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Abstract

We introduce a mean field game with rank-based reward: compet-
ing agents optimize their effort to achieve a goal, are ranked according
to their completion time, and paid a reward based on their relative
rank. First, we propose a tractable Poissonian model in which we can
describe the optimal effort for a given reward scheme. Second, we study
the principal–agent problem of designing an optimal reward scheme. A
surprising, explicit design is found to minimize the time until a given
fraction of the population has reached the goal.
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1 Introduction

In this paper, we introduce two game-theoretic problems. The first one is
a mean field game with infinitely many players that compete to obtain a
reward. The second one is a principal–agent problem where the principal
interacts with these agents; namely, the principal aims to distribute a given
reward budget to the different ranks such as to minimize the time until the
agents complete their task.

Let us think of the agents as independent research teams trying to develop
a result or product in the same field. Following the literature on dynamic
research and development (R&D) detailed below, attaining a result will be
modeled as a binary event. At any time t, each agent chooses a research effort
λ for which a quadratic instantaneous cost cλ2 is to be paid, where c > 0 is
assumed to be constant for the purpose of this Introduction. In a Poissonian
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fashion, the agents’ probability of reaching the goal in a small time interval
∆t is then given by λ∆t + o(∆t); in the R&D literature, λ is sometimes
interpreted as the accumulation of private knowledge and the goal is to file a
patent. The agents are ranked according to their completion times and paid
a reward R(r) for rank r, where the reward scheme R is a given decreasing1

function. At any time, the agents observe the fraction ρ(t) of players that
have already completed the task and thus which portion of R is still available;
more precisely, the agents use feedback controls λ(ρ(t)). This rank-based
coupling of the agents’ optimization problems is a non-standard example
of a mean field interaction. We shall show that given R, this game has a
unique Nash equilibrium when agents optimize the expectation of reward
minus cost. In fact, this setting turns out to be very tractable: Theorem 2.2
provides explicit formulas for the equilibrium optimal control λ∗ and the
agents’ value function. These quantities are independent of the cost c which,
in the body of the paper, is also allowed to depend on the state ρ(t) to model
that the cost may diminish as more results become available.

The second problem is built on top of the first: as we have seen that
any reward scheme R leads to a unique equilibrium between the agents,
we can study the problem of a manager or policy maker who would like to
advance research. More precisely, we aim to minimize the time T ∗α until a
given fraction α of the population has completed their task. The principal
has a fixed reward budget B =

∫ 1
0 R(r) dr but may choose the shape of the

decreasing function R; that is, how much reward to allocate to each rank.
Quite surprisingly, the principal’s optimization problem has an explicit but
nontrivial solution (Theorem 3.1):

R∗(r) =
B

C ′

{
1√

2− r
+

1

2
log

(1 +
√

2− α)(1−
√

2− r)
(1−

√
2− α)(1 +

√
2− r)

}
1[0,α](r),

where C ′ is a constant such that the budget constraint is saturated. As can
be seen in Figure 1, this function has two main features. The first one is
a discontinuity at r = α: a substantial amount is awarded to the last few
relevant agents, but it is optimal to pay zero reward to the ranks after α.
While it is clearly important to incentivize the last agents that will complete
the α fraction, these agents are not too discouraged by the fact that they
may miss the rewarding ranks. The second feature is the shape of R∗ on
[0, α]. A priori, it may not even be obvious if it is better to provide a strictly
decreasing reward, compared to paying the same amount to the first α ranks.
It turns out that R∗ is decreasing, even if not very much so, and moreover

1Decreasing and increasing are understood in the non-strict sense throughout the paper.
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Figure 1: The optimal reward scheme R∗ and the corresponding equilibrium
effort λ∗ and state process ρ for three different cut-off values α, with B = 1
and c ≡ 1.

it is concave. Thus, the difference in reward between two equidistant ranks
increases later in the game, apparently to incentivize the remaining agents
to choose a higher effort as shown on the second panel of Figure 1.

While formulating our game with a continuum of agents is convenient
to get directly to our main results, a more fundamental justification for the
mean field game is to study an N -player game for N → ∞. Indeed, we
establish that the N -player versions of our two problems have unique solu-
tions, albeit somewhat less explicit than in the mean field case. We show
that the N -player equilibrium converges to the mean field limit; that is, the
value functions and the optimal feedback controls converge (Theorem 5.1) if
the given reward schemes converge. Moreover, the optimal reward schemes
for the principal and the corresponding expected completion times converge
(Theorem 5.3). The analysis for finite N also allows us to study size ef-
fects which cannot be observed in the mean field limit and thus are rarely
addressed for large population games. In particular, we shall observe in Sec-
tion 4.3 that an increase in population size adversely affects the principal:
the minimal expected completion time for a fixed target proportion α is
increasing in N .

Many of our results make crucial use of the explicit or semi-explicit for-
mulas that can be obtained in our model; in fact, much of our work has been
devoted to finding a setting that is tractable. On the other hand, one may
suspect that qualitative features of the results, in particular the shape of the
optimal reward scheme R∗, would be similar even if the precise mechanism
of the competition were different. At this time, it seems that we do not have
the tools to address this question which therefore remains an interesting
direction for future research.
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1.1 Literature

Dynamic competitions (also called races) are classical in the Economics lit-
erature. An early reference related to our paper is Reinganum [30] which
discusses an N -player dynamic game of R&D and patent protection. Re-
wards are paid at a fixed time horizon and two cases are studied: either only
the first-ranked player is rewarded (perfect patent protection), or the subse-
quent ranks receive a positive, smaller reward; however, only the case of an
identical reward for all “imitators” is considered. Malueg and Tsutsui [26]
extend Reinganum’s setting with a hazard rate that represents changes in
the difficulty of the research project, an aspect we have incorporated differ-
ently by using a state-dependent cost that can model how the increase in
public knowledge affects the project. Harris and Vickers [17] and Grossman
and Shapiro [15] focus on the strategic interactions between agents in mul-
tiperiod 2-player games. A recent work in this area is Cao [6] which studies
a continuous-time, continuous-state version of a model in [17]. We refer to
[6, 26] for further references in this literature.

Mean field games were introduced by Lasry and Lions [22, 23, 24] and
Huang, Malhamé, and Caines [19, 20] to study Nash equilibria in the lim-
iting regime where the number of players tends to infinity and interactions
take place through the empirical distribution of the private states; we re-
fer to Guéant, Lasry and Lions [16], Bensoussan, Frehse and Yam [4] and
Carmona and Delarue [8, 9] for background on mean field games. Since
the impact of an individual player on the aggregate distribution is negligi-
ble, finding a Nash equilibrium reduces to solving a stochastic optimization
problem for a representative player against a fixed environment, together
with a consistency condition. This can be justified rigorously by formulating
a game with a continuum of players and by showing that it is the limit of
an N -player game. Convergence is often shown backwards; i.e., the mean
field equilibrium is shown to provide an ε-Nash equilibrium for the N -player
game. The forward convergence of the N -player equilibrium to the mean
field equilibrium is typically more difficult to prove. For standard, diffusion-
driven mean field games, this has been accomplished recently in the seminal
work of Cardaliaguet, Delarue, Lasry and Lions [7]. While our game is of a
different form, its tractability allows us to give an elementary yet nontrivial
proof of the forward convergence; one feature in common with [7] is that
we use feedback controls. In a finite-state setting, forward convergence was
shown by Gomes, Mohr and Souza [14] for a small time horizon and recently
by Bayraktar and Cohen [1] for an arbitrary finite time horizon.

Competitions, i.e., rank-based rewards, are a classical topic in contract
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theory, dating back to the work of Lazear and Rosen [25]. With applications
from school grades to sports and business competitions, rank-order prize
allocation is one of the most widely used relative performance evaluation
criteria; we refer to Vojnović [34] for a detailed introduction and an extensive
list of references. To the best of our knowledge, the only existing work on
mean field games with rank-based reward is Bayraktar and Zhang [2] where
players are ranked according to their terminal positions. The main aim of
that work is to obtain abstract existence results for games with common noise
via translation invariance, whereas in the present work players are ranked
according to exit times and the focus is on specific properties of solutions
(and, of course, the principal’s problem). In a different way, exit times are
used in the toy example “When does the meeting start?” of [16]. Rank-based
features are also studied in the literature on (uncontrolled) particle systems;
one example is Shkolnikov [31]. Nadtochiy and Shkolnikov [27] consider
particles interacting through hitting times. A different but related recent
literature studies mean field games of timing where players directly choose
stopping times; see Carmona and Lacker [10], Bertucci [5] and Nutz [28].

