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Abstract
We study strategic interactions between firms with heterogeneous beliefs about future

climate impacts. To that end, we propose a Cournot-type equilibrium model where firms
choose mitigation efforts and production quantities such as to maximize the expected
profits under their subjective beliefs. It is shown that optimal mitigation efforts are
increased by the presence of uncertainty and act as substitutes; i.e., one firm’s lack of
mitigation incentivizes others to act more decidedly, and vice versa.

1 Introduction

There is broad consensus among scientists that anthropogenic emissions of greenhouse gases
are the main driving factor for climate change. Nevertheless, there is considerable uncertainty
about the magnitude of future climate change and its impacts.1 Firms making long-term in-
vestments, such as electric utilities planning power plants, face uncertainty about the future
regulatory environment. For instance, a utility anticipating carbon taxes may opt for a sus-
tainable technology even if it is more expensive at the time of planning.2 Emissions-related
tax rates are endogenous because firms’ decisions impact the magnitude of climate change
as well as public scrutiny, which in turn influence regulatory decisions.3 The importance of
uncertainty in climate change economics has been emphasized in the recent literature; see
for instance (Brock and Hansen, 2018, Gillingham et al., 2018) for recent surveys with nu-
merous references. There are also various works on game-theoretic aspects of climate change
mitigation—mostly focusing on whether, or under which circumstances, sufficient mitigation
can be achieved.4 This literature generally assumes that agents are homogeneous; two excep-
tions are (Bréchet et al., 2014)5 and (Kiseleva, 2016)6. Clearly the presence of uncertainty
∗Columbia University, Departments of Statistics and Mathematics, mnutz@columbia.edu. Research sup-

ported by an Alfred P. Sloan Fellowship and NSF Grants DMS-1812661, DMS-2106056. MN is grateful to
Harrison Hong and José Scheinkman for helpful comments and encouragement.
†Columbia University, Department of Statistics, florian.stebegg@columbia.edu.
1See (IPCC, 2018, USGCRP, 2017, World Economic Forum, 2016), among others.
2The Economist (2019) stresses the risk that plants become uneconomic: “In April, Indiana’s utility com-

mission rejected a proposal for a gas plant by Vectren . . . for just that reason. If America one day sets a price
on carbon emissions, customers could be left paying for utilities’ bad bets on fossil fuels.” BlackRock CEO
Fink (2020) warns clients that “coal is . . . highly exposed to regulation because of its environmental impacts.”

3A similar argument could be made for reputational risks, consumer demand, etc. In the spirit of Barnett
et al. (2020), we use taxes as the single target variable in our highly stylized model.

4See, for instance, (Barrett and Dannenberg, 2012).
5Bréchet et al. (2014) consider a variation of Nordhaus’ DICE-2007 model with co-existing agents in the

framework of model predictive control. The population consists of two agents of equal size, a business-as-usual
agent not taking into account their own impacts and an agent solving the full optimization problem. In a
numerical simulation, the authors conclude that there exists a strong incentive to play business-as-usual and
that total emissions are close to a model with only business-as-usual agents.

6Kiseleva (2016) formulates a model with evolutionary dynamics and three types of agents, distinguished
by whether they believe in anthropogenic climate change (“weak/strong skeptics”) and the possibility of a
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is an important reason for the co-existence of heterogeneous beliefs.7 In this paper we take
a first step towards studying strategic interactions between firms that differ in their beliefs
about future climate impacts. We formulate a tractable Cournot-type equilibrium model
where firms make irreversible decisions about production and emissions with the aim of max-
imizing expected profits. Products are subject to taxes which are endogenous and uncertain
at the time of planning. While the model is very stylized, it highlights a strategic aspect
of climate change mitigation and allows us to analyze how firms’ beliefs about future taxes
influence their own and their competitors’ choices, as well as total emissions. One finding
is that environmental choices act as substitutes: one firm’s lack of action in climate change
mitigation incentivizes others to increase their efforts.

For concreteness, we summarize the state of the climate by the global mean near-surface
temperature and a firm’s emissions by its carbon dioxide output. As in classical Cournot
competitions, one can think of the model as having two periods.8 In the first, n firms make
an irreversible decision about the quantity of good to be produced, say the number and size
of power plants. In addition, firms choose a technology: hydroelectrical, coal, etc. We assume
that by combining technologies this choice boils down to a continuous parameter r which
represents the amount of carbon emitted per unit of good: r = 0 stands for a zero-emission
technology and r = 1 stands for the “business-as-usual” technology with the largest emissions.9

The production cost is determined by the technology choice and saving emissions is costly.
Firms maximize the profits that will be realized when markets settle in the second period
as detailed below. The products per se, say electrical power, are considered undifferentiated
and are perfect substitutes from the consumers’ point of view. As a result, the price paid by
consumers is determined by inverse demand as in standard Cournot models. The only reason
for differentiation among firms is that firms have heterogeneous beliefs about the tax rate
(per unit of carbon) that will prevail in the second period.10 Taxes are paid by the firms and
distributed to consumers lump-sum. We think of the two periods as substantially separated
in time, reflecting the long planning horizon e.g. for large hydroelectrical or nuclear power
plants. Thus, net profits will be modeled as random variables and firms maximize expected
profits at the time of planning. We treat the determination of prices, taxes and production
as occurring at a single point in time, with these quantities representing averages during the
planning period. As pointed out by a referee, this static modeling is inappropriate for a rapid
and large climate event; e.g., if consequences of climate change increase dramatically at a
threshold in temperature. Following such an event, the firms’ available set of actions and

climate catastrophe (“science-based”). The impact of adaptation and pollution costs is described as well as
the evolutionary type dynamics, with a focus on whether climate catastrophe can be prevented in the absence
of science-based types, the latter being answered positively.

7Poortinga et al. (2011) conduct an empirical study on public skepticism about climate change in the British
population and find that a majority is uncertain what the effects of climate change will be. The authors argue
that another reason is that “climate change is perceptually a distant issue.” Di Giuli and Kostovetsky (2014)
show that Democratic-leaning firms spend more on corporate social responsibility, including environmental,
than Republican-leaning firms.

8See (Tirole, 1988) for background on Cournot models.
9Technology r = 0 is the “backstop technology” in the terminology of Nordhaus (2018).

10See for instance (Chari, 2018) for arguments that unregulated markets are not able to mitigate climate
change. While our description assumed for simplicity that differentiation is exclusively due to taxes, the latter
may also stand in for consumers’ potential willingness to pay a premium for green technology. Like the taxes,
the magnitude of this premium is endogenous and uncertain.
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their profit maximization would need to be adapted dynamically.
The specific form of taxes in our model is motivated by two stylized facts that we describe

next. Climate science tries to predict the anomaly (temperature change) over a period of
time as a function of an emissions scenario (carbon emissions for each year). While it is a
high-confidence statement that additional carbon emissions cause temperature to increase,
there is significant uncertainty about the precise magnitude: different state-of-the-art models
produce significantly different projections even for the same emissions scenario.11 To obtain
a tractable model, we use that the increase T in temperature over a time interval is approxi-
mately proportional to the cumulative carbon emissions K over that interval: T = αK.12 The
constant of proportionality α is called transient climate response (TCRE). While the approxi-
mate linearity of the carbon–climate response function is robust across a range of models, the
value of α is subject to model uncertainty; indeed, Figure 1 suggests that a broad range of
values are reasonable parameters for the models tested. This motivates that we incorporate

the uncertainty generated from the uncertainty in physi-
cal climate parameters and do not account for uncertainty
from the unperturbed parameters that control the be-
havior of the simulated carbon cycle. Therefore the range
given here is smaller than the total uncertainty in TCRE.
The range obtained here is of course somewhat sub-
jective, as there is no agreed way of defining uncertainties
in the input parameters like climate sensitivity, where
different studies come up with quite different constraints.
Figure 3b shows the cumulative emissions versus

temperature curves for the 150 model variants generated
for the perturbed physics ensemble. The curves with a
lower TCRE value visibly deviate from a straight line
over the range of cumulative emissions shown and take
on more of a logarithmic shape. Such deviation from
linearity is consistent with the concept of a TCRE win-
dow defined by MacDougall and Friedlingstein (2015).
The TCRE window is the range over which TCRE is
approximately constant in time and is defined as where
TCRE is within 95% of its peak value. MacDougall and
Friedlingstein (2015) computed diagrams of the range of
the TCRE window for an idealized set of equations de-
scribing TCRE. Although highly idealized such diagrams
help in the interpretation of the deviation from linearity
seen in Fig. 3b and therefore have been redrafted and
presented in Fig. 4 for climate sensitivity and k. Figure 4
shows that the TCRE window is larger at higher climate
sensitivity and higher values of k. Recall that higher
values of k correspond to higher ocean heat uptake and
therefore lower transient temperature change. The sub-
linear behavior of the low TCRE cumulative emission
versus temperature curves (Fig. 3b) is therefore consis-
tent with low climate sensitivity corresponding to a
smaller TCRE window. This effect should be compen-
sated to some degree by high values of k enlarging the

TCRE window. The behavior seen in Fig. 3b suggests that
the climate sensitivity effect is dominating over thek effect.
The relative contribution of the uncertainty in climate

sensitivity, ocean heat uptake efficiency, and radiative
forcing to the physical uncertainty in TCRE is shown in
Fig. 5. Figure 5 displays the correlation between the
perturbed parameters’ values and the value of TCRE.
The strongest correlation is between climate sensitivity
and TCRE with a correlation coefficient of 0.86. The
next strongest correlation is with ocean heat uptake ef-
ficiency with a correlation coefficient of20.39, followed
by radiative forcing with a correlation coefficient of 0.17.
The physical uncertainty in TCRE is therefore domi-
nated by the uncertainty in climate sensitivity, which is
the dominant source of uncertainty in the TCR (e.g.,
Collins et al. 2013) that enters the definition of TCRE
[Eq. (1)]. The uncertainty in ocean heat uptake effi-
ciency also contributes significantly to the uncertainty in
TCRE while the uncertainty in radiative forcing has
only a small contribution to the overall uncertainty,
likely owing to the uncertainty in radiative forcing from
CO2 being well constrained relative to other radiatively
active substances (e.g., Myhre et al. 2013).

FIG. 3. (a) Histogram of TCRE from the perturbed physics en-
semble experiment. Mean value is 1.72KEgC21. (b) Cumulative
emissions vs temperature curves for all 150 model variants. Indi-
vidual model variants are in gray, solid black line is the mean, and
dashed lines are the 5th and 95th percentiles.

