np = N, (C.14) at t = T gives Zf\il v;; adding vy yields

Ry €_p%T pn—HT M 1

with 4 = %n(T) + @]\(,3) (T) + 7 (note that ni¥ =0, so .# is independent of N).

Step 4: Expansion of Vt(N).

The limit in (C.15) matches the right-hand side of (C.14) at t = T', and (C.14) matches the limit from
(C.6) (obtained when x = n — 1). Although the leading coefficient of the 1/N term depends on 6, the
convergence order remains 1/N for every 6 > 0. Plugging these into the definition of V) and applying
(C.1) once more yields the claim. O

C.3. Proof of Theorem 4.2. Let (£1,...,&,) be the equilibrium profile; we drop the star superscript and
suppress the N-dependence of §; and related quantities to keep notation light. We start with a simple lemma
(valid for all k > k/2).



Lemma C.6. Foralli=1,...,n,

(C16) E[%r (& ] €-1)] =

= 1 n .
where T = = > 1 x;.

Proof. By Lemma 2.6,

(C.17) E[%r(& | €-4)] = *£TF‘)EZ +& T ¢ =A+B.
J#

By Theorem 2.7, & = zv + (z; — Z)w, hence
A= %(:E%TF@'U + Z(z; — 2)v  Tw + Z(z; — Z)w ' T + (z; — 7)%w ' Tw )
Moreover, since ) ;& = iZv + (T — 2;)w,
= (zv + (2; — ) w)Tf(/%fv+(:E—xi)w)
= k2?0 Tv+ iz (2, —2)w Tv—Z (r; —2) v Tw — (2; — &) w ' Tw.
Substituting into (C.17) and using

T +ilpr =1, @ -DNw=1,

together with'1=1Tv, w1l =1Tw, and v ' Tw = w ' T "v, and writing v = v/(1Tv) and w = w/(1

we obtain (C.16).

Lemma C.7. For k > k/2, as N T oo,

2 2
T= n—1 _gpntly _pntip  2n%(n+1) n“(n+17)
I_‘ _ | — n—1 _4 n—1 _— T _—
v V—>2n2(n+1)3< e ne + n_1 " + w1 )

w! (R0 =TT ) — —(n=1)@n = D)e "1t n(n+ 4)(n— 1) + n(n+ 1)(n - 2)pT
n(n +1)2

9

~ 20T + 1
w Tw — p +.

Proof. The third limit follows from [19, Lemma A.5|; we prove the first two.
Step 1: Case k = Rk (so k =n/2). We have

N—|—1 N+1 N+1 -1

1 .

+ E V + 11 g v Z + g E viv;a -
=3 j=2

1 (1—a2)N+—a +2a3(n —2) + a?(2n — 2) + 2na +n?
(n+ «)? 2 2 (n? — a?)

_QN(n—l)a2(a+1) N ati?
n(n + «) 2n? (n? — a?) |’

24
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and therefore, as N 1 oo,

~ 1 n+7 2(n—1) _, nt1 n—1 ntl
T p T 2p T
I'v— —— | pT — 1t — n—
VYT Ly (,; T ) i )© 21 1)
n—1 nilp _pntly 2n202ﬁ—1) Olﬁ-7)
=— |- — 4ne Pn-1 ——=pT
2n2(n—|—1)3( ne T T
as well as
- N+1 N+1 N ‘
w! (/%I‘ - I‘T) v = viwi + Z viw; | + kiq Z wia 4 RWN 41 Z v Nt
i=2
N i—1 N1 o
+ Zwi /%Z via'l — Z vial ™"
i=1 j=2 j=i+1
—(n—1)2n - e 1T £ n(n 4+ 4)(n—1) +nln+ 1)(n — 2)pT
n(n+1)2 '
Step 2: General case k > "5~ L with k # n—1. We include the boundary value xk = ;1 because intermediary

limits below will also be used for that case. We first compute I'v. Define Cy = % as above and

._ a(k — k) my N
Co = Z Codo (mo —a(k — k) + My — om) ol
oce{+,—}

2 .
Cyi=—Cot Y do ( —ak  nCi(k—#) )[mg]N.
el Me —ak My — (kK — k)