Continuous-time principal–agent problems with multiple agents have been
studied by Koo, Shim and Sung [21] and Elie and Possamaï [13], and ex-
tended to the mean field setting by Elie, Mastrolia and Possamaï [12] and
Bensoussan, Chau and Yam [3]. While these works have not considered
rank-based rewards, a common feature is the Stackelberg equilibrium: the
principal designs a reward scheme which the agents take as an external input
to form a Nash equilibrium among themselves. By contrast, in mean field
games with a major player as in Huang [18] or Carmona and Wang [11], a
Nash equilibrium is formed collectively by the major and minor players. To
the best of our knowledge, the convergence of the N -player principal–agent
problem to the mean field limit has only been established in a simple example
where the equilibrium controls are independent of N ; see [12].

The remainder of this paper is structured as follows. In Section 2, we
determine the unique Nash equilibrium of the mean field competition for
a continuum of players with a given reward scheme. On the strength of
this result, Section 3 solves the associated principal–agent problem where
the principal designs the reward scheme. In Section 4 we study the corre-
sponding N -player problems and Section 5 establishes their convergence as
N →∞. Proofs are gathered in Appendix A, whereas Appendix B provides
background on the Exact Law of Large Numbers used in Section 2.
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2 Mean Field Game

Let (I, I, µ) be an atomless probability space; each i ∈ I is thought of as
an agent. Moreover, let (Ω,F , P ) be another probability space, to be used
as the sample space. Let (Zi)i∈I be a family of exponential(1)-distributed
random variables on Ω which is essentially pairwise independent; that is, for
µ-almost all i ∈ I, Zi is independent of Zj for µ-almost all j ∈ I. We assume
that this family is defined on an extension of the product (I×Ω, I⊗F , µ⊗P )
for which the Exact Law of Large Numbers holds, as detailed in Appendix B.
Given a locally Lebesgue-integrable function θ : R→ [0,∞), we define

τ iθ = inf

{
t :

∫ t

0
θ(s) ds = Zi

}
; (2.1)

then (τ iθ)i∈I are essentially pairwise independent and their distribution cor-
responds to the first jump time of an inhomogeneous Poisson process with
intensity θ. Below, the function θ is of the form θ = λ ◦ ρ where λ is a
function chosen by the agent and ρ is a given function, and we shall find it
convenient to write τ iλ for τ iθ despite the abuse of notation. If τ iλ ≤ t, we
shall say that agent i has “arrived” by time t.

We define an admissible (feedback) control as a piecewise Lipschitz con-
tinuous2 function λ : [0, 1) → R+. The next lemma introduces the state
process that emerges if all agents use the control λ.

Lemma 2.1. Let λ ∈ Λ be an admissible feedback control. There exists a
unique continuous function ρ : R+ → [0, 1) satisfying

ρ(t) =

∫ t

0
λ(ρ(s))(1− ρ(s)) ds, t ≥ 0. (2.2)

If all agents use the feedback control λ, then ρ(t) = µ{i : τ iλ(ω) ∈ [0, t]} P -a.s.
as well as ρ(t) = P{τ iλ ∈ [0, t]} µ-a.s.; that is, ρ(t) is both the proportion of
agents that have arrived by time t and the probability that any given agent i
has arrived by time t.

Next, we fix a cost coefficient c : [0, 1] → (0,∞) which is assumed to
be Lipschitz continuous (thus, c and 1/c are bounded). Moreover, we fix a
reward scheme R : [0, 1]→ R+ which is assumed to be decreasing, piecewise
Lipschitz continuous, and left-continuous at r = 1. We interpret R(r) as the
reward paid to an agent arriving at rank r.

2That is, [0, 1) is the union of finitely many intervals on which λ is Lipschitz.
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Let us now consider the control problem of a given agent i before arriving,
assuming that a proportion r of the population has already arrived and that
all other agents transition according to a deterministic function ρ. Then, our
agents’ value function is

v(r) = sup
λ∈Λ

E

[
R(ρ(τλ))−

∫ τλ

0
c(ρ(t))λ(ρ(t))2 dt

∣∣∣∣ρ(0) = r

]
, (2.3)

where τλ = τ iλ is the arrival time of the given agent for the control λ. Here,
we use the convention that ρ(∞) := 1, meaning that agents who never arrive
are paid the reward R(1). If λ ∈ Λ attains the supremum in (2.3), we say
that λ is an optimal control given ρ.

If λ is an optimal control given the induced function ρ defined by (2.2),
we say that λ is an equilibrium optimal control and ρ is the corresponding
equilibrium state process. This is a Nash equilibrium: if all other players use
the feedback control λ, the state evolves according to ρ by Lemma 2.1 (recall
that µ is atomless), and then λ is an optimal control for our fixed player.

Theorem 2.2. Let R be a reward scheme. Then there exists a unique (a.e.)
equilibrium optimal control λ∗ ∈ Λ, given by

λ∗(r) =
R(r)− 1

2
√

1−r

∫ 1
r

R(y)√
1−y dy

2c(r)
, r ∈ [0, 1) (2.4)

and the corresponding equilibrium state process ρ is determined by (2.2) with
λ = λ∗. In equilibrium, the value function of any agent before arriving is

v(r) =
1

2
√

1− r

∫ 1

r

R(y)√
1− y

dy, r ∈ [0, 1). (2.5)

Let us remark that while the piecewise Lipschitz requirement is mainly
for convenience, the continuity of R at r = 1 is more essential in providing
existence. The following example exhibits a phenomenon that is familiar in
infinite-horizon optimal stopping problems.

Example 2.3. Suppose that c ≡ 1 and R = 1[0,1); that is, the reward is one
for agents arriving in finite time and zero for those who never arrive. Then,
using the constant control λ ≡ ε > 0 yields an exponential arrival time with
E[τ ] = 1/ε and thus the expected reward is

E

[
R(ρ(τ))−

∫ τ

0
ε2 dt

]
= 1− ε.
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As a result, the value function satisfies v(r) = 1 = R(r) for all r < 1. But
since λ ≡ 0 yields zero reward and any other control has positive cost, this
value is not attained: there is no optimal control, and thus no equilibrium
in the above sense.

Remark 2.4. We see from (2.5) that the equilibrium value function is in-
dependent of the cost coefficient c. This can also be understood directly by
expressing (2.3) as an integral over the ranks, using the Kolmogorov equa-
tion (2.2) and the change-of-variable formula:

v(r0) = sup
λ∈Λ

E

[
R(ρ(τλ))−

∫ ρ(τλ)

ρ(0)
c(r)λ(r)

dr

1− r

∣∣∣∣ρ(0) = r0

]
.

Indeed, ρ(τλ) is independent of λ—when all agents use the same control,
their ranking is given by the ranking of the Zi. On the other hand, cλ ∈ Λ if
and only if λ ∈ Λ, and hence v is independent of c in equilibrium. Intuitively,
a higher cost leads to a smaller optimal effort, but since this holds for all
agents, the equilibrium state ρ is slowed down to the extent that the reduced
effort results the same reward.

The equilibrium value function of any agent has a surprising interpre-
tation: it can be compared to a deal where the agent pays no cost for his
(constant) effort but is given the handicap of running at half the intensity
of the competitors.

Proposition 2.5. The equilibrium value function v of (2.5) coincides with
the value function of an agent whose effort is fixed at λ ≡ λ0 ∈ (0,∞) and
is charged zero cost, while all other agents use λ ≡ 2λ0:

v(r) = E[R(ρ(τ))|ρ(0) = r], where τ ∼ Exp(λ0) and ρ′(t) = 2λ0(1− ρ(t)).

In particular, v(0) = E[R(1− e−2τ )] for τ ∼ Exp(1).

The following result shows that the unique equilibrium of Theorem 2.2
is stable with respect to the reward scheme.