FIG. 2. Difference in zonally averaged temperature anomalies
between CMIP5 model and UVic ESCM variant given the same
climate feedback parameter, ocean heat uptake efficiency, and
radiative forcing of theCMIP5models (gray lines). Black line is the
average of the difference across all 23 CMIP5 models.

15 JANUARY 2017 MACDOUGALL ET AL . 821

Figure 1: Histogram of numerical values of TCRE found from 150 model variants, in ◦C
per trillion tonnes of carbon. The 5th to 95th percentile range is [0.9, 2.5]. Figure 3(a)
of (MacDougall et al., 2017), reproduced with permission.

heterogeneous beliefs about climate change in our model through α: firms agree-to-disagree
about the TCRE. Climate change “believers” assume that the TCRE has a relatively higher
value whereas climate change “skeptics” assume that the value is lower, with a value of zero
representing the view that carbon has no impact on temperature. More precisely, firms may
acknowledge uncertainty about the correct value of the TCRE and use a probability distribu-

11See (IPCC, 2018) for a broad survey, Figure 11.25(a) of (Kirtman and Power, 2013) for temperature
predictions made by various climate models for four standardized scenarios, and (Prein et al., 2015) for a
survey of climate models. Reasons for the difficulty to forecast temperature include nonlinear dynamics (e.g.,
laws of convection, saturation of oceans, thawing of ice), size and heterogeneity of the planet, length of the
required time horizon, random shocks (e.g., volcano eruptions), and others.

12See (Allen et al., 2009, Matthews et al., 2009). This linearity is the approximate combined result of several
nonlinear effects, and valid for regimes of moderate emissions. MacDougall and Friedlingstein (2015) explain
the phenomenon analytically by the diminishing radiative forcing from CO2 per unit mass being compensated
for by the diminishing ability of the ocean to take up heat and carbon. As pointed out by a referee, these
models may allow for the temperature to revert to a lower level if the world reduced total emissions, as implied
by the proportionality of the change of temperature. Because such a scenario seems unlikely and the time
horizon would presumably be greater than the horizon of the model, we do not consider temperature decreases
further.
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tion for α. Level and uncertainty are then represented by the mean and the variance of that
subjective distribution.13

 Summary for Policymakers

13

SPM

10 Here, impacts on economic growth refer to changes in gross domestic product (GDP). Many impacts, such as loss of human lives, cultural heritage and ecosystem services, are difficult  
 to value and monetize.
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2006-2015

How the level of global warming affects impacts and/or risks associated with 
the Reasons for Concern (RFCs) and selected natural, managed and human 
systems

Impacts and risks associated with the Reasons for Concern (RFCs)

Purple indicates very high 
risks of severe impacts/risks 
and the presence of 
significant irreversibility or 
the persistence of 
climate-related hazards, 
combined with limited 
ability to adapt due to the 
nature of the hazard or 
impacts/risks. 
Red indicates severe and 
widespread impacts/risks. 
Yellow indicates that 
impacts/risks are detectable 
and attributable to climate 
change with at least medium 
confidence. 
White indicates that no 
impacts are detectable and 
attributable to climate 
change.

Five Reasons For Concern (RFCs) illustrate the impacts and risks of 
different levels of global warming for people, economies and ecosystems 
across sectors and regions.
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Impacts and risks for selected natural, managed and human systems

Confidence level  for transition: L=Low, M=Medium, H=High and VH=Very high

Mangroves Small-scale
low-latitude

fisheries

Arctic
region

Coastal 
flooding
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yields

Undetectable
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High
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Figure SPM.2 | Five integrative reasons for concern (RFCs) provide a framework for summarizing key impacts and risks across sectors and regions, and were 
introduced in the IPCC Third Assessment Report. RFCs illustrate the implications of global warming for people, economies and ecosystems. Impacts and/or risks 
for each RFC are based on assessment of the new literature that has appeared. As in AR5, this literature was used to make expert judgments to assess the levels 
of global warming at which levels of impact and/or risk are undetectable, moderate, high or very high. The selection of impacts and risks to natural, managed and 
human systems in the lower panel is illustrative and is not intended to be fully comprehensive. {3.4, 3.5, 3.5.2.1, 3.5.2.2, 3.5.2.3, 3.5.2.4, 3.5.2.5, 5.4.1, 5.5.3, 
5.6.1, Box 3.4}
RFC1 Unique and threatened systems: ecological and human systems that have restricted geographic ranges constrained by climate-related conditions and 
have high endemism or other distinctive properties. Examples include coral reefs, the Arctic and its indigenous people, mountain glaciers and biodiversity hotspots. 
RFC2 Extreme weather events: risks/impacts to human health, livelihoods, assets and ecosystems from extreme weather events such as heat waves, heavy rain, 
drought and associated wildfires, and coastal flooding. 
RFC3 Distribution of impacts: risks/impacts that disproportionately affect particular groups due to uneven distribution of physical climate change hazards, 
exposure or vulnerability. 
RFC4 Global aggregate impacts: global monetary damage, global-scale degradation and loss of ecosystems and biodiversity. 
RFC5 Large-scale singular events: are relatively large, abrupt and sometimes irreversible changes in systems that are caused by global warming. Examples 
include disintegration of the Greenland and Antarctic ice sheets.

Figure 2: Impacts and risks for selected natural, managed and human systems, ranging from
“undetectable” to “very high” (coloring) and confidence levels for the indicated transitions
(Low, Medium, High, Very High). Figure SPM.2 of (IPCC, 2018).

Next, we describe how warming affects profits. Impacts of global warming are manifold
and admittedly difficult to quantify. Figure 2 illustrates past and expected future impacts on
a variety of systems. While the global warming of approximately 1◦C between 1750 and the
present has only had limited effect on most of these systems, the next 0.5◦C are expected to
have a much more significant impact, and the following 0.5◦C even more so—the marginal
impact is increasing.14 This is consistent with the quantitative estimates of climate impact
on welfare in the literature. Figure 1 in (Tol, 2018) compares 27 such estimates and suggests
that welfare-equivalent income is a concave function of temperature.15

Our model postulates an emissions tax introduced by a regulator. This stylized mechanism
more generally stands in for potential adverse impacts on firms with larger emissions, such as
costs due to additional environmental rules or reputational and legal risks that affect firms
in the long run.16 Specifically, the tax per unit of good produced with technology r is bTαr;

13In particular, the main influencing factor for firms’ decisions is the subjective belief about what will
happen when markets settle and only incorporates temperature change through carbon emissions. This is
highly stylized but allows us to mathematically solve the model. As pointed out by a referee, more realistic
models of climate change would also include random shocks. We omit this feature as adding a second family
of distributions would complicate the analysis and we would expect the economic conclusions to be largely
equivalent.

14See (IPCC, 2018) for a survey on climate impacts. Coral reefs, for example, are expected to decline by
>99% at 2◦C warming. The nonlinearity of climate impacts is reinforced by tipping events; i.e., relatively
abrupt macroscopic changes in the climate system that are expected at increased temperatures, such as melting
of the West Antarctic ice sheet or methane release from thawing permafrost. See (Lenton and Ciscar, 2013)
for a list of nine different tipping events. As pointed out by a referee, our focus is on temperature increases
even though a large negative change in temperature would also have substantial negative impacts. The general
idea that pre-industrial temperature is “optimal” is likely less a consequence of the specific temperature than
the fact that nature and humans have adapted to it over a long period of time.

15Tol (2018) emphasizes the uncertainty in these estimates while highlighting that “impacts of climate change
are typically found to be more than linear” and that the uncertainty is skewed towards negative surprises.

16We phrase the cost of carbon as a tax since this leads to straightforward mechanics in the model. A carbon
certificate market where the supply of certificates is controlled by the regulator would lead to similar results:
if the firms start with no certificates and need to purchase certificates proportional to the carbon output they
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here αr is the marginal increase in temperature caused by the good (after choosing units
appropriately) and the tax rate bT is proportional to the total temperature anomaly.17

The taxes on the total production then internalize society’s disutility from warming if
we postulate that the latter is quadratic and separable—the simplest form consistent with
increasing marginal disutility.18 The tax rate is endogenous as it is proportional to the tem-
perature increase T , and uncertainty about the TCRE α implies uncertainty about taxes.
Alternately, as warming affects firms only via taxes, we may think of firms as having uncer-
tainty about future regulation per se rather than climate. Our modeling of uncertainty and
impacts is inspired by (Barnett et al., 2020), but is even more simplified in order to yield a
tractable framework for an equilibrium model.

While closed-form solutions for the equilibrium are available in special cases (see Section 3),
this model is sufficiently tractable to allow for a detailed analysis of the equilibrium properties
in all cases. We are particularly interested in comparative statics for firms’ choices and
aggregate emissions. As production quantity and carbon interact with the constraints of the
model, we find it useful to form buckets of firms with comparable equilibrium technology
choices: green firms emit no carbon (r = 0), red firms make no effort to reduce emissions
(r = 1), and orange firms are intermediate. This color is endogenous, but conditionally on
the color, closed-form feedback expressions for the optimal choices are readily available. The
optimal production quantity and emissions are substitutes; that is, any firms’ optimal choices
are decreasing in the total quantity and carbon produced by the other firms. However, if
the total quantity and carbon are varied in opposite directions, the reaction of the firm
is ambiguous, with the direction depending on its color. Remarkably, the equilibrium is
nevertheless unique; this is shown by an analysis of the interactions between the buckets.
Key features of the equilibrium are:

1. Uncertainty is equivalent to higher expected impact. As far as equilibrium outcomes
are concerned, the second moment α2

i := Ei[α
2] is a sufficient statistic for firm i’s

belief about climate impacts (or about taxes). A firm acknowledging variance of carbon
impact takes the same optimal decisions as one that assumes a known but increased
impact.1920

2. Higher expected impact implies higher mitigation effort. For a given firm i, the equi-

committed to in the first period, they are price takers in the certificate market. The clearing price is an inverse
function of certificate supply and can thus be set indirectly by the regulator.

17The linear schedule in our setup does not necessarily represent an “optimal” choice from the regulator’s
point of view, but rather a concrete formulation for an expectation of the firms’ disutility that makes our model
mathematically analyzable. A real regulator would also face a complex decision problem under uncertainty
with various trade-offs. In particular, the regulator will want to reduce carbon emissions effectively but also
retain flexibility to react to unforeseen developments, as emphasized in (Jakob and Brunner, 2014).