For o € {+, -}, write 6 = — if c = 4+ and ¢ = + if 0 = —. Then
- 1 dy(me — a?k) N GV oy
Tvh=5 2 = e el + =5l
oe{+,—}

Z d, < — oK) n nCra(k — /%)) o]V
Mg — QK 2me
oce{+,—}
Cy(1 —a) N C1(14a? (26 —n) + K)oy W,
2 2ak

and, for i € {3,..., N},

(Fw); = Cy(1+ a) . nCh i Z dymy (,22- — Kk —mo) [mo]N [ (k- R)a i
2 " 2a(k—#) A o~
0‘6{—‘,—,—}
e WA
2 My (mg — 042/1) akK
U€{+7_}
Moreover,
I d mec + (2da' - l)az(H — :‘Aﬁ]) CIQQH N
r e - ! i
(Tv)n41 e{g_}c (mg — 2y —aln — ) + o [me]

+ C3aN — C1aNE [k — &)Y,
whose last term can also be written as — Clo‘ 2k — &+ 1)[x — &)V,
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Next, for i € {3,..., N},
vi(Tv); = D} + D} + D + Dj,

Ca1+a)

with Di =
2

v; and

Db = Cs(1 — @) (C’3o/1 - _nt Z dgmg(lgi — K —mg)[my]" <(” - '%)CY)l

20(k — k) il k—K+mg Mo
ClaNJrl [ ]N Z e (mo + Oé2l<.7) My i
2 (me — a2k) \ ak ’
E{-‘r,-}

oce{+,-} oe{+—}
and
9 9 A B 21
B ) n N\2 R —K—ms [(a(k—R)
D4 - (Cl) (2(0[(/43 N I%))Q (Oe{;_} (do’mo[mo] ) k— K+ Me ( My >

N cre-2((@®k)? —mym_) <m+m>>

aNH[/f]Nn<2(/%— (1—a?) o — A\
+ - 2) Z dyCo [Me] ( >
2(k — k) n(l —a e K
+ Z Co’d mo’ o'] (f:i—li—mg_’_ma—}-o[?q) (mg(ﬂ—f%)>l>>
K—K+mMmg Mg— QK Mgk

ce{+,—}

Summing over i, we obtain

N ak N _ mo N[N
;_ Cali+a) mocy (2 mo) — a5}V

ZD1—2<C'2(1(1)(N2)+01 Z pr——

=3 oe{t,—}

A3\ 2
do’ma <<O¢(’fn;f€)) [mU]N — O[N [H - /%]N)
+nCq Z My — a(r — A) ),
oe{+,—-}



and

N
> Djy = CyC5(a” — o)

=3
. CoCi(1 = a?)n Z (do)?(k — Kk —my) ((ma)zaz\f k=AY — (alk — &) [mU]N>
214 «) e deme(me — (k — R))((k — kK)o — my)
C2Ci(1 - o?) 3 (co)*(mg + a?k)((ar)? [mo]™ = ()2 [R]N)7
2(1+a) it coak(my — ak)(my — a2K)
N ndy ((mea™)2 [k — &N — (a2(k — /))° [mo] ™
ZD320103< 2. ( m (az(ﬁ_g)(—m) | )
=3 oe{+,—} o o
Co r2aN My N _ My 2o N[N
Ly G (] <)> []))7
0’6{+,—} R\{Mg K
N .
> Di
=3
_ 2 nj (domo)*(k — Kk —my) ok — 21V)2
=) ( 2 UE{%:} (e — (5 — 2))(alr — &) — mg)(m T a(r — &) @ =A%)

1 Z (00)2(m0)4(m0 + 0‘2%) (aN [/{]N)2

(me — ak)(my — a?k) (Mmy + ak)

2(me — ak) (me — a?k) (Mg + k)

N Z ( (00)2 (ma + aQIi) (om)2

2(me)? (mo — (k — &)) (a(k — &) — my) (Mo +

B n? (dy)? (a(/f—,%))‘l(,%—/i—mo) > - 9
(k—R)) <{ 2 )