Proposition 2.6. Let Rn, R be reward schemes such that Rn → R pointwise.
Then the corresponding equilibrium optimal controls also converge pointwise,
whereas the equilibrium value functions and state processes converge uni-
formly.
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2.1 Examples with Closed-Form Solutions

In this section, we present a family of explicitly solvable examples. Given a
total reward budget B =

∫ 1
0 R(r) dr ≥ 0, the family has a cut-off parameter

α ∈ (0, 1] indicating that no reward will be paid to agents ranked lower
than α, as well as a shape parameter q ≥ 0. The general form is then given
by

R(r) = κ(1− r)q1[0,α](r), κ =
B(1 + q)

1− (1− α)1+q
;

the constant κ is chosen such that B =
∫ 1

0 R(r) dr. We notice that a larger
value of q indicates that a larger portion of the reward budget is paid to
highly ranked player, whereas q = 0 corresponds to a uniform distribution
of the reward among the top α ranks. For such a reward, the value function
and the optimal effort of Theorem 2.2 admit closed-form solutions:

v(r) =
κ

(1 + 2q)

(
(1− r)q − (1− α)q

√
1− α
1− r

)+

,

λ∗(r) = 1{r≤α}
κ

2c(r)(1 + 2q)

(
2q(1− r)q + (1− α)q

√
1− α
1− r

)
.

In the boundary case α = 1, the Lipschitz assumption of Theorem 2.2 is not
satisfied when 0 < q < 1. However, one can check the indicated formulas by
direct computation in this case.

In general, the c.d.f. Fτλ∗ (t) = ρ(t) of any agent’s equilibrium completion
time can be computed numerically by solving the Kolmogorov equation (2.2)
for ρ. Inverting the equilibrium state process also gives rise to the quantile
Tβ = inf{t : ρ(t) ≥ β}; that is, the time until a β-proportion of the players
has reached the goal. In the following special cases, these quantities can be
obtained in closed form.

2.1.1 Power Reward Without Cut-off

This case corresponds to α = 1, where we also assume that the cost c is
constant. Then the above formulas specialize to

v(r) =
B(1 + q)

1 + 2q
(1− r)q, λ∗(r) =

Bq(1 + q)

c(1 + 2q)
(1− r)q,

and we can also solve for Fτλ∗ (t) = ρ(t) = 1 −
(
1 + Bq2(1+q)

c(1+2q) t
)− 1

q and its

β-quantile Tβ = c(1+2q)
Bq2(1+q)

[(1− β)−q − 1] . We see that the equilibrium value
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v is decreasing in q. That is, each individual is worse off if the reward scheme
heavily favors the highly-ranked players; this can be attributed to the cost
caused by the large effort level λ∗ in the beginning of the competition. We
also observe that λ∗ is decreasing in r so that agents decrease their effort
once the higher ranks are filled.

2.1.2 Uniform Reward with Cut-off

This case corresponds to q = 0, and we again assume that the cost c is
constant. The general formulas now specialize to

v(r) =
B

α

(
1−

√
1− α
1− r

)+

, λ∗(r) = 1{r≤α}
B

2cα

√
1− α
1− r

.

We also have Fτλ∗ (t) = ρ(t) = 1−
(

1− B
√

1−α
4cα t

)2
for t ≤ Tα and Fτλ∗ (t) =

ρ(t) = α for t > Tα, where

Tα =
4cα(1−

√
1− α)

B
√

1− α
, (2.6)

and then the general quantile is Tβ = 4cα(1−
√

1−β)

B
√

1−α for β ≤ α and Tβ = ∞
for β > α. In contrast to the case α = 1, we see that λ∗ is increasing in r for
r ≤ α: as the race progresses, the agents compete for the remaining reward
and increase their effort up to the time when an α-proportion of agents has
reached the goal, and then the remaining players give up; cf. Figure 2.
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Figure 2: Optimal effort under power reward with cut-off α = 0.5, assuming
B = 1 and c ≡ 1.
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2.2 Staircase Reward

Consider a reward scheme R and a cost coefficient c of the staircase form

R = R11[r0,r1] +
n∑
j=2

Rj1(rj−1,rj ], c = c11[r0,r1] +
n∑
i=2

cj1(rj−1,rj ],

where R1 ≥ R2 ≥ · · · ≥ Rn ≥ 0 and 0 = r0 < r1 < · · · < rn = 1 are
constants. The formulas (2.4) and (2.5) then yield that for rj−1 < r ≤ rj ,

v(r) = Rj +
1√

1− r

−Rj√1− rj +
n∑

k=j+1

Rk

(√
1− rk−1 −

√
1− rk

) ,
λ∗(r) =

1

2cj
√

1− r

Rj√1− rj −
n∑

k=j+1

Rk

(√
1− rk−1 −

√
1− ri

) .
We claim that the equilibrium state ρ is given by

ρ(t) = 1−
(√

1− rj−1 −
Aj
4cj

(t− tj−1)

)2

, tj−1 ≤ t ≤ tj , (2.7)

where Aj = Rj
√

1− rj −
∑n

k=j+1Rk(
√

1− rk−1 −
√

1− rk) and tj is recur-
sively defined by tj = tj−1 +

4cj
Aj

(
√

1− rj−1 −
√

1− rj) and t0 = 0. This
is to be read with the convention that 1/0 = ∞; indeed, we have Aj = 0
and tj = ∞ if (and only if) Rj = Rj+1 = · · · = Rn. To see (2.7), we may
solve the ODE (2.2) successively for each interval [rj−1, rj ]. Let t0 = 0. Sup-
pose we have already found t0, . . . , tj−1 and ρ(t) for t ∈ [0, tj−1]. Then the
ODE on the jth interval reads ρ′(t) =

Aj
2cj

√
1− ρ(t) with initial condition

ρ(tj−1) = rj−1 and the solution is given by (2.7), whereas tj is determined
through the condition ρ(tj) = rj .

Finally, let β ∈ (0, 1] be given. By adding β to the grid if necessary, we
may assume without loss of generality that β = rj0 for some j0 ∈ {1, . . . , n},
and then the β-quantile is Tβ = tj0 =

∑j0
j=1

4cj
Aj

(
√

1− rj−1 −
√

1− rj).

3 Mean Field Principal–Agent Problem

We have seen that for a given reward scheme R, there exists a unique (de-
terministic) equilibrium state ρ and thus for α ∈ (0, 1], the time

Tα(R) = inf{t ≥ 0 : ρ(t) ≥ α} ∈ (0,∞]
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is deterministic and well-defined. This is the time until an α-proportion of
the population has reached the goal, or equivalently, Tα is the α-quantile of
the distribution of the equilibrium arrival time τ∗.

In this section, we fix α ∈ (0, 1) and the total reward budget B > 0, and
ask for a reward scheme R which minimizes Tα(R) subject to the constraint
that

∫ 1
0 R(r) dr ≤ B. This corresponds to a principal–agent problem in

the second-best sense: the planner can set the reward for the agents, but
cannot dictate their choice of controls. The principal considers her project
completed when an α-proportion of the agents have reached their goal, and
aims to find the minimal completion time

T ∗α = inf
R∈R:

∫
R(r) dr≤B

Tα(R), (3.1)

where R is the set of all reward schemes. We remark that for α = 1, we
have Tα(R) = ∞ for all R, whence we do not consider this case. On the
other hand, T ∗α <∞ for all α ∈ (0, 1) as this is already accomplished by the
uniform reward R with cut-off at α; cf. (2.6).

An additional assumption on the cost coefficient c is needed for our result:

r 7→ c(r)(1− r)
2− r

is decreasing. (3.2)

This assumption is discussed in more detail in Remark 3.2 below. The solu-
tion to the principal’s problem is then given as follows.

Theorem 3.1. Let c satisfy (3.2). Given a reward budget B > 0 and
α ∈ (0, 1), there is an a.e. unique optimal reward scheme R∗ attaining the
minimal completion time T ∗α of (3.1), given by

R∗(r) =
B

C

{√
c(r)

2− r
+

1

2

∫ α

r

1

1− s

√
c(s)

2− s
ds

}
1[0,α](r), (3.3)

and the minimal completion time is

T ∗α =
4C2

B
, where C =

1

2

∫ α

0

√
c(r)(2− r)

1− r
dr. (3.4)

The corresponding equilibrium effort is

λ∗(r) =
B

2C

1√
(2− r)c(r)

1[0,α](r).
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In the particular case where the cost c is constant, we have

R∗(r) =
B

C ′

{
1√

2− r
+

1

2
log

(1 +
√

2− α)(1−
√

2− r)
(1−

√
2− α)(1 +

√
2− r)

}
1[0,α](r),

T ∗α =
4cC ′2

B
,

C ′ =
C√
c

=
√

2−
√

2− α+
1

2
log

(1 +
√

2− α)(1−
√

2)

(1−
√

2− α)(1 +
√

2)
.