18The constant b could, in principle, be calibrated to the social cost of warming. However, our stylized
model is built to highlight the mechanics of heterogeneous beliefs and not expected to yield good quantitative
predictions.

19This behavior is consistent with the finding that the presence of uncertainty warrants a higher level
of climate change mitigation in various contexts; see, e.g., (Berger et al., 2017, Brock and Hansen, 2018,
Nordhaus, 2018).

20We could replace the fixed parameter b with a firm-dependent risk-aversion parameter bi in our model.
This would be redundant in terms of outcomes as α2

i is already firm-dependent and only enters the equilibrium
in the form βi = bα2

i (which would be modified to βi = biα
2
i ). We therefore choose to use the fixed parameter

b to make the interpretation of taxes as a tool to internalize society’s disutility more straightforward.
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librium technology choice ri is monotone decreasing in α2
i , if other firms’ beliefs are

fixed.

3. Mitigation efforts act as strategic substitutes. For a given firm i with fixed α2
i , the

equilibrium technology choice ri is monotone increasing in α2
j for all j 6= i. That is,

firm i’s mitigation efforts increase if other firms’ efforts decrease, and vice versa.

The aggregate carbon emissions are decreasing with respect to the climate beliefs α2
i

of all firms, as one would expect, but other comparative statics reveal the richer interactions
between emissions, production and constraints, both for individual firms and in the aggregate.
Strategic substitutes are consistent with the mechanics of a standard Cournot model without
technology choice, where one firm’s decrease of emissions and production would entail an
increase of emissions and production for the other firms. In the present model, technology
choice gives an alternate way to control emissions. For instance, Example 3.2 shows that if
firms all have moderate beliefs, firms adapt to changes in beliefs by changing technology while
holding production quantities constant. In general, the equilibrium production quantity of a
given company depends ambiguously on the beliefs in the economy: If a red firm j grows more
concerned about climate impacts, j reduces its emissions and hence, a fortiori, its production
quantity. Other firms then face less competition and increase their quantity. If j is orange,
however, it reduces emissions by changing technology rather than quantity. Red firms then
increase their production since the marginal cost of carbon has decreased, but green and
orange firms decrease their production as a reaction to the competition from red firms. A
detailed discussion of all comparative statics can be found in the main text.

We also study an iterated version of the game where the total carbon in the environment
accumulates and firms can update their beliefs about the TCRE. In an example where firms
asymptotically learn (and agree on) the true value of the TCRE, the total temperature change
converges to the quotient of the extra cost d for the green technology and the tax rate bα.

The remainder of this paper is organized as follows. Section 2 develops the model and
its equilibrium. In Section 3 we discuss special cases with closed-form solutions, giving first
insights. Section 4 presents the qualitative comparative statics. The repeated game is dis-
cussed in Section 5, and Section 6 concludes. Appendix A contains the proofs for Section 2
and a more detailed mathematical description of the equilibrium. Appendix B elaborates on
the examples of Section 3. In Appendix C we derive quantitative comparative statics which
imply, in particular, the qualitative comparative statics summarized in Section 4. Appendix D
contains the proofs for Section 5. Finally, Appendix E discusses more general utility functions
for consumers.

2 Equilibrium

Let ri ∈ [0, 1] be the technology and qi ∈ R+ the production quantity chosen by firm i. The
corresponding carbon emission is ki = riqi where we choose units so that the business-as-usual
technology r = 1 corresponds to one unit of carbon per unit of good. Note that given qi, we
may equivalently specify ri or ki.21 In addition to the emissions of the firms, we also include
an exogenous amount Kex of carbon which may account for emitters outside the economy or

21The convention that ri = 0 when qi = 0 is used for the boundary case.
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pre-existing emissions. Thus, the total carbon is K = Kex +
∑n

j=1 rjqj and the total supply
is Q =

∑n
j=1 qj .

To analyze the equilibrium, we first derive the optimality conditions for a fixed firm i
given the quantity and carbon from sources other than firm i, denoted Q−i = Q − qi and
K−i = K − ki. As mentioned in the Introduction, the net unit price (i.e., the revenue per
unit of good net of taxes) for firm i is

pi = u′(Q)− bTαri

were u : R+ → R is a utility function, α is the TCRE and T = αK is the temperature
increase. We assume that the choice r = 1 with the highest emission has a unit cost of c > 0
whereas the zero-emission technology bears a premium of d > 0. The total production cost
for a quantity q at technology r ∈ [0, 1] is C(r, q) = [c+ (1− r)d]q. In summary, the profit for
the choices (ri, qi) is

πi(ri, qi) = piqi − C(qi, ri) = u′(Q)qi − bαTriqi − [c+ (1− ri)d]qi.

Each firm i has a belief about the distribution of α. We denote by

α2
i = Ei[α

2]

the second moment of α under firm i’s belief. In most of the paper we endow consumers
with the quadratic utility u(x) = −1

2(A − x)2 for x ∈ [0, A], where A > 0 (and u(x) = 0
for x > A); see Appendix E for more general utility functions. In other words, the inverse
demand u′(x) = (A−x)+ is affine and the expected profit of firm i under its subjective belief
takes the form

Ei[πi(ri, qi)] = (A− qi −Q−i)qi − bα2
i (riqi +K−i)riqi − (c+ d− dri)qi (2.1)

as long as qi + Q−i ∈ [0, A]. A (Nash) equilibrium is defined as a profile (rj , qj)1≤j≤n such
that (ri, qi) maximizes firm i’s expected profit (2.1) given Q−i =

∑
j 6=i qj and K−i = Kex +∑

j 6=i rjqj , for every 1 ≤ i ≤ n.

Remark 2.1. As the beliefs only affect the equilibrium through the expected profits (2.1),
the second moment α2

i = Ei[α
2] is a sufficient statistic for firm i’s views about α. The relation

Ei[α
2] = Vari(α) + Ei[α]2 shows that an increase in variance affects the equilibrium in the

same manner as if the firm had a larger expected value: acknowledging uncertainty about α
is equivalent to expecting a larger TCRE.

In this spirit, one may replace b by a firm-dependent constant bi which can be interpreted
as a risk-aversion parameter, similarly as in Markowitz’ problem. Setting βi = biα

2
i instead

of βi = bα2
i in (2.2) below, the formulas in our results then continue to hold as stated.

Given exogenous quantity Q−i and carbon K−i, firm i has a unique optimal choice (ri, qi)
which, however, is somewhat complicated to state because the choice is two-dimensional and
subject to several constraints. We provide a detailed description in Appendix A and confine
ourselves to an informal version in the main text, highlighting some of the key features. To
facilitate the exposition we introduce the following color-coding. Firm i is called white if
it does not produce (qi = 0). For the case of a positive production, we distinguish three
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cases: firm i is green if it produces exclusively with the emission-free technology (ri = 0
and qi > 0), red if it produces exclusively with the business-as-usual technology (ri = 1),
and orange if uses an intermediate technology (0 < ri < 1). The color captures which of
the constraints (nonnegative production, technology between 0 and 1) are binding. The color
itself depends on the belief, Q−i and K−i, but once the color is determined, the optimal choice
has a simple expression as stated below. The following definitions will be useful to obtain
concise expressions, here and in the rest of the paper:

βi = bα2
i , ai =

d

βi
, z = A− c− d. (2.2)

Indeed, the second moment α2
i of firm i’s belief on the TCRE can only occur via its product βi

with the constant b in the tax rate; cf. (2.1). For green and orange firms, choices are tradeoffs
between the extra cost d of the green technology and βi, which suggests the definition of ai.
A large value of ai corresponds to the view that taxes will be low or that mitigation is costly,
so that firms with higher ai will make smaller mitigation efforts. Finally, the difference z
between the maximal demand A and the unit cost c+ d of the green technology is clearly an
important quantity for the mitigation efforts.

Proposition 2.2. Given exogenous quantity Q−i and carbon K−i, the color of firm i is
uniquely determined and the optimal choices are as follows. If firm i is

(i) white, then qi = 0 and ki = 0.

(ii) green, then qi = 1
2(z −Q−i) and ki = 0.

(iii) orange, then qi = 1
2(z −Q−i) and ki = 1

2(ai −K−i).

(iv) red, then qi = ki = 1
2

1
1+βi

[A− c−Q−i − βiK−i].

For all colors, qi and ki are weakly decreasing functions of Q−i and K−i; that is, quantity
and emissions act as substitutes. For white, green and orange firms, qi depends only on Q−i
and ki depends only on K−i. Whereas for red firms, qi and ki depend jointly on Q−i and K−i,
and moreover the precise coupling between the two depends on the specific belief of the firm
in question. (In addition, the color of a firm depends on both Q−i and K−i and the firm’s
belief; cf. Appendix A.)

Theorem 2.3. There exists a unique equilibrium.

The proof of existence in Appendix A applies Brouwer’s fixed point theorem in a fairly
direct manner. Uniqueness is less obvious and the proof may be of interest on its own.
While strategic substitutes generally imply uniqueness in the case of a one-dimensional control
variable, this is not necessarily the case in a problem with two interacting controls—a priori, it
may be possible to have an alternative equilibrium with smaller quantity but larger emissions.
One key step in our proof is to exhibit a transversality relation between the color buckets
(Lemma A.4): if green and red firms increase their production quantity, the orange firms
would react by partially, but not fully, compensating that increase. Conversely, a change
caused by orange firms would be over-compensated by the other firms.

Not all color combinations can arise in equilibrium: green and orange firms cannot co-exist
with white ones; i.e., an equilibrium consist either of green, orange and red firms; or of white
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and red firms. (Some of these buckets may be empty; for instance, all firms can be orange.)
As is intuitive, these colors are ordered in terms of climate beliefs: In the green-orange-red
case, the green firms are the ones expecting the highest climate impacts (the highest taxes)
and the red ones expect to lowest. In the white-red case, the white firms expect the higher
impacts. See Appendix A for more details.

3 Examples

In this section we exhibit special cases with closed-form solutions that give more insight into
the mechanics of the equilibrium. The proofs boil down to verifying the optimality conditions
for all firms; this is straightforward (and omitted) for Section 3.1, whereas for Section 3.2 we
report proofs in Appendix B.