2 (me(k — &) — mgsK) (1-a?)i

A—k— fod ot 2 - 2
N ncgsdsms <2_2+26 + 207322) Coly </—£ - (1 -« ) H) N N
+ > aVk [me™ [k — ]

oe{+,—}

k(11— a2) B 2my (ma(ﬂ — k) — mg/i)

R—(1—a%) kK negdy (my)? (E=tizme 4 motas
+ Z MG (Cada <ﬁ( (1 ) ) do (M) (H H+m0+m+a ”>)[ma]N[ﬂ]N

oe{+,—}

+ﬁ<(a2_1),«b+g>( "’ (;(C )(20‘( “_‘;))H ([R]N)Qf%(mm)z)

nK i (1 - a2) R (1 — a2)

-1
ct d_ 1-—a? .
=R — .
my(k —R)—m_k ( (1—042 ct rt(r K>>)

Note that

27



Using Lemma C.5, the limits of the preceding sums combine to give

4 N

v Tw =u1(Tv); + 1a(Tv)s + Z Z Di+ N1 (D)
k=1 i=3

(n—1) —2pntly _pntip  2n°(n 4 1) n?(n 47)
e E— - n—1 — 4 pnfl -_ 7 T _ 7
2+ 1) \ ¢ ne L ey Ry P

We now turn to w ' (/%f — fT> v. Set

and

a(aN(/%—aQ(/%—l))F;+a2(/§_1) (,g_1+(02(

X ?‘M
=
—
=2
~_
|
[
N
"
3
|
[\
| —

N1 T F(R—a(m-1)) (R —a?(R—1))

Forie {2,...,N}, write

(W' (L =T7)),vi = Gi + G4 + GS,

Gi = Cy(1— a) (71;2“) +Caa’ + Cs (a(%ﬁv_ 1)>N <a<ff— 1)>i TR (—na_(:)—(l”) ’
Gy=nC1 > ?;TU,%) (n g 2wi <a(*;; n)> +Cy (W)

(6
oe{+,—}

oo (DY (M) et (e Yy,

where

U€{+’_}

; coaN Tk [n—2 mo \* me \ " al(k —1) N Ry
Gy=C1r Y, - ( > “’((m> +C4(ﬁ) +C5<r-;> (/foﬂ(m—l

28
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Summing over 1,

N .
Y Gi=C(1-a)
1=2

Finally,

N
i Cok
2.G=0 3,

oe{+,—}
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Again, Lemma C.5 and [19, Lemma A.3] yield all necessary limits, and therefore

3 N
UJT(I%F - FT>V = (wT(/%f‘ - fT))lyl + ZZGZ + (wT(/%f - FT>)N+1VN+1

k=1 1=2
(n—1)? (n - e"’%T) (n+ 1)nk (1 +(n—2)pT — e—ﬂ%iT)
- nk(n+1) * (n+1)%nk
(4 1)(s = ) (n(n = 1) + (0 = De 557 ) 42(n — s (1 e 7H5T)
T +0
(n+1)%nk

—(n—1)2n - De 1T 4 n(n+4)(n — 1)+ n(n+ 1)(n — 2)pT
n(n+1)2 ’

g

Before proving Theorem 4.2, we recall that vy corresponds to the k-th element of the vector v =

(v1,...,on41) € RVFL whereas & corresponds to the (k + 1)-th element of the vector & = (&, ...,&n) €
RN+

Proof of Theorem 4.2. By [19, (23)] we have

N+1
(C.18) lTw:Zwi—>pT+l as N T oc.

i=1
Moreover, the limit of 1Tv = Zf\zl v; is given by (C.5) when k = n — 1, and by (C.15) when k # n — 1
with £ > 2-1. The limits of v 'T'v, w' (Al = '")v, and w'T'w are collected in Lemma C.7. Substituting
these into (C.16) yields the claim. Finally, we only need to prove (4.4), then (4.5) will follow automatically;
recall

ik = Tog + (T — T)w,

where w and v are defined in (A.2). Without loss of generality, and to simplify explicit computations, we
can fix ¢ = 1/2; the same argument remains valid replacing 1/2 with any ¢ € (0, 1).
Step 1: Back window [[N/2],...,N], recovery of Br.