Figure 1 (rendered in the Introduction) shows R∗, λ∗ and ρ for constant
cost coefficient c. As discussed, the key features of R∗ are the strict decrease
and concavity on [0, α] and the discontinuity at α. The equilibrium effort λ∗

is strictly increasing on [0, α]. For general c, the product
√
cλ∗ is increasing,

but λ∗ need not be.

Remark 3.2. Assumption (3.2) is satisfied in particular if c is decreasing,
which certainly holds in the applications we have in mind. If we suppose for
simplicity that c is differentiable, the assumption is equivalent to the deriva-
tive c′ satisfying c′(r) ≤ c(r)

(2−r)(1−r) , for which a sufficient condition is that
c′(r) ≤ c(r)/2. Thus, an increase of c is permissible if it is limited relative to
the level of c. When the assumption is not satisfied, (3.3) no longer describes
the solution to the principal–agent problem; in fact, (3.3) is not a decreasing
function and hence not a reward scheme. The proof of Theorem 3.1 shows
that finding an optimal reward scheme can still be phrased as a convex opti-
mization problem; however, the monotonicity constraint on R is now binding
which is an obstruction to finding an explicit solution.

We may also ask the reverse question: given α ∈ (0, 1) and a desired
completion time T > 0, what is the minimal budget enabling the principal
to achieve T? The answer follows from Theorem 3.1 by inverting (3.4).

Corollary 3.3. Let c satisfy (3.2). Given α ∈ (0, 1) and T > 0, the minimal
budget enabling the principal to achieve a completion time T ∗α ≤ T is B∗ =
4C2/T, where C is given by (3.4).

4 N-Player Problems

In this section, we study a version of the competition with finitely many
players as well as a corresponding version of the principal–agent problem.
The connections between these and the mean field formulations will be es-
tablished in Section 5.
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4.1 The N-Player Game

We consider a game with N players, where N ≥ 1 is a fixed integer. At
any time t, each player i observes the number n of players that have already
arrived, and chooses an effort level λi(n) ∈ R+. Suppose that player i uses
the feedback control λi and all other players use a feedback control λ−i. We
denote by ξλi,λ−i(t) the number of players that have arrived by time t; i.e.,

ξλi,λ−i(t) =

N∑
i=1

1{τ i≤t},

where τ i = inf{t ≥ 0 :
∫ t

0 λi(ξλi,λ−i(s)) ds = Zi} is the arrival time of
player i and τ j = inf{t ≥ 0 :

∫ t
0 λ−i(ξλi,λ−i(s)) ds = Zj} is the arrival

time of player j 6= i, for some independent exponential random variables
{Z1, . . . , ZN} with unit rate. The existence of the state process is clear in
this case; we may see (1{τ i≤t}, ξλi,λ−i) as a Markov pure jump process with
values in {0, 1} × {0, 1, . . . , N}. We emphasize that we now use the number
rather than the fraction of arrived players as the state variable.

Let Rn ∈ R+ be the reward for finishing at the n-th place; as before, we
assume that (Rn)1≤n≤N is decreasing, and we convene that RN is paid to
players that never arrive. Moreover, let cn > 0 be the cost coefficient when
n players have arrived. Then the objective of player i is to maximize

Ji(λi;λ−i) = E

[
Rξλi,λ−i (τ

i) −
∫ τ i

0
cξλi,λ−i (s)

λ2
i (ξλi,λ−i(s))ds

]

and λ is a (symmetric) equilibrium optimal control if arg maxλi Ji(λi;λ) = λ
for all i. For 0 ≤ n ≤ N − 1, the value function of player i before arriving is

vn := sup
λi

E

[
Rξ(τ i) −

∫ τ i

0
cξ(s)λ

2
i (ξ(s))ds

∣∣∣∣ξ(0) = n

]
where ξ := ξλi,λ−i . We also convene that vN := RN .

Remark 4.1. The last player never arrives. Indeed, once N − 1 players
have arrived, the remaining player achieves the optimal value vN−1 by using
the control λi ≡ 0, and in fact vN−1 = RN = vN . This is due to the
convention that RN is paid to players that never arrive. On the other hand,
this convention is necessary in order to have existence of an equilibrium,
since the same value is asymptotically achieved by using the control λi ≡ ε
with small ε > 0.
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Proposition 4.2. The N -player game has a unique Nash equilibrium. The
equilibrium value function (vn)0≤n≤N is the unique solution of the backward
recursion

vn =
Rn+1 + 2(N − n− 1)vn+1

1 + 2(N − n− 1)
, 0 ≤ n ≤ N − 1; vN = RN . (4.1)

The unique equilibrium optimal control is

λ∗(n) =
Rn+1 − vn

2cn
, 0 ≤ n ≤ N − 1. (4.2)

4.2 The N-Player Principal–Agent Problem

Next, we consider the N -player version of the mean field principal–agent
problem introduced in Section 3. Given n0 ∈ {1, . . . , N − 1} and a (nonneg-
ative, decreasing) reward scheme (Rn), let

Tn0 = inf{t ≥ 0 : ξλ∗(t) = n0}

be the (random) time until n0 players have arrived, where the players use
the unique equilibrium optimal control λ∗ for (Rn) and the (fixed, positive)
cost coefficients (cn); cf. (4.2). Below, we shall find it useful to write λ∗n
rather than λ∗(n) whenever we are in the N -player setting.

Given the per capita3 reward budget B > 0, the principal chooses a
reward scheme (Rn) such as to minimize the expected completion time ETn0 ,
subject to the budget constraint

∑N
n=1Rn ≤ NB. In analogy to (3.2), we

shall assume that cN satisfies

cNn ≤ cNn−1

(2N − 2n+ 1)2(2N − n− 1)

4(N − n− 1)(N − n+ 1)(2N − n)
, n < n0; (4.3)

again, this is satisfied e.g. when n 7→ cNn is constant or decreasing.

Theorem 4.3. Let cN satisfy (4.3) and define yn0 = 0,

yn =

√
cnN(N − n− 1)

(N − n)(2N − n− 1)
, n < n0.

3A normalization of the budget is necessary for a convergence result as in the subsequent
section. We have done that implicitly by seeing B as the total budget in the mean field
limit and as per capita budget in the N -player setting. Equivalently, one could normalize
the mass of the population by assigning mass 1/N to each agent in the N -player game
and see B as the total budget.
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Given a per capita reward budget B > 0, there is a unique optimal reward
scheme (R∗n) attaining the minimal expected completion time ET ∗n0

, given by

R∗n =
B

C

{
yn−1 +

1

2

n0−1∑
k=n−1

yk
N − k − 1

}
1{n≤n0},

and the minimal expected completion time is

ET ∗n0
=

4C2

B
, where C =

1

2
√
N

n0−1∑
n=0

√
cn(2N − n− 1)

(N − n)(N − n− 1)
.

The corresponding equilibrium optimal control is

λ∗n =
B

2C

√
N(N − n− 1)

cn(N − n)(2N − n− 1)
1{n<n0}.

4.3 Size Effects

We conclude this section with a brief discussion of the influence of the pop-
ulation size N on the principal’s problem, in two different ways. To make
the problems comparable, we assume that cNn ≡ c is a constant independent
of N .

(i) First, we consider as above a principal with a given per capita budget
B aiming to minimize the expected time until an α proportion of the pop-
ulation has arrived. The left panel in Figure 3 shows a negative size effect:
the minimum expected completion time ETNn0

for n0 = dαNe is increasing
in N ; that is, an increase in population size adversely affects the principal.

(ii) Second, we fix the total budget K = NB and a completion head
count n0. Then, ETNn0

= 1
NK

(∑n0−1
n=0

[
c

1−n/N (1+ 1
1−(n+1)/N )

]1/2)2 is strictly
decreasing in N with limit equal to zero (right panel in Figure 3). That
is, the principal aiming for a fixed number of completions benefits from an
increase in the population size.

5 Convergence to the Mean Field

In this section, we show that the N -player competition and principal–agent
problems converge to their mean field counterparts as N →∞.
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Figure 3: The left panel shows a negative size effect when fixing α = 0.5 and
B = 1. The right panel shows a positive size effect when fixing n0 = 3 and
K = 25. In both panels, c ≡ 1 and the minimal expected completion time is
plotted against log2N .