3.1 Two Firms

The case of two firms (n = 2) is particularly simple as only two of the color buckets can be
populated. For simplicity, we also assume that Kex = 0 and z > d—the latter eliminates
the possibility of white firms; see Appendix B for a more complete analysis.22 Without loss
of generality, we label the firms such that 0 ≤ a1 ≤ a2. Depending on the parameters a1
and a2, the equilibrium is in one of the six regimes listed below. These regimes are shown
in Figure 3 above the diagonal (a1 = a2), whereas the symmetric cases below the diagonal
correspond to a1 ≥ a2. For instance, starting at the center of the diamond and moving north
corresponds to fixing firm 1 and increasing a2, meaning that firm 2 becomes more skeptical
about climate impacts. As the heterogeneity increases, firm 2 reduces mitigation efforts and
eventually abandons them (becomes red), but continues to increase emissions by increasing
the production quantity. As a reaction, firm 1 increases mitigation efforts and eventually
becomes green.

(a) Orange-orange. Suppose that a1 > a2/2 and a2 < (z+a1)/2. Then both firms are orange,

Q =
2z

3
, K =

a1 + a2
3

, q1 = q2 =
z

3
, k1 =

2a1 − a2
3

, k2 =
2a2 − a1

3
.

This regime is “interior” in that no constraint is binding. It arises when the coefficients
a1 and a2 are neither too small nor too large and moreover the heterogeneity (i.e., the
fraction a2/a1) is not too large.

(b) Green-orange. Suppose that a1 ≤ a2/2 and a2 < 2z/3. Then firm 1 is green and firm 2
is orange. We have

Q =
2z

3
, K =

a2
2
, q1 = q2 =

z

3
, k1 = 0, k2 =

a2
2
.

This equilibrium is similar to the previous one but firm 1 expects climate impacts so
large that it only uses emission-free technology. The quantities qj remain identical and
all expressions remain affine.

22The case z ≤ d gives rise to an additional regime (white-red) when one firm believes in high climate
impacts and the other is very skeptical, and some additional restrictions in the other regimes.
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a1

a2

2
3z

2
3z

z

z

z
3

z
3

Figure 3: Regimes for the equilibrium with n = 2 firms. Coloring represents the colors of the
two firms in the respective regime.

(c) Red-red. Suppose that a1 ≥ z. Then both firms are red and

Q = K =
A− c

3

( 1

1 + β1
+

1

1 + β2

)
, q1 = k1 =

A− c
3

( 2

1 + β1
− 1

1 + β2

)
and symmetrically q2 = k2 = A−c

3

(
2

1+β2
− 1

1+β1

)
. In this regime neither firm is sufficiently

incentivized to use mitigate emissions. Individual as well as aggregate quantities depend
explicitly on the beliefs of both firms.

(d) Green-red. Suppose that a1 ≤ (z+2d)a2
3a2+4d and a2 ≥ 2z/3. Then firm 1 is green and firm 2 is

red. We have k1 = 0 and

Q =
2(1 + β2)z + d

3 + 4β2
, K =

z + 2d

3 + 4β2
= q2 = k2, q1 =

(1 + 2β2)z − d
3 + 4β2

.

This is the regime of extreme disagreement, firm 1 is emission-free whereas firm 2 makes
no effort to reduce carbon. The formulas depend on the belief of the red firm (firm 2).
For any given value of a1, Firm 1 will be green if Firm 2 is sufficiently skeptical.

(e) Orange-red. Suppose that (z+2d)a2
3a2+4d < a1 < z and a2 ≥ (z + a1)/2. Then firm 1 is orange

and firm 2 is red. We have

Q =
A− c− d a1

2a2
− z/2

3(1 + β2)
+
z

2
, K = Q+

a1 − z
2

, q1 = z −Q, q2 = k2 = 2Q− z

and k1 = a1+z
2 −Q. This a regime of intermediate disagreement where firm 1 makes some

effort but firm 2 makes no effort to reduce carbon. The formulas depend on the beliefs of
both firms.
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(f) Green-green. The corner equilibrium a1 = a2 = 0 corresponds to the limiting case where
both firms fear infinite climate impacts. Both firms emit zero carbon while producing the
common quantity q1 = q2 = z/3. This regime would occur for a larger range of coefficients
if we had allowed for exogenous carbon, Kex > 0.

Remark 3.1. As visualized in Figure 3, equilibria exist in different regimes depending on
the parameter values. Each regime is a subsets of Rn and its boundary is a piecewise smooth
hypersurface of codimension 1. For our results on equilibria, it does not matter if the boundary
between two regimes is seen as part of one or the other regime. For instance, if the given
parameters (a1, a2) are on the boundary between the orange-orange and the green-orange
regime, we may see the equilibrium as part of either regime—the formulas stated in those
regimes give the same result for such (a1, a2). Mathematically, the statements about the
regimes are continuous and hence remain valid on the closure. This holds true for general
equilibria with any number of firms.

3.2 Moderate Disagreement

The following examples discuss n-player equilibria which are particularly tractable because
either all firms make some effort to reduce carbon or no firm does. These cases exhibit at
most moderate heterogeneity between the firms. The complexity of the equilibrium increases
substantially if the constraint r ≤ 1 is binding for some (but not all) firms, as can already be
seen in the above case of two firms—cf. the green-red and orange-red regimes.

The simplest n-player equilibrium arises when none of the constraints is binding; i.e., all
firms are orange. Then, firms adjust for their belief through the technology choice but produce
a common quantity independent of the belief. This situation occurs when the heterogeneity is
sufficiently small and the coefficients are neither too small nor large. We also assume Kex = 0
to further simplify the expressions; this is not crucial.

Example 3.2 (Orange). Let z > 0 and a1 ≤ · · · ≤ an and Kex = 0. Suppose that

a1 ≥ avg{0, a2, . . . , an} and an ≤ avg{z, a1, . . . , an−1}. (3.1)

Then the equilibrium satisfies

Q =
nz

n+ 1
, K =

1

n+ 1

n∑
j=1

aj , qi =
z

n+ 1
, ri =

1

z

(
nai −

∑
j 6=i

aj

)

for all 1 ≤ i ≤ n. A sufficient condition for (3.1) is that a1 ≥ n−1
n an and an ≤ z

n + n−1
n a1.

Example 3.2 is a special case of the following situation where the constraint r ≥ 0 may be
binding but r ≤ 1 is not. This arises when none of the firms is much more skeptical about
climate change than the others, and preserves the crucial feature of Example 3.2; namely, that
firms adjust their technology ri to account for carbon whereas the quantities qi are unaffected
by carbon emissions and beliefs. In the subsequent example, there are n0 green firms and
m = n− n0 orange firms, and the number n0 is determined analytically from the beliefs.
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Example 3.3 (Green-orange). Let z > 0 and a1 ≤ · · · ≤ an and Kex ≥ 0. Define23

n0 = max

{
i : ai < Kex +

n∑
j=i+1

(aj − ai)

}
, m = n− n0, Am =

n∑
j=n0+1

aj .

Moreover, suppose that

an ≤
z

n+ 1
+
Am +Kex

m+ 1
. (3.2)

Then the equilibrium satisfies24

Q =
nz

n+ 1
, K =

Am +Kex

m+ 1
, qi =

z

n+ 1
, 1 ≤ i ≤ n

as well as ri = 0 for 1 ≤ i ≤ n0 and ri = n+1
z

(
ai − Am+Kex

m+1

)
for n0 < i ≤ n. A sufficient

condition for (3.2) is that an ≤ 2z
n+1 +Kex.

Equilibria are more complicated when the constraint r ≤ 1 is binding for at least one firm:
while the green and orange firms continue to produce a common quantity, that quantity is
now influenced by the views of the red firms, and each red firm may have a different quantity.
This precludes simple closed-form solutions in most cases. An exception arises when all firms
are sufficiently skeptical: in the following example, the number n0 of white firms (which cease
production completely) is determined analytically from the beliefs.

Example 3.4 (White-red). Let A > c and a1 ≤ · · · ≤ an and Kex ≥ 0. Define25

ξj =
A− c− bα2

jKex

1 + bα2
j

, n0 = max

{
i : ξi <

n∑
j=i+1

(ξj − ξi)

}
, n1 = n− n0.

Suppose that a1 ≥ z + Kex. Then the equilibrium satisfies Q = 1
n1+1

∑
j>n0

ξj and K =

Q+Kex, as well as qi = ki = 0 for i ≤ n0 and qi = ki = n1
n1+1ξi −

1
n1+1

∑
i 6=j>n0

ξj for i > n0.

4 Comparative Statics

In this section we analyze how a change in a firm’s view impacts the firm’s decisions, its
competitors and the overall economy. The subjective second moment α2

j = Ej [α
2] of the

TCRE is called the climate belief (or simply belief) of firm j; cf. Remark 2.1. An increase in
belief corresponds to higher expected climate impacts/taxes whereas a decrease corresponds
to the firm becoming more skeptical. For simplicity of exposition we assume that there
are no firms with zero production quantity (white firms)—in any event, such firms do not
directly affect the rest of the economy. Moreover, no firm is infinitely skeptical (i.e., α2

j > 0
for all j). Thus, firms are green (produce exclusively with zero-emission technology), orange
(emit carbon with some effort to reduce emissions) or red (business-as-usual). The statements
below are valid for perturbations of the climate belief that keep the equilibrium in the same

23For the definition of n0 we use the convention max ∅ = 0.
24In fact, (3.2) is not only sufficient but also necessary for absence of red firms.
25Footnote 23 applies.
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regime; that is, firms do not change color during the perturbation. This is always true if
the perturbation is sufficiently small.26 The three theorems below summarize most of the
qualitative insights; they are corollaries of the more detailed, quantitative results reported in
Appendix C. We start with the comparative statics for the overall economy.

Theorem 4.1. The total carbon emission K is weakly decreasing in the climate beliefs of all
firms:

(i) K is unaffected by the beliefs of green firms.

(ii) K is strictly decreasing in the beliefs of all other firms.

The dependence of the total production quantity Q is ambiguous:

(i) Q is unaffected by the beliefs of green firms.

(ii) Q is strictly decreasing in the beliefs of red firms.

(iii) Q is strictly increasing in the beliefs of orange firms—except if there are no red firms in
the economy, in which case Q is unaffected by the beliefs of orange firms.

The sensitivities for the total carbon are intuitive: if some firm emits carbon and becomes
more concerned about climate impacts, it will reduce its emissions. As we will see below,
other firms may increase their emissions in response, but the overall effect is still a reduction.