Near t = T the w-contribution dominates, hence (recall the indexing convention for £ is {0,..., N} and
for v and wis {1,..., N +1})

N N+1 N+1 N+1
0 Z (fz’,k)2 =0z Z vp + 207 (z; — 7) Z vpwy, + 0(z; — £)2 Z wi
k=[N/2] k=[N/2]+1 k=[N/2]+1 k=[N/2]+1
N+1
=0(xi—2)" Y wito(l)— Br (N ).
k=[N/2]+1

Using the explicit formula in (A.11),

N+1
I e
2k —1 46’
k=[N/2]+1
and, combining this with (C.18),
N+1

1
Z 2
wk H 72.
k=[N/2]+1 00T +1)
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To see that the v-part and the cross term vanish as N — oo, first consider Kk = n — 1: by (C.4),

T2 1 1
2< P e {[47]+1,... .
ViS o 1Ene O <N2> e {3+ Ny
For k #n —1, (C.11) and (C.13) yield, for i € {[N/2] +1,...,N},
2 nt1 1 \21 1 T2 1 1
2 < 2T2< pT ks ) L 1 2 <P S 1y
Er om0 T ) e\ ) s Teae PO\
Together with the limit of 1" (from (C.5) or (C.15)), this implies
N+1
1 n—1
Z v,%:(’)<N), forany/i>T.
k=[N/2]+1

By Cauchy—Schwarz,

N+1 N+1 12 N+1 1/2
> w3 ) (Y wh) e
k=[N/2]+1 k=[N/2]+1 k=[N/2]+1
Hence the limit over the back half equals Zr.
Step 2: Front window [0, ..., [N/2| — 1], recovery of %y.
Near ¢t = 0 the v- contrlbutlon dominates, so
[N/2]-1 [N/2] [N/2] TN/21
0 Z fm 2 — 972 ka—i—%x — T kawk—i-ﬁ Zwk
fN/ﬂ
= 07> Z vi + o(1).
k=1

Using (C.12)-(C.11) for k # n — 1 and (C.4) for K = n — 1 (in the latter case § = 7% and only the first
trade contributes, meaning Z[N/ 2] vi —0),

[N/2] (n —1e —20T 55 (nepT% + 1)2

Z Vi (n+1)2n246

Therefore, combining with the limit in (C.15) (that does not depend on ), we get, for any 6 > 0,

/2] (n—1)(n+ 1)2(1 +nep%iT)2

2
Z Uk T nt1 2°
k=1 40<n((pT+1)(n+1)+2)epﬁT— (n— 1))

To show that the w-part and the cross term vanish, note from (A.11) that, for i € {1,...,[N/2]},

1
W < 4p2T2m+0 <N2>

By (C.18), we conclude as in Step 1. O
C.4. Proof of Theorem 4.3 (a).

Proof of Theorem 4.3 (a). For k = 31, the limits in (C.7) and (C.8) follow from Lemma C.5. We evaluate
(C.7) with m = n; term-by-term as N 1 oc.
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1.
2
_gntl . ’ N= 2k’
do (Mme — 0?K) N (6 n-1P0 n) (n+1)
Z Mo — ak [mo]™ — 2n
oe{+—} 7 EPyEsp , N=2k+1.
(—e [ n) (n+1)
2.
pt
. ——, N =2k
alk — R Mg ' ’
I-a)(ne—1) Y cody (m _(a(ﬂj’%) +— _%) mo] — np+t1
oe{+-} 7 7 oo N=2%k+lL
3.
-1
Co’ma((w)nt 1)
Ch |1+ - oV k]
My — Ok
J€{+7_}
e Pral nt1
YR (2ne”n—1 —(n+1)(xe pﬁt)—(n—l)), N = 2k,
(e7* =177 4+ n)(n+1)?
[ n— < Y _.n
§ 2ne’ "1 — (n+1)(£e f’n—l)—(n—l)), N =2k +1.