5.1 Convergence of the N-Player Equilibrium

We consider the mean field setting of Section 2 with a fixed reward scheme R
and cost coefficient c, as well as an N -player game with reward (RNn ) and
cost (cNn ). Our aim is to show that if RN → R and cN → c in a suitable
sense, then the corresponding equilibria converge.

If we start with a reward scheme R : [0, 1] → R+ in the mean field
setting, an obvious choice for RN is the sampling RNn = R

(
n
N

)
. Since R

is decreasing, we have 1
N

∑N
n=1R

N
n ≤

∫ 1
0 R(r) dr; i.e., this discretization

may (and typically will) reduce the cumulative reward. Another choice is
the moving average RNn = N

∫ n/N
(n−1)/N R(y) dy which preserves the reward.

Next, we introduce a condition designed to cover either of these choices, and
more.

Recall that R : [0, 1]→ R+ is decreasing, piecewise Lipschitz continuous
and left-continuous at r = 1. Let 0 = r0 < r1 < . . . < rm < rm+1 = 1 be
a finite partition of [0, 1] such that R is Lipschitz on each interval (ri−1, ri).
For our results, we shall assume that

sup
r∈

⋃m+1
i=1 INi

∣∣∣RNdrNe −R(r)
∣∣∣ ≤ K

N
(5.1)

for some constant K independent of N , where INi = [ri−1 + 1/N, ri − 1/N ]
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for i = 1, . . . ,m and INm+1 = [rm + 1/N, 1]. Similarly, we assume that4

sup
r∈[0,1]

∣∣∣cNdrNe − c(r)∣∣∣ ≤ K

N
. (5.2)

The next result establishes that theN -player equilibrium converges to the
mean field equilibrium as N →∞. Thus, it gives a second justification to the
mean field formulation, apart from the direct derivation with a continuum
of players as in Section 2.

Theorem 5.1. Let RN , R and cN , c satisfy (5.1) and (5.2), and let vN , v and
λN , λ∗ be the corresponding value functions and equilibrium optimal controls,
respectively. Then

sup
r∈[0,1]

|vNbrNc − v(r)| = O(1/
√
N), sup

r∈
⋃m+1
i=1 INi

|λNbrNc − λ
∗(r)| = O(1/

√
N).

Remark 5.2. If R(r) = 0 on (α, 1] for some α < 1, then the ODE (A.2) is
nondegenerate up to the boundary and the convergence rates in Theorem 5.1
can be improved to O(1/N); cf. the proof of the theorem. In particular,
this holds for the optimal reward scheme R∗ of the principal’s problem in
Theorem 3.1.

5.2 Convergence and ε-Optimality for the Principal

Following Section 3, we fix a cost coefficient c satisfying (3.2), a target pro-
portion α ∈ (0, 1) and a budget B > 0. We have seen in Theorem 3.1 that in
the mean field setting, there exists a unique reward scheme R∗ which attains
the minimal (deterministic) time T ∗α until an α-proportion of the population
has arrived. For the N -player situation with a given cost cN satisfying (4.3)
and per capita budget B, we have seen in Theorem 4.3 that there exists
a unique reward scheme RN minimizing the expected time ETNn0

until n0

players have arrived. In the following result, we consider n0 = dαNe, so
that the proportion n0/N tends to α, and show that if cN → c, the expected
completion time as well as the corresponding reward schemes converge as
N →∞.

Theorem 5.3. Let cN → c in the sense of (5.2). Then∣∣∣ETNdαNe − T ∗α∣∣∣ = O(1/N), sup
r∈[0,α]

∣∣∣RNdrNe −R∗(r)∣∣∣ = O(1/N).

4This covers, e.g., cNn = c(n/N). We do not consider a more general convergence as
in (5.1) since that would lead to more complicated statements below without substantially
enhancing the scope.
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The next result addresses the convergence of the principal’s problem in a
different sense: it shows that if the principal applies (a discretization of) the
optimal reward scheme R∗ from the mean field setting in an N -player game
with large N , rather than the precise optimal scheme RN of Theorem 4.3,
then R∗ is still ε-optimal for the minimization of the expected completion
time.

Corollary 5.4. Let cN → c in the sense of (5.2) and let R(N) be a dis-
cretization of R∗ satisfying (5.1). Then the completion time T (N)

dαNe of the
N -player game under R(N) satisfies∣∣∣ET (N)

dαNe − ET
N
dαNe

∣∣∣ = O(1/N);

that is, the reward scheme R(N) is O(1/N)-optimal for the N -player principal–
agent problem.

A Proofs

A.1 Proofs for Section 2

Proof of Lemma 2.1. The piecewise Lipschitz property of λ implies that (2.2)
has a unique continuous solution ρ. This function is nonnegative, increas-
ing, globally Lipschitz continuous, and continuously differentiable except at
finitely many points (corresponding to the jumps to λ) where the left and
right derivatives of ρ may disagree. Let ρ̄(t) = 1− exp(−

∫ t
0 λ(ρ(s)) ds). By

the Exact Law of Large Numbers (Proposition B.2) and (2.1),

µ{i : τ iλ(ω) ∈ [0, t]} = P{ω : τ iλ(ω) ∈ [0, t]} = ρ̄(t)

holds almost-surely. On the other hand, the derivative of ρ̄ is seen to satisfy
ρ̄′(t) = λ(ρ(t))(1− ρ̄(t)) a.e., so that the uniqueness of the exponential ODE
yields ρ̄ = ρ.

Proof of Theorem 2.2. (i) Suppose λ̄ ∈ Λ is an equilibrium optimal control,
let ρ be the corresponding equilibrium state process and let v̄ be the corre-
sponding value function of (2.3) for any given player before arrival. Using
the constant control λ ≡ 0 shows that R(1) ≤ v̄(r) ≤ R(r) and hence
v̄(1−) = R(1); recall that R is left-continuous at r = 1. Let

r0 = inf{r : R(r) = R(1)}.
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Using λ ≡ 0 also shows that v̄ ≡ R(1) on [r0, 1], whereas v̄ < R on [0, r0)
because the only control with zero cost merely attains R(1) < R(r). The
inequality R(1) < R(r) on [0, r0) also implies that λ̄ > 0 a.e. on [0, r0) and
in fact, recalling that λ̄ ∈ Λ, even that λ̄ is a.e. uniformly bounded away
from zero on any interval [0, r1] with r1 < r0.

A control-theoretic argument shows that v̄ is Lipschitz on any such in-
terval. Indeed, let 0 ≤ r < r1 and choose h > 0 such that r + 2h < r1. We
may compare the optimal control λ̄ started at r with a control λ such that

λ =


0 on [r, r + h),

aλ̄ on [r + h, r + 2h),

λ̄ on [r + 2h, 1),

where the constant a ≥ 1 is chosen such that the integral of λ along ρ over
[r, r + 2h] coincides with the integral of λ̄ over the same interval. Then,
both the extra cost of λ and the loss of expected reward are bounded by
a constant (depending only on r1) times h, because if λ̄ achieves a rank
in [r + 2h, 1), then λ achieves the same rank, whereas the probability of
λ̄ ranking in [r, r + 2h) is bounded by a constant times h. Since λ is an
admissible control for the control problem started at r + h, it follows that
0 ≤ v̄(r)−v̄(r+h) ≤ Ch as claimed. In particular, v̄ is absolutely continuous
and a.e. differentiable.

By dynamic programming, the value function v̄ must then a.e. satisfy
the Hamilton–Jacobi equation

sup
l≥0
{l[R(r)− v(r)]− c(r)l2}+ λ̄(r)(1− r)v′(r) = 0 on [0, 1), v(1) = R(1).

Moreover, the optimal control λ̄ must attain the supremum a.e. Recalling
that v̄ = R on [r0, 1] and v̄ < R on [0, r0), it follows that

λ̄(r) =
R(r)− v̄(r)

2c(r)
a.e. (A.1)

and that v̄ satisfies

R(r)− v(r) + 2(1− r)v′(r) = 0 a.e. on [0, r0), v ≡ R(1) on [r0, 1]. (A.2)

(ii) Using the regularity of R, we see that the function v of (2.5) is
Lipschitz on [0, 1) and satisfies v(1−) = R(1). We extend v to a Lipschitz
function on [0, 1] by setting v(1) = R(1). A direct calculation shows that
v satisfies (A.2) and that λ∗ of (2.4) is the corresponding maximizer (A.1).
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Moreover, λ∗ ∈ Λ. A verification argument then yields that v is the value
function and λ∗ is an optimal control.