For the production quantity the situation is more complex. If a red firm becomes more
concerned about climate impacts, it will reduce its emissions—and hence its quantity, as these
are equal for red firms. Other firms may react with an increased production (see below), but
again the overall effect is a reduction. If an orange firm becomes more concerned about climate
impacts, then initially (more precisely, neglecting feedback effects from equilibrium) it would
reduce its emissions by changing to a greener technology but keep its quantity constant. While
other orange firms react by slightly increasing their emissions, the collection of all orange
firms would still emit less in total, and leave the quantity unchanged. Red firms, however,
now face an environment with lowered carbon and similar quantities from their competitors,
thus increase their production, and consequently emissions. This increase is large enough to
over-compensate the reduction in quantity from the orange firms (whereas the overall carbon
is still reduced, as seen above). The exception arises when there are no red firms present to
carry out this mechanism.27

Next, we turn to the dependence of a firm’s choice on its own belief and the beliefs of
other firms. A clear-cut result holds for the technology choices which behave like strategic
substitutes, with a strict monotonicity unless the firm is subject to binding constraints.

Theorem 4.2. Consider the equilibrium technology choice ri of any firm i.

(i) ri is weakly decreasing in i’s own belief. The decrease is strict iff i is orange.28

26If the initial equilibrium is on the boundary between two regimes, we use the flexibility mentioned in
Remark 3.1 and define the boundary as part of a regime which is preserved by the perturbation. Due to the
differentiability of the boundaries, this is always possible.

27The same happens if all red firms are infinitely skeptical and thus completely unaffected by emissions, a
situation that was excluded in this section.

28Here “iff” stands for “if and only if.”
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(ii) ri is weakly increasing in the belief of any other firm j 6= i. The increase is strict iff i
is orange and j emits carbon (i.e., j is not green).

In the preceding result, binding constraints cause little complication because the tech-
nology choice remains constant at those boundaries. This is not the case for the production
quantities and carbon emissions, whose comparative statics depend on the type of firm.

Theorem 4.3. (a) Consider the equilibrium carbon emission ki and production quantity qi
of any firm i.

(i) ki is weakly decreasing in firm i’s own belief. The decrease is strict unless i is green.

(ii) qi is weakly decreasing in firm i’s own belief. The decrease is strict as long as i is not
green and red firms exist in the economy.

(b) Consider a second firm j 6= i.

(i) If firm j is green, its belief does not affect other firms.

(ii) If firm j is orange and firm i is red, ki and qi depend ambiguously on j’s belief. The
direction depends on the other firms (see Remark C.2).

In the remaining cases,

(iii) ki is weakly increasing in j’s belief, and strictly increasing unless i is green,

(iv) qi is strictly increasing in j’s belief if j is red, but weakly decreasing if j is orange. The
decrease is strict unless there are no red firms.

The results on ki are mostly intuitive. If a firm j grows more concerned about climate
impacts, it reduces its emissions. As a consequence, the marginal cost of carbon decreases
and other firms increase their emissions. The case where i is red and j is orange is more
complex, in part because the carbon is coupled with the production quantity for red firms.
The direction of change then depends on the characteristics of other red firms (if any) and
the ranking of the beliefs among the red firms; cf. Remark C.2 for details.

The observations about qi can be understood as in the discussion after Theorem 4.1.
If j is red and grows more concerned about climate impacts, it reduces its emissions and
hence, a fortiori, its production quantity. Other firms then face less competition and increase
their quantity. If j is orange, however, it reduces emissions by changing technology rather
than quantity. Red firms then increase their production since the marginal cost of carbon
has decreased, but green and orange firms decrease their production as a reaction to the
competition from red firms. Again, the case (ii) is discussed in Remark C.2.

5 Repeated Game and Cumulative Temperature Change

In this section we consider a repeated version of the Cournot game. Suppose that after the
carbon has been emitted and all goods have been sold, firms start a new planning phase similar
to the first one. The emitted carbon, zero before the first round, accumulates and becomes
external carbon for the next round. The goods from the previous rounds are considered
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consumed, so that the demand is determined by the same utility function in each round. We
assume that firms are myopic in their planning, but firms’ views on climate change can evolve
from one round to the next: the coefficients in the m-th round are denoted a

(m)
j . Under

specific conditions, we will see below that the long-run limit m → ∞ allows for closed-form
expressions for the accumulated carbon and temperature increase.

The scenario we have in mind is that the “true” value of the TCRE is approximately
constant over time and firms learn this value as time progresses, so that all a(m)

j converge to
the same value as m→∞. Such a scenario is more likely when total emissions remain small.
If the TCRE increases substantially over time or the observed climate changes dramatically
so that firms’ optimization problems are altered fundamentally (e.g., a climate tipping event
is observed and triggers changes in regulation and firms’ available actions), the modeling as
a repeated game as well as the technical condition below do not hold.

The following results show that the total carbon in the repeated game stabilizes at a level
that is determined by the most skeptical firm in the long run; i.e., the minimal parameter α2

i

or equivalently the maximal ai. In our next result, firms increasingly use green technology
and the total carbon stabilizes at the level of the largest limit point

a := lim sup
m→∞

max{a(m)
1 , . . . , a(m)

n } ∈ [0,∞].

The result assumes that a(m)
j ≤ a for allm and j. This is clearly satisfied if the sequences a(m)

j

are increasing inm, as would be the case e.g. if the variance of the TCRE under the subjective
views decreases over time while the mean is constant. Importantly, the assumption excludes
a scenario where some coefficients a(m)

j are high at an intermediate time but all coefficients
eventually become small. Then, carbon at the intermediate time may exceed a even though
it accumulated in a relatively shorter time—after the intermediate period all firms become
so concerned about climate impacts that they use the zero-emissions technology. An obvious
example is when a = 0 and a(1) > 0. For instance, suppose that in the first rounds, some
firms believe that a tipping event will happen and others do not. If at some point the tipping
event indeed happens and all firms use the zero-emissions technology going forward, the total
carbon would remain at the threshold level of the event rather than corresponding to a long
run belief.

Proposition 5.1. Suppose that c+d < A and a(m)
j ≤ a for all m and j. Then the accumulated

carbon emissions converge to a as m→∞.

Suppose that the limit a corresponds to the true (deterministic) TCRE α. If K = a
denotes the limiting total carbon and T = αK = αa the corresponding temperature increase,
Proposition 5.1 shows that

T =
d

bα
.

Recall the tax interpretation of the price function: bα is the tax rate, per unit of carbon
emitted and temperature increase. Thus, the limiting temperature change T is succinctly
described as the quotient of the extra cost d for the green technology and the tax rate.

The assumption that c + d < A is essential in Proposition 5.2 because it allows firms to
use green technology to reduce carbon emissions while keeping the quantity produced above
a threshold. If A ≤ c + d, consumers will not pay for the green technology and the limit
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is different: the total carbon now stabilizes because the production tends to zero and the
economy comes to a standstill. We also assume that c < A; otherwise no goods are produced
and the result is trivial.

Proposition 5.2. Suppose that c < A ≤ c + d and β(m)
j ≥ β for all m and j, where β =

lim infm→∞min{β(m)
1 , . . . , β

(m)
n } ∈ [0,∞]. Then the accumulated carbon emissions converge

to (A− c)/β.

6 Conclusion

We formulate a partial equilibrium model where firms make irreversible decisions about pro-
duction and emissions with the aim of maximizing expected future profits. Profits are reduced
by carbon taxes at a rate that depends on future climate change, hence is endogenous and
uncertain at the time of planning. Taxes are imposed by an outside regulator and incentivize
firms to mitigate emissions. Firms agree-to-disagree about the climate impact of carbon and
therefore about the tax rate. The framework of agreeing to disagree seems adequate given
that the equilibrium depends only on the second moments of the beliefs and actions (e.g.,
starting to build a nuclear plant) are mostly observable. This argument does not extend to
the regulator, who is not part of the partial equilibrium. It may be interesting to study a
model where the role of signaling for the regulator can be investigated. In the present model,
the regulator has already put in place an adjustment policy to a single source of uncertainty,
the change of temperature. In reality, the regulator is concerned with the “cost” of climate
change—which is itself uncertain and whose estimate changes with scientific advances and
public opinion, creating an intricate and time-inconsistent decision problem (e.g., Ulph and
Ulph, 2013, Jakob and Brunner, 2014).

Our model allows us to study how a firm would position itself in an economy where
competitors differ in their expectations about the future cost of carbon. More generally, this
may inform our thinking regarding changes in consumer preferences or other climate-related
risks. In this model, mitigation efforts act as substitutes and are increasing in the variance of
the subjective belief on the carbon-climate response. That is, for a given firm, having skeptical
competitors and large uncertainty leads to higher mitigation efforts. This is consistent with
a standard Cournot model without technology choice and taxes, yet a more detailed analysis
of the comparative statics reveals that reactions in terms of production and carbon quantity
depend on the relative position of the firm in the economy. Indeed, the technology choice
decouples production and emissions and hence allows firms to react differently to the prices of
the good and carbon. In several equilibrium regimes, carbon taxes reduce emissions without
lowering the production quantity.
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A Existence, Uniqueness, Characterization of Equilibrium

The following result states the optimality conditions for a given firm. In particular, these
formulas apply in any equilibrium. The sets Iq0 , I

r
0 , Iint, I1 in the proposition correspond to

the color coding white, green, orange, red used in the body of the text. We recall the quantities
introduced in (2.2).

Proposition A.1. Let A, c, d, α2
i > 0 and K−i ≥ 0 and 0 ≤ Q−i ≤ A. Set z = A− c− d and

βi = bα2
i and ai = d/βj.29 Define the sets

Iq0 = {i : z −Q−i + βi(ai −K−i) ≤ 0 and Q−i ≥ z},
Ir0 = {i : K−i ≥ ai and Q−i < z},
Iint = {i : K−i < ai and Q−i −K−i < z − ai},
I1 = {i : z −Q−i + βi(ai −K−i) > 0 and Q−i −K−i ≥ z − ai}.

These sets form a partition of {1, . . . , n}. Fix a firm i and suppose the quantity Q−i of
the good and K−i carbon are supplied exogenously. Then there exists a response (ri, qi) ∈
[0, 1]× [0, A−Q−i] which maximizes the expected profit (2.1) of firm i, and (ri, qi) is unique
with the convention that ri = 0 when qi = 0. Denoting Q = Q−i + qi and K = K−i + riqi, we
also have

Iq0 = {i : z −Q+ βi(ai −K) ≤ 0 and Q ≥ z},
Ir0 = {i : K ≥ ai and Q < z},
Iint = {i : K < ai and Q−K < z − ai},
I1 = {i : z −Q+ βi(ai −K) > 0 and Q−K ≥ z − ai}.