(- e 2ol 4 n)(n+ 1)2

4. Define

Then
(K—F) (r—R)\™
Z damg< ;"N ( ;aﬁ> > N
n01 - [m ]
cef+-} Mo — a(k — &) 0
M — 2nePrrit — n(n + 1)62%” (1 + @fpz—tit>
, N =2k,
N D
—2n + onePrtt — n(n + 1)62%}"T (1 + Q_P%}'j

Summing the four contributions yields the limit

e
> v
i=1

n n+1 n
2n + (n+ 1)pt — oneli-1t 4 2Pl (n(n+1) +n(n+1)pt) — eni1PT 1) (£n(n+1))
1 1 D+
n+ n+ n+1
onen—1PIH) _ on=rp(T—1) (i(n + 1)) —(n— 1)eﬁpT N — ok
H D+ b )
—2n — (n+ 1)pt + onelnrt 4 2nifT (n(n+1) +n(n+1)pt) — ens1P2T 1) (£n(n+1))
D_
onen1P(TH) _ oiZrp(T—1) (£(n+1)) — (n— 1)6%’)T N — 9%+ 1
D_ ’ N '
\



33

Setting t = T in the preceding display gives the limit

N
D> v
=1
neQ%pT((n—l—Z%)—l—(n—i-l)pT)—|—e%%pT(1—4n—n2)—|—(n—|—1)pT+(n—1) N — ok
D+ ) - )
- gntl ntl mp 2
ne“ =17 ((n+3)+ (n+1)pT) +e17" (1 +2n+n?) — (n+ 1)pT — (n — 1)
D , N=2k+1

Turning to vy41, (C.8) yields

2(n+1)+2n(n + 1)6%1)T

N = 2k
_D+ ) )
PN o) o 1en=1°T
i — n—1
(n+1) l;z(n—l— Je C N—2kl

Combining the preceding two displays yields the limits of 1" v:

i1l (n+1)pT + (n+3)) + (n— 1)26%[)T +(n+1)pT + Bn+1)

: T
}71%0 1 v= D, ,
(Clg) Neven et .
i 1Ty — 1€ 17 (n+1)pT + (n+3)) + (1 —n?)en17" — (n+ 1)pT — (3n + 1).
Ntoo D_
Nodd

Finally, substituting these limits into the definition of V;(N) completes the proof of the oscillation statement

in part (a). O
C.5. Proof of Theorem 4.3 (b).
Proof of Theorem 4.3 (b). By Remark 2.4, W) is independent of n. Hence the argument of [19, Theo-

rem 3.1(d)|, established for n = 2, applies analogously in our setting for any ¢ € (0,7). Fort =0and t =T
a straightforward limit computation yields the result. O

C.6. Proof of Theorem 4.4.

Lemma C.8. Let k = ”T_l Then, as N T oo,

I ne2PitiT (n+1)pT +n+3)+ (n— 1)26’0%T +(n+1)pT +3n+1
Ntoo B (n+1)Dy ’
Neven
i wT <Af‘ f‘T) y n2e2PitiT _ n(n + l)ep%?T + (2n? — 3n — 1)ep%}T —(n+1e P +3n—-2
1m K —_ e
NToo .@_g.
Neven
n n 2
pT (n —2) (neanﬂ + l) 2n(n —2) (epfﬂT - 1)
+ 7 + o ,

lim w'Tw=e T 4+ pT + 1.
N1Too
Neven
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Moreover,
ntl ntl
pTry, _ mel (4 DpT 4t 3) — (7 = el — (n+ 1)pT — (3n +1)
Ntoo (n + 1)D_ ’
Nodd
lim T < 7 f‘T> n2e 51T fon(n 4+ 1)e?n 1T — (202 — 3n 4+ 1)e?n 1T — (n+ 1)e T — 3n + 2
11m w RL — vV =
N1Too 9
Nodd
o (n—2) (ne?17 —1)  2n(n —2) (27 1)
+ 73 + N ;
lim w Tw=—e T + pT + 1.
Ntoo
Nodd
Here
D ::( QHPTﬂ) 12, 9y = .
- e (n+1) * (n+1)