(iii) It remains to show that (A.2) has at most one absolutely continuous
solution. Indeed, if v1 and v2 are solutions, then w = v1 − v2 is absolutely
continuous and satisfies

2(1− r)w′(r) = w(r) a.e. on [0, r0), w ≡ 0 on [r0, 1].

If r0 < 1, this is a Lipschitz ODE and it follows directly that w ≡ 0 is the
unique solution. If r0 = 1, we set u(t) = w(1−e−2t) for t ≥ 0; then u satisfies
u′(t) = u(t) on [0,∞) and hence u(t) = u(0)et. But u(∞) = w(1) = 0 then
yields that u ≡ 0 and thus w ≡ 0 as desired.

Proof of Proposition 2.5. Let V (r) = E[R(ρ(τ))|ρ(0) = r]. The ODE for ρ
has the unique solution ρ(t) = 1− (1− r)e−2λ0t for t ≥ 0. Hence,

V (r) = E[R(1− (1− r)e−2λ0τ )] =

∫ ∞
0

λ0e
−λ0xR(1− (1− r)e−2λ0x) dx.

A change of variables then shows that V (r) coincides with (2.5).

Proof of Proposition 2.6. Note that Rn, R have a uniform upper bound given
by supnRn(0). Moreover, by monotonicity, the convergence Rn → R is uni-
form on each interval of continuity of R. It follows directly from (2.5) that the
value functions vn converge uniformly to their counterpart v. Similarly, (2.4)
yields that the optimal controls λ∗n converge pointwise to their counterpart
λ∗, and uniformly on each interval of Lipschitz continuity of R. Moreover,
there is a uniform upper bound for the sequence (λ∗n). By the ODE (2.2),
this entails an upper bound for the Lipschitz constants of (ρn). Thus, after
passing to a subsequence, (ρn) converges uniformly to a limit ρ̄. To verify
that ρ̄ = ρ, it suffices to show that ρ̄ solves the ODE (2.2) defining ρ on each
of the mentioned intervals, and that follows from the uniform convergence
of (λ∗n). Finally, by a subsequence argument, the entire sequence (ρn) must
converge to ρ.

A.2 Proofs for Section 3

As a preparation for the proof of Theorem 3.1, we first show that no reward
should be distributed to ranks below α—this is quite intuitive since the
planner does not care about agents arriving after rank α. The converse is
also true.
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Lemma A.1. The value T ∗α of (3.1) does not change if the infimum is
restricted to R ∈ R satisfying R > 0 on [0, α) and R = 0 on (α, 1].

Proof. For the first property, suppose that R ∈ R vanishes at r ∈ [0, α),
and hence on [r, 1]. Then the equilibrium effort λ of (2.4) also vanishes at r,
which by the Kolmogorov equation (2.2) implies that the state ρ(t) never
exceeds r, and hence that Tα(R) =∞.

To see the second property, let R ∈ R and set R̂ = R1[0,α]; then R̂ ∈ R.
For r ∈ [0, α], the corresponding equilibrium efforts λ and λ̂ of (2.4) satisfy

λ̂(r) =
R̂(r)− 1

2
√

1−r

∫ 1
r

R̂(y)√
1−y dy

2c(r)
≥
R(r)− 1

2
√

1−r

∫ 1
r

R(y)√
1−y dy

2c(r)
= λ(r),

and the inequality is strict if
∫ 1
α

R(y)√
1−y dy > 0. As a result, if R does not vanish

on (α, 1], then R̂ produces a strictly larger equilibrium effort on [0, α], and
hence Tα(R̂) < Tα(R) whenever Tα(R) <∞, by (2.2).

We can now show the theorem through a calculus of variations argument.

Proof of Theorem 3.1. Let

R′ =
{
R ∈ R : ∫ R(r) dr ≤ B, Tα(R) <∞, R1(α,1] = 0

}
.

As noted, R′ 6= ∅ by (2.6), and by Lemma A.1 it is sufficient to show that
R∗ is the unique optimizer in R′. Moreover, we have seen in the proof of
Lemma A.1 that λ∗ is a.e. strictly positive on [0, α) for R ∈ R′. Hence, ρ is
strictly increasing and we have Tr(R) = ρ−1(r) for r ∈ [0, α). Differentiating
ρ−1(r) and using the ODE (2.2) for ρ and (2.4), we then obtain that

Tα(R) =

∫ α

0

1

(1− r)λ∗(r)
dr

=

∫ α

0

2c(r)
√

1− r
(
R(r)

√
1− r −

∫ α
r

R(s)

2
√

1−s ds
) dr, R ∈ R′. (A.3)

We see from (A.3) that R 7→ Tα(R) is strictly convex on R′, up to a.e.
equivalence. This implies that there is at most one optimal R ∈ R′.

Next, we derive a sufficient condition for optimality. We first reparametrize
the optimization problem: for R ∈ R′, we consider

f(r) = fR(r) = R(r)
√

1− r −
∫ α

r

R(s)

2
√

1− s
ds, r ∈ [0, α].
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The mapping R 7→ fR is one-to-one on R′ since R can be recovered from f
via

R(r) =
f(r)√
1− r

+

∫ α

r

f(s)

2(1− s)3/2
ds. (A.4)

Indeed, if R is differentiable, then f ′(r) =
√

1− rR′(r) and integration by
parts yields

R(r) = R(α)−
∫ α

r

f ′(s)√
1− s

ds

=
f(α)√
1− α

−
∫ α

r

f ′(s)√
1− s

ds =
f(r)√
1− r

+

∫ α

r

f(s)

2(1− s)3/2
ds,

and now the claim for general R ∈ R′ follows by approximation. Fubini’s
Theorem shows that

∫ α
0 R(r) dr = 1

2

∫ α
0

(2−r)f(r)

(1−r)3/2 dr. Thus, recalling that
α < 1, the image F of R′ under R 7→ fR is the convex set of all piecewise
Lipschitz, nonnegative, decreasing functions f : [0, α] → R such that (A.6)
is finite and the budget constraint

1

2

∫ α

0

(2− r)f(r)

(1− r)3/2
dr ≤ B (A.5)

is satisfied. We write Tα(fR) for Tα(R) by a slight abuse of notation; then
by (A.3) we have

Tα(f) =

∫ α

0

2c(r)√
1− rf(r)

dr, f ∈ F . (A.6)

The mapping f 7→ Tα(f) is convex and finite-valued, and clearly, f∗ ∈ F is
optimal if an only if

ε 7→ φ(ε) = T ((1− ε)f∗ + εf), [0, 1]→ R

attains a minimum at ε = 0 for all f ∈ F . By convexity, this function has a
right derivative φ′(0) at ε = 0, and φ attains a minimum at ε = 0 if and only if
φ′(0) ≥ 0. Note that for any convex function ϕ, the right difference quotient
(ϕ(x+ ε)− ϕ(x))/ε satisfies ϕ′(x) ≤ (ϕ(x+ ε)− ϕ(x))/ε ≤ ϕ(x+ 1)− ϕ(x)
for ε ≤ 1. Using these bounds and dominated convergence, we see that φ′(0)
can be computed by differentiating under the integral:

φ′(0) =

∫ α

0

−2c(r)(f(r)− f∗(r))√
1− rf∗(r)2

dr. (A.7)
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Let R∗ be as in (3.3); then the corresponding function f∗ = fR∗ is given by

f∗(r) =
B

C

√
c(r)(1− r)

2− r
, r ∈ [0, α]. (A.8)

Recalling that α < 1 and that c(r)(1−r)
2−r is decreasing, we verify directly that

f∗ ∈ F . Moreover, the budget constraint (A.5) is satisfied with equality.
Fix an arbitrary f ∈ F . Using the expression (A.8) in the denominator

of (A.7), we have

φ′(0) =
−2C2

B2

∫ α

0

(2− r)(f(r)− f∗(r))
(1− r)3/2

dr.

Since f∗ satisfies (A.5) with equality and f satisfies the same with inequality,
the above integral is nonpositive. Thus, φ′(0) ≥ 0, showing that f∗ ∈ F is
optimal and hence that R∗ ∈ R is optimal. The formula (3.4) for T ∗α is then
obtained from (A.6) and (A.8), and the formula for λ∗ follows via (2.4).