Moreover, with ki = riqi, the following hold.
29In the case α2

i = 0 the statements need to be read with βi = 0, ai =∞ and βiai = d.
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(i) i ∈ Iq0 if and only if qi = 0. Then, ki = 0 and ri = 0.

(ii) i ∈ Ir0 if and only if ri = 0 and qi > 0. Then, qi = 1
2(z −Q−i) = z −Q and ki = 0.

(iii) i ∈ Iint if and only if ri ∈ (0, 1) and qi > 0. Then,

qi =
1

2
(z−Q−i) = z−Q, ki =

1

2
(ai−K−i) = ai−K, ri =

ai −K−i
z −Q−i

=
ai −K
z −Q

.

(iv) i ∈ I1 if and only if ri = 1 and qi > 0. Then, ki = qi and

qi =
1

2

1

1 + bα2
i

[A− c−Q−i − bα2
iK−i] =

1

1 + bα2
i

[A− c−Q− bα2
iK].

Proof. We derive the assertions referring to K−i and Q−i. Once these are established, the
assertions referring to K and Q are a direct consequence. One verifies that Iq0 , I

r
0 , Iint and I1

are disjoint and that their union is {1, . . . , n}, by using the inequalities in their definitions.
We first assume that α2

i > 0.
Recall from (2.1) that for an arbitrary choice (r, q) ∈ [0, 1]× [0, A−Q−i], firm i’s expected

profit is
Ei[πi(r, q)] = (A− q −Q−i)q − bα2

i (rq +K−i)rq − (c+ d− dr)q.

We may express this in terms of q and k = rq as

(A− q −Q−i)q − bα2
i k

2 − bα2
iK−ik − (c+ d)q − dk.

This continuous function is jointly strictly concave on the compact simplex 0 ≤ k ≤ q ≤
A − Q−i; therefore, it admits a unique maximizer. In view of our convention that ri = 0 as
soon as qi = 0, it follows that Ei[πi(r, q)] has a unique maximizer (qi, ri) ∈ [0, 1]× [0, A−Q−i].
In fact, as q 7→ Ei[πi(r, q)] is strictly decreasing for q ≥ A − Q−i, we see that (ri, qi) is also
the unique maximizer in [0, 1]× R+. It will be convenient to rearrange the terms,

Ei[πi(r, q)] = [z −Q−i + βi(ai −K−i)r]q − (1 + βir
2)q2.

Next, we analyze the first-order conditions for interior maxima as well as the potentially bind-
ing constraints q ≥ 0 and r ≥ 0 and r ≤ 1.

Case 1: Suppose that qi = 0. Then Ei[πi(ri, qi)] = 0 = Ei[πi(r, qi)] for all r ∈ [0, 1] and it
follows that

0 ≥ ∂qEi[πi(r, q)]|q=0 = z −Q−i + βi(ai −K−i)r

for all r ∈ [0, 1], as otherwise (ri, qi) would not be a maximizer. The above holds in particular
for r = 0 and r = 1; that is, z − Q−i ≤ 0 and z − Q−i + βi(ai −K−i) ≤ 0, or equivalently
i ∈ Iq0 . We have ri = 0 by our convention and ki = 0 is clear.

For the remaining cases, suppose that qi > 0. Then qi is an interior maximum and
∂qEi[πi(ri, qi)] = 0 which yields that qi = qi(ri) for qi(r) = 1

2
1

1+βir2
[z −Q−i + βi(ai −K−i)r].
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Moreover, for any r ∈ [0, 1], we have Ei[πi(r, qi(r))] = [z−Q−i+βi(ai−K−i)r]2
4(1+βir2)

and

∂rEi[πi(r, qi(r))] =
z −Q−i + βi(ai −K−i)r

2(1 + βir2)2
×{

βi(ai −K−i)(1 + βir
2)− [z −Q−i + βi(ai −K−i)r]βir

}
=
βi[z −Q−i + βi(ai −K−i)r]

2(1 + βir2)2
{ai −K−i − (z −Q−i)r} .

Case 2: Suppose that ri = 0 and qi > 0. Then 0 < qi = qi(0) = 1
2(z − Q−i) and in par-

ticular Q−i < z. Moreover, we must have 0 ≥ ∂rEi[πi(r, qi(r))]|r=0 = 1
2(z−Q−i)βi(ai−K−i)

which then yields ai ≤ K−i. Thus, i ∈ Ir0 .

Case 3: Suppose that ri ∈ (0, 1) and qi > 0. Then

0 < qi = qi(ri) =
1

2

1

1 + βir2i
[z −Q−i + βi(ai −K−i)ri],

so that z−Q−i +βi(ai−K−i)ri > 0 and at least one of the terms z−Q−i and ai−K−i must
be strictly positive. Now ∂rEi[πi(ri, qi(ri))] = 0 yields ai −K−i = (z −Q−i)ri and it follows
both terms are positive. Moreover, ri = ai−K−i

z−Q−i ∈ (0, 1) shows that 0 < ai −K−i < z −Q−i
or equivalently i ∈ Iint, and finally using the same formula for ri in the general expression for
qi(r) also yields qi = qi(ri) = 1

2(z −Q−i).

Case 4: Suppose that ri = 1 and qi > 0. Then

0 ≤ ∂rEi[πi(r, qi(r))]|r=1 =
βi[z −Q−i + βi(ai −K−i)]

2(1 + βi)2
{ai −K−i − z +Q−i}

where once again z−Q−i+βi(ai−K−i) > 0 by the above formula for qi(r) and the assumption
that qi > 0, so it follows that ai −K−i ≥ z −Q−i and i ∈ I1. Moreover,

qi(1) =
1

2

1

1 + βi
[z −Q−i + βi(ai −K−i)] =

1

2

1

1 + βi
[A− c−Q−i − βiK−i)]

after recalling that z = A− c− d and βiai = d.

Finally, note that in view of the partition property and the fact that we have discussed all
possible cases for ri and qi, the above implications show a one-to-one correspondence between
Cases 1–4 and the sets Iq0 , I

r
0 , Iint and I1.

It remains to discuss the limiting case α2
i = 0. Here the expected profit is independent of

K−i and there is no incentive to produce with ri < 1. We readily see that either A− c ≤ Q−i
and qi = 0—that is, i ∈ Iq0—or A − c > Q−i and qi = 1

2(A − c − Q−i) > 0; i.e., i ∈ I1.
With the conventions βi = 0, ai = ∞ and βiai = d, these are indeed the statements of the
proposition in this case.

The following will be helpful to prove the existence of an equilibrium.

Remark A.2. (a) The optimal quantity qi is continuous in (Q−i,K−i) ∈ [0, A]×R+. Indeed,
in each of the four cases of Proposition A.1, qi is expressed as a continuous function qi =
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ϕi(Q−i,K−i). Each case is specified as a region in terms of (Q−i,K−i) and the union of
these regions is the whole space [0, A]×R+. It remains to note that the functions ϕi connect
continuously at the boundaries. Similarly, qi can be represented as a continuous function of
(Q,K), and the same is true for ki instead of qi.

(b) The optimal quantity qi satisfies qi ≤ (A− c)/2.

Remark A.3. In a given equilibrium, at most one of the following can occur: (i) some firm
produces zero quantity (i.e., Iq0 6= ∅), or (ii) some firm makes effort to reduce emissions (i.e.,
Ir0 ∪ Iint 6= ∅). Indeed, Proposition A.1 shows that (i) implies Q < z whereas (ii) implies
Q ≥ z. Of course, it is possible that neither (i) nor (ii) hold, meaning that all firms belong to
I1. To understand this exclusion economically, note that Q ≥ z implies Q−i ≥ z = A− c− d
for any firm i, in which case firm i would certainly not want to produce at a cost of c + d
per unit. More generally, opting for ri ∈ (0, 1) would be equivalent to producing part of the
quantity at price c and the rest at price c+ d, and the latter again cannot be optimal. Thus,
only ri = 0 is possible. Case (ii) is clearly the more relevant for our model. We can note
that in this case, the definitions simplify to Iq0 = ∅, Ir0 = {i : K ≥ ai}, Iint = {i : K <
ai and Q−K < z − ai}, I1 = {i : K < ai and Q− ≥ z − ai}.

The remainder of this section establishes existence and uniqueness of the equilibrium. We
start with the straightforward part.

Proof of Theorem 2.3—Existence of Equilibrium. Fix a firm i and consider arbitrary choices
(qj , kj)j 6=i for the other firms, where (qj , kj) ∈ D := [0, (A− c)/2]2, as well as external carbon
Kex ≥ 0. (While we can equivalently use (qj , rj) or (qj , kj) to characterize a strategy, we
opt for the latter in this proof because kj ’s continuity properties are more obvious.) Set
Q−i = min{

∑
j 6=i qj , A} and K−i = Kex +

∑
j 6=i kj . As mentioned in Remark A.2 (a), there

exists an optimal response (qi, ki) which depends continuously on (Q−i,K−i) and hence is
also continuous if seen as a function of (qj , kj)j 6=i:

(qi, ki) = Φi((qj , kj)j 6=i).

Moreover, Φi maps into D by Remark A.2 (b). Forming a vector Φ from the functions
Φ1, . . . ,Φn yields a map from Dn into itself with the following property: if (qj , kj)1≤j≤n is a
fixed point of Φ such that Q :=

∑
j qj ≤ A, then (qj , kj)1≤j≤n is a Nash equilibrium. Indeed,

the latter condition on Q ensures that Q−i =
∑

j 6=i qj and then (qi, ki) is the optimal response
to the other firm’s choices (qj , kj)j 6=i. Since Φ is continuous and ∅ 6= Dn ⊆ R2n is compact
and convex, Brouwer’s fixed point theorem (Aliprantis and Border, 2006, Corollary 17.56,
p. 583) implies that Φ has at least one fixed point.

Let (qj , kj)1≤j≤n be any fixed point and suppose for contradiction that Q ≥ A. As A > 0,
there is at least one firm i with qi > 0. We see from Proposition A.1 that Q−i = A implies
qi = 0, so we must have Q−i < A. But all cases in Proposition A.1 yield that qi < A −Q−i
as soon as Q−i < A, and hence Q = qi +Q−i < A. As a result, any fixed point of Φ satisfies∑

j qj < A and is a Nash equilibrium. This completes the proof of existence.