Proof. Since w is independent of n, the third limits coincide with the 2—player case and are given by [19,
Lemma A.6|. Hence it suffices to establish, for k = ”Tfl, the first two limits for IV even and odd. Moreover,
as explained in the proof of Lemma C.7, the representations of

v'Tv and w' (/%f‘ - f‘T) v

obtained there for k # n — 1 also hold for kK = "T_l Plugging in the limits from Lemma C.5 yields the claim.
For completeness, we record the decomposition and limiting contributions used in the argument.
Quadratic form in v:

4 N
v v = vy (Fu)l + vy (f‘u)Q + Z Z D}; + UN+1 (FV)N+1.

The boundary terms cancel asymptotically,

For the interior contributions,

1 n+1
—_— [(ne%nﬂT + 1) (n+1)pT
(n + 1)D+ 2 n+1T n+1T
5 N + ((n2+4n— 1) n1T — (0% 4 6n — 3)e’ 17 +2(n — 1))], N = 2k,
2.2 Di—q
k=1 i=3 S 2075 _ 1) 1)pT
G ope L (n+ 1)p
n ((n2 +dn — 1)e2nsiT 4 (n 4 1)2ePnm T 2(n — 1))} , N =2k+1,
and
o {2(712 -1+ 2n)ep%
(n+1)Dy i
N —(n—l)e%ﬁT—i—n—i—S], N =2k,
D! + Tv —
; 4 VN—H( )N—H # {—Qn(n " 1)@”%T
(n+1)D_ it
—(n— 1) T — (n+ 3)}, N =2k +1.

Adding these two displays gives the limit for v T'w.



Mized form w' (/%f‘ — fT) v:
W' (R =TT )y = (@ (f0 = TT)),m +é§;0; + (" (0 -T7))

The boundary terms satisfy

2 <—e_pT +n— 1) (ner%T + epztiT)
Ds ’

2 (e‘pT +n— 1) (neZ’)%iT + ep%T)
ZR ;

(wT (/%f — fT>)11/1 —

2 <€pr —e 2T 4 — 2> (1 + nep%T>
7 ’
_9 (e—pT LT gy 2) (1 n neﬂ%T)
7B ;

For the sums, we have
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N41YN+1-

N = 2k,

N=2k+1,

N = 2k,

N =2k+1.

2
v (1-e) +m—2pr
' , N =2k,
> G — nt 1
i= 1—e 27T —2)pT
i=2 e + (n—2)p 7 N2+l
n+1
n (-267PT + 2672pT =+ 1) QP%T +n <1 —n+ (2 _ n)epr> 62P%T —n <€pr . 1)
7
2 -2 n+1
N _ n(n ) (epn_}T _ 1) 7 N — ok,
G Dy
=2 ”(26_p + 24P — 1) efn—1 +n(1—n+(n—2)e‘p )e Pa—1 fn(ljte—p )
9 9 9D_
— n+1
" )<ep"tT_1>’ N=2k+1,
D_
\
(e_pT — 6_2'0T> neZp%iT — (e‘pT — e 20T _ 1) + Qe—PTep%iT —(2n — 1)6/’%71
2 2 2
- n+1 n+1
N n(n-2) n—le(e n—le_l)’ N2k
7 D+
Z G3 - n+1 ntl ntl
=2 (e—pT + 6_2PT> nern—lT + (e—PT + e—QPT _ 1) _ (2n _ 1)€pﬁT o 2e—pT6PHT
9 9 9_
— n+1 n+1
nn = 2) i (ep"tlT 1), N =2k +1.
D_
\
Summing the boundary contributions with Zf\i 9 Gi: for k = 1,2,3 yields the claimed limits for

w! (/%f —fT) V.
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Proof of Theorem 4.4. We proceed as in the proof of Theorem 4.2, now using the limits

(C.20) Jlfle wl=e 4 pT 41, ]%}%n w'l=—e?T 4 pT +1.
Nevoe?l Nogﬁ

These limits are taken from [19, eq. (25), Proof of Theorem 3.1(d)|, derived for the 2-player case; since w
is independent of n (Remark 2.4), the same limits apply here. In addition, we invoke (C.19) together with
Lemma C.8. Substituting these limits into the cost representation (C.16) yields the claim. O