A.3 Proofs for Section 4

Proof of Proposition 4.2. Fix player i and suppose that all other players use
a control λ−i. By dynamic programming, the value function vn of player i
before arrival satisfies

sup
λi≥0

{
λi[Rn+1 − vn]− cnλ2

i

}
+ λ−i(n)(N − n− 1)(vn+1 − vn) = 0

for 0 ≤ n ≤ N − 2. For n = N − 1, the same holds by Remark 4.1 and our
convention that vN = RN . Thus, (4.2) is the optimal control for player i
and it follows that

(Rn+1 − vn)2

4cn
+ λ−i(n)(N − n− 1)(vn+1 − vn) = 0.

Assuming inductively that vn+1 ≤ Rn+1, this quadratic equation has a
unique nonnegative root vn, and vn satisfies 0 ≤ vn ≤ Rn+1 ≤ Rn. In a
given equilibrium, the consistency condition λi = λ−i implies that

Rn+1 − vn + 2(N − n− 1)(vn+1 − vn) = 0, n = 0, . . . , N − 1, (A.9)

or equivalently (4.1), which clearly has a unique solution. Conversely, we
can verify directly that (4.1) and (4.2) define an equilibrium.
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Proof of Theorem 4.3. We first observe that Tn0 is a sum of independent
exponential random variables (whenever finite) and thus

ETn0 =

n0−1∑
n=0

1

(N − n)λn
. (A.10)

Moreover, similarly as in Lemma A.1, it suffices to consider reward schemes
with Rn > 0 for n ≤ n0 and Rn = 0 for n > n0. Indeed, the first claim is
immediate from (4.2). To obtain the second, we argue by contradiction and
compare (Rn) with the scheme defined by R̂n = Rn1{n≤n0}. Proposition 4.2
implies that R̂n leads to a strictly larger equilibrium control before n0 and
hence a strictly smaller completion time. Thus, we only consider reward
schemes up to n = n0 in what follows.

From (4.1), (4.2) and (A.10), we see that ETn0 : Rn0
+ → [0,∞] is a

strictly convex, continuous function of (R1, . . . , Rn0). Moreover, the feasible
set defined by R1 ≥ R2 ≥ · · · ≥ Rn0 ≥ 0 and

∑N
n=1Rn ≤ NB is nonempty,

convex and compact. As a result, there exists a unique optimal reward
scheme. In the remainder of the proof, we determine this reward scheme
explicitly. To that end, define xn0 = 0 and xn = Rn+1 − vn for n < n0.
By (4.2) and (A.10), the objective function can then be expressed as

ETn0 =

n0−1∑
n=0

2cn
(N − n)xn

.

From (4.1) we obtain that Rn+1 − Rn+2 = 1+2(N−n−1)
2(N−n−1) xn − xn+1 and thus

the total reward
∑n0

n=1Rn =
∑n0

n=1 n(Rn −Rn+1) can be expressed as

n0∑
n=1

Rn =

n0∑
n=1

n

{
1 + 2(N − n)

2(N − n)
xn−1 − xn

}
=

n0−1∑
n=0

2N − n− 1

2(N − n− 1)
xn.

The constrained optimization problem of finding xn ∈ R which

minimize
n0−1∑
n=0

2cn
(N − n)xn

subject to
n0−1∑
n=0

2N − n− 1

2(N − n− 1)
xn ≤ NB

can be solved using the method of Lagrange multipliers. One finds that the
optimal xn are given by

xn = 2

√
cn(N − n− 1)

θ(N − n)(2N − n− 1)
, n = 0, . . . , n0 − 1
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where the Lagrange multiplier θ satisfies

√
θ =

1

NB

n0−1∑
n=0

√
cn(2N − n− 1)

(N − n)(N − n− 1)
.

Note that θ and xn are related to C and yn of Theorem 4.3 by C = B
√
Nθ/2

and xn = 2yn/
√
Nθ = Byn/C. We have that Rn0 ≥ 0 as xn0−1 ≥ 0, and

Rn−Rn+1 = B
C

(1+2(N−n)
2(N−n) yn−1− yn

)
≥ 0 for n < n0; here the last inequality

is equivalent to (4.3). Thus, the reward scheme (R∗n) associated with the
optimizer (xn) is indeed nonnegative and decreasing, and it follows that
(R∗n) is the optimal reward scheme. The formulas for R∗, T ∗n0

and λ∗ follow
by direct calculation.

A.4 Proofs for Section 5

Proof of Theorem 5.1. Let N ≥ 4 be large enough such that δ := 1/N satis-
fies rm < 1−

√
δ− δ. This implies, in particular, that 1− rm > δ+

√
δ > 2δ.

We may rewrite the recursion (4.1) for vNn as

vNn = g
( n
N

)
vNn+1 +

(
1− g

( n
N

))
RNn+1 (A.11)

where
g(r) =

2 (1− r − δ)
δ + 2 (1− r − δ)

.

Using (2.5), we write the mean field value in a similar form:

v
( n
N

)
= f

( n
N

)
v

(
n+ 1

N

)
+
(

1− f
( n
N

))
RNn+1 + E1,n (A.12)

where

f(r) :=

√
1− r − δ

1− r
and E1,n :=

1

2
√

1− nδ

∫ (n+1)δ

nδ

R(y)−RNdyNe√
1− y

dy.

Next, we estimate ∆n :=
∣∣vNn − v ( nN )∣∣. For the last rank, we have ∆N =∣∣RNN −R(1)

∣∣ ≤ Kδ by (5.1). For the second-to-last rank, since 1 − δ ≥
1−
√
δ > rm + δ, (5.1) again implies that

∆N−1 =
∣∣RNN − v (1− δ)

∣∣ ≤ 1

2
√
δ

∫ 1

1−δ

|RNdyNe −R(y)|
√

1− y
dy ≤ Kδ.
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For n ≤ N−2, subtracting (A.12) from (A.11) and using that g(r) ≤ 1 when
0 ≤ r ≤ 1− δ, we obtain that

∆n ≤ ∆n+1 + E1,n + E2,n, (A.13)

where
E2,n =

∣∣∣g ( n
N

)
− f

( n
N

)∣∣∣ · ∣∣∣∣v(n+ 1

N

)
−RNn+1

∣∣∣∣ .
Next, we estimate E1,n and E2,n. To that end, it will be useful to define
n0 := N − d

√
Ne and note that n ≤ n0 if and only if nδ ≤ 1−

√
δ.

Estimation of E1,n. If n0 + 1 ≤ n ≤ N − 2, then rm + δ < nδ ≤ 1− 2δ,
and (5.1) implies

E1,n ≤ Kδ

(
1−

√
1− nδ − δ

1− nδ

)
≤ Kδ.

On the other hand, if 0 ≤ n ≤ n0 and [nδ, (n+ 1)δ] ⊆ INi for some i, then
(5.1) and 1− nδ ≥

√
δ imply

E1,n ≤ Kδ
δ

1−nδ

1 +
√

1−nδ−δ
1−nδ

≤ Kδ3/2.

We observe that there are at most 3m indices n for which n ≤ n0 and
[nδ, (n+ 1)δ] is not contained in any INi . For these n, we use boundedness
of R and the inequality 1− nδ ≥ 1− rm − δ > (1− rm)/2 to obtain

E1,n ≤ (R(0) +Kδ)

(
1−

√
1− nδ − δ

1− nδ

)
<

2(R(0) +K/4)δ

(1− rm)
=: C0δ.

In summary,

E1,n ≤


Kδ, if n0 + 1 ≤ n ≤ N − 2,

Kδ3/2, if n ≤ n0 and [nδ, (n+ 1)δ] ⊆ INi for some i,
C0δ, otherwise (at most 3m instances).

(A.14)

Estimation of E2,n. Taylor’s theorem implies that for all x ∈ [0, 1],

0 ≤
√
x− 2x

1 + x
≤ 1

2
(1− x)2

(
1

4x3/2
+

4

(1 + x)3

)
.
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Using this with x = 1− δ
1−r yields

|g(r)− f(r)| ≤ δ2

(1− r)2
h

(
1− δ

1− r

)
,

where h(x) := 1
8x3/2

+ 2
(1+x)3

. For 0 ≤ n ≤ Nrm, we have δ
1−nδ ≤

δ
1−rm ≤

1
2

and thus

E2,n ≤ (R(0) +K/4)
δ2

(1− rm)2
h

(
1

2

)
=: C1δ

2.