A.1 Proof of Uniqueness

Throughout this proof we consider one equilibrium denoted as above with (qj , rj)1≤j≤n, kj =
rjqj , Q =

∑
j qj , K = Kex +

∑
j kj , etc., and a second equilibrium for the same parameters
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whose quantities are denoted with prime (i.e., q′j , Q
′, . . . ). Our aim is to show that the two

equilibria coincide.

Lemma A.4. If K ′ ≥ K and Q′ ≥ Q, the two equilibria coincide.

Proof. As discussed in Remark A.2 (a), the optimal quantity qi of firm i is a continuous
function qi = ϕ(K,Q), and Proposition A.1 shows that ϕ is nonincreasing in both Q and K.
In particular, if K ′ ≥ K and Q′ ≥ Q, it follows that q′i = ϕi(K

′, Q′) ≤ ϕi(K,Q) = qi.
Summing this over i yields Q′ ≤ Q and we deduce that Q′ = Q and q′i = qi for all 1 ≤ i ≤ n.
The same arguments apply to k′i and ki.

Lemma A.5. Let G ⊆ (Ir0 ∪ Iint) consist of m ∈ {0, . . . , n} firms and let H denote the
remaining n−m firms. If QG =

∑
j∈G qj and QH = Q−QG are the total quantities of those

groups in a given equilibrium, then

QG =
m

1 +m
(z −QH).

Consider a second equilibrium (denoted with primes) and assume G ⊆ (Ir′0 ∪ I ′int). Then

Q′G −QG = − m

1 +m
(Q′H −QH) and Q′ −Q =

1

1 +m
(Q′H −QH).

Proof. Proposition A.1 shows that all i ∈ G produce the common quantity qi = z − Q =
z − QG − QH . Summing over i ∈ G yields that QG = m(z − QG − QH) which is the first
assertion. The same result holds in the second equilibrium and now the assertion about Q′G
follows by taking differences.

As m
1+m ∈ [0, 1), Lemma A.5 shows that given a change in QH , the group G would react

by partially, but not fully, compensating that change. This property of strategic substitutes
is the driving force in the following key lemma.

Lemma A.6. Let K ′ ≥ K and (Iq′0 ∪ I ′1) ⊆ (Iq0 ∪ I1). Then the two equilibria coincide.

Proof. Let G = Ir0 ∪ Iint and H = Iq0 ∪ I1. The assumption ensures that G ⊆ (Ir′0 ∪ I ′int).
We claim that k′i ≤ ki for all i ∈ G. Indeed, this is trivial if i ∈ Ir′0 . If i ∈ Iint ∩ I ′int, it
follows immediately from K ′ ≥ K and the formulas for ki, k′i in Proposition A.1 (iii). Finally,
i ∈ Ir0 ∩ I ′int is impossible since it would imply that K ≥ ai > K ′. Thus, the claim holds and
in particular K ′G ≤ KG (notation of Lemma A.5). As a consequence, any increase in total
carbon must come from H; that is, K ′H ≥ KH .

Note that firms i ∈ H = Iq0 ∪ I1 satisfy qi = ki (either both quantity and carbon are zero
or ri = 1) and thus KH = QH . On the other hand, r′j ≤ 1 for all firms, so that Q′H ≥ K ′H .
Therefore, K ′H ≥ KH yields that Q′H ≥ QH . Now Lemma A.5 shows that Q′ ≥ Q and we
conclude by applying Lemma A.4.

It is intuitive that if we (exogenously) add carbon to an equilibrium, any firm that previ-
ously used green technology will continue to do so—and even to a larger extent. This suggests
that the second condition in Lemma A.6 is always verified, as confirmed by the following.

Lemma A.7. Let K ′ ≥ K. Then (Iq′0 ∪ I ′1) ⊆ (Iq0 ∪ I1).
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Proof. We use the inequalities in Proposition A.1 to show that each of the possible violations
leads to a contradiction.

Let i ∈ I ′1 ∩ Ir0 , then K ≥ ai and hence K ′ ≥ ai. As i ∈ I ′1 means in particular that
z −Q′ + βi(ai −K ′) > 0, it follows that z −Q′ > 0. Together, we have z −Q′ > 0 ≥ ai −K ′,
which contradicts i ∈ I ′1.

Next, suppose that i ∈ I ′1 ∩ Iint. Then i ∈ I ′1 yields Q−K < z− ai whereas i ∈ I ′1 implies
Q′ −K ′ ≥ z − ai. Thus, Q′ − Q ≥ K ′ −K ≥ 0. Now Lemma A.4 shows that the equilibria
coincide and in particular I ′1 ∩ Iint = ∅.

Let i ∈ Iq′0 ∩ Ir0 , then Q′ ≥ z and z > Q, thus Q′ ≥ Q and we again obtain a contradiction
via Lemma A.4.

Finally, if i ∈ Iq′0 ∩ Iint, then Q− z < K − a < 0 ≤ Q′ − z and in particular Q′ ≥ Q, and
we conclude by Lemma A.4.

Proof of Theorem 2.3—Uniqueness of Equilibrium. Given two equilibria, we may label them
such that K ′ ≥ K. Then Lemma A.7 yields (Iq′0 ∪ I ′1) ⊆ (Iq0 ∪ I1) and now Lemma A.6 shows
that the two equilibria coincide.

B Proofs and Elaboration for Section 3

In Section 3.1 we discussed the case n = 2 of two firms under the condition that z > d or
equivalently A > c + 2d. Here, we treat the complete state space of possible parameters.
Recall that a firm producing nothing is called white—it clearly emits zero carbon, but this
is not necessarily because the firm cares about climate impacts. As before we label the two
firms such that a1 ≤ a2.

In the trivial case A − c ≤ 0, consumers are not willing to pay the marginal cost of
production and hence both firms are white. The case where A − c > 0 but z ≤ 0 has two
regimes: white-white if a1 > (1/d+ 2/a2)

−1 and white-red if a1 ≤ (1/d+ 2/a2)
−1. All these

are special cases of Example 3.4.
We now turn to the nondegenerate case z > 0. With respect to Section 3.1, there is an

additional regime “white-red.” Its appearance mandates that some of the other regimes carry
additional parameter restrictions (which are always verified when z > d as in Section 3.1);
this concerns the red-red and green-red regimes. The other regimes are unchanged.

(i) The regimes green-green, orange-orange, green-orange and orange-red are unchanged.

(ii) Red-red has the additional restriction a1a2 > d(a2 − 2a1).

(iii) Green-red has the additional restriction (d− z)a2 < 2zd.

(iv) White-red. Suppose that (d − z)a2 ≥ 2zd and d(a2 − 2a1) ≥ a1a2. Then q1 = k1 = 0
and q2 = k2 = A−c

2(1+β2)
. This regime does not exist when z > d as that renders the first

condition impossible. Moreover, as seen in Figure 4, this regime occurs only when a1 is
very large and a2 is small, or vice versa.

Finally, we report the proofs that were omitted in Section 3.
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a1

a2

z

z

Figure 4: Regimes of equilibria for the case of two. The white-red regimes cease to exist when
z > d.

Proof for Examples 3.2 and 3.3. It is straightforward that check that Q =
∑

j qj and K =
Kex +

∑
j rjqj with the stated definitions. The optimality for each firm can then be proved

by directly verifying the optimality conditions of Proposition A.1.

Proof for Example 3.4. Note that a1 ≤ · · · ≤ an is equivalent to ξ1 ≤ · · · ≤ ξn and that
a1 ≥ z + Kex implies aj ≥ z + Kex for 1 ≤ j ≤ n. It is straightforward that check that
Q =

∑
j qj with the stated definitions. Using the definition of n0, we verify that 1

1+βi
[z −

Q + βi(ai − K)] = ξi − Q ≥ 0 for i > n0 whereas the same quantity is < 0 for i ≤ n0.
To conclude that firms i > n0 belong to I1 (cf. Proposition A.1), it only remains to observe
z − ai ≤ z − a1 ≤ −Kex = Q−K. Whereas for i ≤ n0 to belong to Iq0 , we need to establish
that Q ≥ z. Indeed, we can assume that n0 ≥ 1 as otherwise there is nothing to prove.
Then the definition of n0 leads to Q = 1

n1+1

∑
j>n0

ξj > ξn0 ≥ ξ1. Noting that the assumed
inequality a1 ≥ z+Kex can be rearranged into ξ1 ≥ z, we conclude that Q ≥ z as desired. In
summary, the optimality criteria of i > n0 are the ones of I1 and the criteria of i ≤ n0 are the
ones of Iq0 . Since the stated formulas of qi and ki correspond to the ones of Proposition A.1
for these respective cases, (qj , kj)1≤j≤n indeed yield an equilibrium. Finally, the equilibrium
is unique by Theorem 2.3.

C More on Comparative Statics

We first derive several relationships between key quantities in the equilibrium (kj , qj)1≤j≤n
associated with a given set (α2

j )1≤j≤n of climate beliefs and fixed parameters A, b, c, d > 0
and Kex ≥ 0. Recall the definitions Ir0 , Iint, I1 of Proposition A.1. We will also find it useful
to abbreviate

G = Ir0 ∪ Iint, Aint =
∑
j∈Iint

aj , B1 =
∑
j∈I1

(1 + βj)
−1, QG =

∑
j∈G

qj

24



and similarly Q1 =
∑

j∈I1 qj , KG =
∑

j∈G kj and K1 =
∑

j∈I1 kj , as well as

n0 = |Ir0 |, nint = |Iint|, n1 = |I1|, m = |G| = n0 + nint.

Proposition C.1. In equilibrium, the following relations hold:

Q = Q0 +Qint +Q1, K = KG +K1 +Kex, K1 = Q1, (C.1)

QG =
m

m+ 1
(z −Q1) = m(z −Q), Q =

mz +Q1

m+ 1
, (C.2)

KG =
1

nint + 1
Aint −

nint
nint + 1

(Kex +Q1) = Aint − nintK, (C.3)

Q1 = B1(A− c−QG +KG +Kex)− n1K, (C.4)

K =
B1(A− c+md) + (B1 +m+ 1)(Aint +Kex)

(nint + n1 + 1)(m+ 1)−B1n0
, (C.5)

Q = z +
B1(A− c+ nintd)− (nint + n1 + 1)z + (B1 − n1)(Aint +Kex)

(nint + n1 + 1)(m+ 1)−B1n0
. (C.6)

Proof. The relations in (C.1) are clear and (C.2) is a special case of Lemma A.5. By Propo-
sition A.1 we have ki = ai −K for i ∈ Iint and ki = 0 for i ∈ Ir0 , so that summing over i ∈ G
yields KG = Kint = Aint − nintK and now K − KG = Q1 + Kex yields (C.3). For i ∈ I1,
Proposition A.1 yields that

qi = (1 + βi)
−1(A− c−Q− βiK) = (1 + βi)

−1(A− c−Q+K)−K
= (1 + βi)

−1(A− c−QG +KG +Kex)−K

and then summing over i ∈ I1 shows (C.4). Equations (C.1)–(C.4) yield the linearly indepen-
dent system

(B1 +m+ 1)Q+ (n1 −B1)K = B1(A− c) +mz,

(m+ 1)Q− (nint + 1)K = −Kex −Aint +mz

for Q,K which can then be solved to give (C.5) and (C.6).