APPENDIX D. TIME-VARYING INSTANTANEOUS COSTS

In this appendix we present a numerical analysis of how the equilibrium strategies and their asymptotics
change when we charge instantaneous costs only on the first or second half of the time interval. This
construction is motivated by the continuous-time game, where we can specify the “correct” block cost at
0 but the “wrong” one at T (or vice versa), and then an equilibrium exists only in the case of zero-net
supply (or symmetric initial inventories, respectively); see Remark 3.2. In the discrete-time model, a unique
equilibrium still exists in these half-grid instantaneous-cost configurations. However, the qualitative behavior
of the time-t inventories changes substantially: when there is no instantaneous cost on one half of the grid,
exactly one of the two processes VIV) and W) develops oscillations on that half of the interval, and the
cluster points of the oscillating inventory are no longer the four cluster points from Theorem 4.3. In both
of the configurations described below, the inventories X ) converge to the corresponding continuous-time
equilibrium in precisely the cases singled out in Remark 3.2.

Set-up. We modify the matrix I'? by turning the instantaneous-cost term on or off separately on the first
and second halves of the grid. Define

H? :=1°4+201, J%:=T°+ 207,
where
0, t#7,
0, i=j, ie{l,....[(N+1)/2]},
1, i=j ie{[(N+1)/2]+1,....,N+1}.

~il
Il
~
|
~
&~
<
Il

Thus H? corresponds to charging instantaneous costs only on the second half of the time grid, while J?
corresponds to charging instantaneous costs only on the first half.

It can be shown that, if we replace I'Y by H? or J?, the proof of Theorem 2.7 carries over. Hence the
equilibrium strategies are still of the form (2.4) with

(H? + (n — 1)I)~'1 e (H? —T)11

(D.1) = = , = = ,
1T(H+ (n—1)I)"11 1T(H -T)"11

and analogously with H? replaced by J?. We then define the time-t inventories VN) and W) from v and
w in each case, as in (4.2).

Second-half instantaneous cost. We first charge instantaneous costs only on the second half of the grid,
that is, we use the objective with H? replacing I'Y. Numerically we observe that

W™ —g(t)| — o.

By contrast, V;(N) does not converge to g(t) on the whole interval [0, 7], but it does converge to g(t) on
[T/2,T]. On [0,T/2], the process V(™) exhibits oscillations and does not have a limit; see Figure 4. In
light of Remark 3.2, this reflects the continuous-time situation with 99 # (n —1)/2 and 97 = 1/2, where
an equilibrium exists only in the zero-net-supply case £ = 0 and is given by z;f(¢). If we assume z = 0, we

recover the convergence of the discrete-time inventories Xt(N)’i to the continuous-time equilibrium x;f(¢).
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—0.24

FIGURE 4. Convergence of inventories for even/odd values of N in the modified game with
cost functional H' (instantaneous cost charged in second half). We also plot the cluster

points B+ and 7+ from Theorem 4.3 and note how they differ from the envelope of Vt(N).

First-half instantaneous cost. Next, we charge instantaneous costs only on the first half of the grid, that
is, we use the objective with J? replacing T'. In this case we observe numerically that

VY —m()| —o.
By contrast, Wt(N) converges f(¢) only on [0,7/2]. On [T/2,T], the process W) oscillates and fails to
converge; see Figure 5. This behavior is consistent with Remark 3.2, which states that in the continuous-

time game with ¢9 = (n—1)/2 and ¥ # 1/2, an equilibrium exists only in the symmetric case x1 = -+ = x,
and is given by x;g(t). If we assume x1 = - -+ = x,,, we recover the convergence of the discrete-time inventories
Xt(N)’Z to the continuous-time equilibrium x;g(t).

Comparison with the cluster points from Theorem 4.3. Finally, we note that the oscillatory envelopes
observed in Figures 4 and 5 differ from the cluster points from Theorem 4.3, which are driven by N being
even or odd. In the half-grid instantaneous-cost setting, the oscillations are localized to the half of the grid
where cost is absent, and the associated cluster points are no longer determined by the even/odd parity of N
seen in the specification with no instantaneous costs.
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