For Nrm < n ≤ N − 2, we have (n+ 1)δ > rm + δ and it follows that∣∣∣∣v(n+ 1

N

)
−RNn+1

∣∣∣∣
=

∣∣∣∣∣ 1

2
√

1− (n+ 1)δ

∫ 1

(n+1)δ

R(y)−R((n+ 1)δ)√
1− y

dy +R((n+ 1)δ)−RNn+1

∣∣∣∣∣
≤ K(1− (n+ 1)δ) +Kδ = K(1− nδ).

Consequently,

E2,n ≤ K(1− nδ) δ2

(1− nδ)2
h

(
1− δ

1− nδ

)
≤ K

2
h

(
1

2

)
δ <

K

2
δ,

where we have used that 1− nδ ≥ 2δ.
As in the estimation of E1,n, the bound can be improved ifNrm < n ≤ n0

and thus 1− nδ ≥
√
δ. In this case, we have

E2,n ≤ Kh
(

1

2

)
δ3/2 < Kδ3/2.

In summary,

E2,n ≤


1
2Kδ, if n0 + 1 ≤ n ≤ N − 2,

Kδ3/2, if Nrm < n ≤ n0,

C1δ
2, if n ≤ Nrm.

(A.15)

Combining the Estimates. Combining (A.13), (A.14) and (A.15) and
recalling ∆N−1 ≤ Kδ, we obtain for n0 + 1 ≤ n ≤ N − 2 that

∆n ≤ ∆N−1 +
3

2
Kδ(N − 1− n) ≤ Kδ +

3

2
K
√
δ <

5

2
K
√
δ
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and for n ≤ n0 that

∆n ≤ ∆n0+1 + (2K + C1)δ3/2(n0 + 1− n) + 3mC0δ

≤ 5

2
K
√
δ + (2K + C1)

√
δ(1−

√
δ + δ) + 3mC0δ < C2

√
δ.

Putting everything together, we have sup0≤n≤N ∆n ≤ max(5K/2,C2)√
N

. It re-
mains to note that

|v′(r)| = |R(r)− v(r)|
2(1− r)

≤

{
K
2 , rm < r < 1,
R(0)

2(1−rm) , 0 ≤ r ≤ rm,

and consequently,∣∣∣vNbrNc − v(r)
∣∣∣ ≤ ∆brNc +

∣∣∣∣v(brNcN

)
− v (r)

∣∣∣∣ ≤ ∆brNc +
‖v′‖∞
N

<
C3√
N
.

Since λ∗(r) = R(r)−v(r)
2c(r) and λNn =

RNn+1−vNn
2cNn

, the convergence of λN fol-
lows from the uniform convergence of the value functions and the cost co-
efficients, the almost uniform convergence of the reward scheme, and the
uniform boundedness of 1/c.

Proof of Theorem 5.3. We first observe the convergence of the Riemann sum

CN :=
1

2N

dαNe−1∑
n=0

√
cNn (2− n+1

N )

(1− n
N )(1− n+1

N )
→ 1

2

∫ α

0

√
c(r)(2− r)
(1− r)

dr =: C.

The rate of convergence is O(1/N) since cN converges to c (which is bounded
away from zero) uniformly at rate O(1/N) and

√
2−r

1−r is Lipschitz continuous
on [0, α]. Using the formulas of Theorems 3.1 and 4.3, we conclude that

lim
N→∞

ETNdαNe = lim
N→∞

4(CN )2

B
=

4C2

B
= T ∗α

with rate O(1/N). Turning to the convergence of the reward schemes, we
similarly observe that for r ≤ α,

ydrNe−1 =

√
cNdrNe−1N(N − drNe)

(N − drNe+ 1)(2N − drNe)
→
√

c(r)

2− r
= y(r)

and
1

N

dαNe−1∑
k=drNe−1

yk

1− k+1
N

→
∫ α

r

y(s)

1− s
ds,
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uniformly in r ∈ [0, α] with rate O(1/N). Hence, the formulas in Theo-
rems 3.1 and 4.3 yield that

RNdrNe =
B

CN

ydrNe−1 +
1

2

dαNe−1∑
k=drNe−1

yk
N − k − 1


→ B

C

{
y(r) +

1

2

∫ α

r

y(s)

1− s
ds

}
= R∗(r)

uniformly in r ∈ [0, α] with rate O(1/N).

Proof of Corollary 5.4. Theorem 5.1 and Remark 5.2 imply that the N -
player equilibrium control λ(N)

brNc for R
(N) converges uniformly to the mean

field equilibrium control λ∗(r) for R∗, at rate O(1/N). It follows that

fN (r) := (1− brNc)λ(N)
brNc → (1− r)λ∗(r) =: f(r)

uniformly at rate O(1/N). Since λ∗ is uniformly bounded away from zero
on [0, α], the same holds for f and fN with large N . Thus, using (A.10)
and (A.3),

∣∣∣ET (N)
dαNe − T

∗
α

∣∣∣ =

∣∣∣∣∣∣
dαNe−1∑
n=0

1

(N − n)λ
(N)
n

−
∫ α

0

dr

(1− r)λ∗(r)

∣∣∣∣∣∣
≤
∫ dαNe

N

0

|f(r)− fN (r)|
fN (r)f(r)

dr = O(1/N).

As Theorem 5.3 shows that |T ∗α −ETNdαNe| = O(1/N), the claim follows.

B Exact Law of Large Numbers

In this section, we detail a setting such that the exact law of large numbers
holds for a continuum of essentially pairwise independent random variables.
Let (I, I, µ) be an atomless (hence uncountable) probability space and let
(Ω,F , P ) be another probability space.

Definition B.1. A family (fi)i∈I of random variables on (Ω,F , P ) is essen-
tially pairwise independent if for µ-almost all i ∈ I, fi is independent of fj
for µ-almost all j ∈ I. The family is essentially pairwise i.i.d. if, in addition,
all fi have the same distribution.
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In what follows, we need to work on a probability space that is larger than
the usual product5 (I×Ω, I⊗F , µ⊗P ), because the latter does not support
relevant families of i.i.d. random variables (see, e.g., [32, Proposition 2.1]).
Following Sun [32], a probability space (I × Ω,Σ, ν) is an extension of the
product (I × Ω, I ⊗ F , µ ⊗ P ) if Σ contains I ⊗ F and the restriction of
ν to I ⊗ F coincides with µ ⊗ P . It is a Fubini extension if, in addition,
any ν-integrable6 function f : I × Ω → R satisfies the assertion of Fubini’s
theorem; that is,

(i) for µ-almost all i ∈ I, the function f(i, ·) is P -integrable,

(ii) for P -almost all ω ∈ Ω, the function f(·, ω) µ-integrable,

(iii) i 7→
∫
f(i, ·) dP is µ-integrable, ω 7→

∫
(·, ω) dµ is P -integrable, and∫

f dν =

∫∫
f(i, ω)P (dω)µ(di) =

∫∫
f(i, ω)µ(di)P (dω).

Let (I × Ω,Σ, ν) be a Fubini extension of (I × Ω, I ⊗ F , µ ⊗ P ). Then,
essentially pairwise independent families satisfy an exact version of the Law
of Large Numbers. The following is a special case of [32, Corollary 2.9].

Proposition B.2 (Exact Law of Large Numbers). Let f : I × Ω → R be
ν-integrable. If f(i, ·), i ∈ I are essentially pairwise i.i.d. with a distribution
having mean m, then

∫
f(·, ω) dµ = m for P -almost all ω ∈ Ω.

Next, we turn to the existence of such a setting. The space (I ×Ω,Σ, ν)
is called rich if there exists a Σ-measurable function f : I×Ω→ R such that
f(i, ·), i ∈ I are essentially pairwise i.i.d. with a uniform distribution on [0, 1].
By composing f with a suitable function, it then follows that (I × Ω,Σ, ν)
supports essentially pairwise i.i.d. families with any given distribution.

Lemma B.3. There exist atomless probability spaces (I, I, µ) and (Ω,F , P )
such that (I × Ω, I ⊗ F , µ⊗ P ) admits a rich Fubini extension.

This is part of the assertion of [32, Proposition 5.6] which also shows that
one can take I = [0, 1] and Ω = R[0,1]. The main result of Sun and Zhang [33]
shows that, in addition, one can take µ to be an extension of the Lebesgue
measure (but not the Lebesgue measure itself). A different construction is
presented by Podczeck [29].

5 Here we use the convention that the product σ-field I ⊗ F is completed.
6 That is, f is measurable for the ν-completion of Σ and

∫
|f | dν <∞.
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