Next, we use the above formulas to compute the directional derivatives and, in particular,
derive the results in Section 4. In all that follows, we may and will assume that the direction
of perturbation keeps the equilibrium in the same regime; that is, the sets Ir0 , Iint, I1 and hence
also the numbers n0, nint, n1, Aint, B1 are constant during the perturbation. As explained in
the beginning of Section 4, this is always true after defining the boundaries appropriately
(which corresponds to choosing appropriately the strict and non-strict inequalities in the
definitions of Ir0 , Iint, I1 in Proposition A.1). Denote by N = (nint+n1+1)(m+1)−B1n0 > 0
the denominator of (C.5) and (C.6). Using the formulas in Proposition C.1 and setting
ñ = n0 + nint + n1, we have

∂K

∂B1
=

(m+ 1)[(Aint +Kex)(ñ+ 1) + (nint + n1 + 1)(z + (m+ 1)d)]

N2
> 0,

∂Q

∂B1
=

(nint + 1)[(Aint +Kex)(ñ+ 1) + (nint + n1 + 1)(z + (m+ 1)d)]

N2
> 0,

∂K

∂Aint
=
m+ 1 +B1

N
> 0,

∂Q

∂Aint
=
B1 − n1
N

≤ 0.
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(Of course, the derivatives with respect toB1 make sense only when I1 is not empty—otherwise
there is no corresponding perturbation—and similarly for Aint.) Combining these derivatives
with the formulas for qi and ki in Proposition A.1 as well as (C.2) and (C.3), we can then
compute the following.

(i) Let i ∈ Iq0 . Then

∂ki
∂Aint

=
∂ki
B1

= 0,
∂qi
∂Aint

= − ∂Q

∂Aint
≥ 0,

∂qi
∂B1

= − ∂Q

∂B1
< 0.

(ii) Let i ∈ Iint. Then the formulas for qi in (i) still hold. In addition,

∂ki
∂B1

= − ∂K
∂B1

< 0,
∂ki
∂aj

= − ∂K

∂Aint
< 0 for i 6= j ∈ Iint,

∂ki
∂ai

= 1− ∂K

∂Aint
≥ nint(n+ 1)

N
> 0,

∂ri
∂aj

=
1

qi

(
ri

∂Q

∂Aint
− ∂K

∂Aint

)
< 0 for i 6= j ∈ Iint,

∂ri
∂ai

=
1

qi

(
1 + ri

∂Q

∂Aint
− ∂K

∂Aint

)
=

1

qiN
(N −m− 1−B1 + ri(B1 − n1)) > 0,

∂ri
∂B1

=
1

qi

(
ri
∂Q

∂Q1
− ∂K

∂Q1

)∂Q1

∂B1
=

1

qi

( ri
m+ 1

− 1

nint + 1

)∂Q1

∂B1
< 0.

(iii) Let i ∈ I1 and set bj = (1 + βj)
−1 for j ∈ I1. Then for all i 6= j ∈ I1,

∂ki
∂Aint

=
∂qi
∂Aint

=
(n1 −B1)− (1− bi)(ñ+ 1)

N
∈ R, (C.7)

∂ki
∂bj

=
∂qi
∂bj

= −(1− bi)n0 + nint + 1

n0 + nint + 1

∂K

∂B1
< 0,

∂ki
∂bi

=
∂qi
∂bi

> 0.

Remark C.2. The sign of the derivative ∂ki
∂Aint

in (C.8) is ambiguous in specific circumstances.
Suppose first that i is the firm with the smallest coefficient bi among the firms in I1, or
equivalently, the largest α2

i . Then B1 ≥ n1bi and hence ñ+ 1 > n1 implies

∂ki
∂Aint

=
(n1 −B1)− (1− bi)(ñ+ 1)

N
< 0 (C.8)

which is the same sign as ∂ki
∂aj

in (ii). Conversely, let i be the firm with the largest coefficient
bi among the firms in I1 (hence among all firms). Then it may happen that the expression
in (C.8) is strictly positive. For instance, in the extreme case α2

i = 0 we have bi = 1 and
∂ki
∂Aint

= n1−B1
N is strictly positive as soon as there exists some firm j ∈ I1 with α2

j > 0.
The intuition for this phenomenon is as follows. Suppose that a firm in Iint decreases

climate belief, which corresponds to an increase in Aint. Then, neglecting equilibrium effects,
it would emit more carbon and but keep the quantity constant. (Other firms in Iint may
partially compensate this; the cumulative change of Iint would still be an increase in carbon,
with a reduction in quantity.) A firm j ∈ I1 thus faces an environment with larger carbon
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emissions and similar production quantity. If bj is relatively small, the reaction is the expected
one: firm j emits less carbon and thus also produces less. In fact, this reduced production
more than compensates the increase in quantity from Iint. Suppose now that there is some
other firm i ∈ Iint with a small coefficient α2

i ; then this firm’s optimality condition is hardly
affected by the change in carbon; however, the decrease in quantity from the aforementioned
firm j has an outsized impact and leads firm i to produce more, and hence also emit more
carbon.

Remark C.3. The derivatives of K and Q with respect to Kex are the same as with respect
to Aint; this follows from the fact that (C.5) and (C.6) depend on the sum Aint +Kex rather
than the individual quantities. In particular, Q is decreasing with respect to Kex whereas K
is increasing. The carbon emission K −Kex from the firms, on the other hand, is decreasing
as ∂(K−Kex)

∂Kex
= 1

N (m+ 1 +B1 −N) < 0.

D Proofs for Section 5

Proof of Proposition 5.1. Let Km be the total carbon at the end of the m-th round. The se-
quence (Km) is monotone increasing, hence convergent. In any given round m, the optimality
conditions of Proposition A.1 hold with K = Km−1 +

∑
j kj and Q =

∑
j qj .

Suppose for contradiction that limKm > a. Let m ≥ 1 be the first round such that
Km > a, then in particular Km > a

(m)
j for all 1 ≤ j ≤ n. In view of Proposition A.1, all firms

are in Iq0 ∪ I
q
0 , hence no firm emits carbon and Km = Km−1. This contradicts the choice of

m. (In fact the same argument shows that if a > 0, then Km is strictly smaller than a for all
m; that is, the limit is not reached in finite time.)

It remains to show that limKm ≥ a. Assume first that Qm ≥ z holds for infinitely many
rounds m. Proposition A.1 shows that all firms are in Iq0 ∪ I1, so that the additional carbon
in round m is Km −Km−1 = Qm ≥ z. As z > 0, the presence of infinitely many such rounds
implies that limKm = ∞ ≥ a as desired. If the first assumption does not hold, there exists
m0 such that Qm < z for all m ≥ m0. Define a(m) = max{a(m)

1 , . . . , a
(m)
n }. If m ≥ m0 and

a(m) <∞, then
Km ≥ max

{
Km−1, λa

(m) + (1− λ)Km−1)
}

(D.1)

for some λ > 0 independent of m. This follows by noting that Km ≥ Km−1 and applying
Lemma D.1 below to the firm i with a

(m)
i = a(m). Whereas if m ≥ m0 and a(m) = ∞, we

check directly that ki ≥ 1
2(A− c−Q−i) ≥ d/2 and hence

Km ≥ Km−1 + d/2. (D.2)

The combination of (D.1) and (D.2) shows that limKm ≥ lim sup a(m) = a, and that com-
pletes the proof that limKm = a.

Lemma D.1. Consider an equilibrium with Q < z. Then every firm i satisfies ki ≥ λ(ai −
K−i) for λ := 1

2
bα2
i

1+bα2
i
> 0.

Proof. Let i be any firm. As Q < z, we have i /∈ Iq0 in Proposition A.1. If i ∈ Iq0 , then
ai−K−i < 0 and the claim is trivial. For i ∈ Iint the claim follows from Proposition A.1 (iii),
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even with λ = 1/2. For i ∈ Iint, note that Q < z implies Q−i < z and then A − c − Q−i ≥
d = bα2

i ai. Thus Proposition A.1 (iv) yields

ki = qi =
1

2

1

1 + bα2
i

[A− c−Q−i − bα2
iK−i] ≥

1

2

bα2
i

1 + bα2
i

[ai −K−i]

as claimed.

Proof of Proposition 5.2. We may assume that A > c; otherwise no goods are produced and
the result is clear. Note that c + d ≥ A (i.e., z ≤ 0) implies z ≤ Q and hence Ir0 =

Iint = ∅ in any round; cf. Proposition A.1. Fix a round m and let i be such that β(m)
i =

min{β(m)
1 , . . . , β

(m)
n }. Suppressing m in the notation and assuming first that βi > 0, the

formula for Q in Example 3.4 shows that

Q =
1

n1 + 1

(∑
j∈I1

A− c− βjKm−1
1 + βj

)
≥ 1

n1 + 1

(
A− c− βiKm−1

1 + βi

)

≥ βi
(n1 + 1)(1 + βi)

(
A− c
βi
−Km−1

)
≥ β

(n+ 1)(1 + β)

(
A− c
βi
−Km−1

)
and hence

Km = Km−1 +Qm ≥ λ
A− c
βi

+ (1− λ)Km−1 (D.3)

for λ = β
(n+1)(1+β) > 0. Whereas if βi = 0, the same line of argument yields

Qm ≥
A− c
n+ 1

. (D.4)

At least one of (D.3) and (D.4) holds in any roundm and we conclude that limKm ≥ (A−c)/β
(i.e., limKm =∞ if β = 0).

It remains to show that limKm ≤ (A− c)/β if β > 0. Again, fix a round m. As 1/(1 + x)
is decreasing and x/(1 + x) is increasing in x, Example 3.4 yields

Q =
1

n1 + 1

(∑
j∈I1

A− c− βjKm−1
1 + βj

)
≤ n1
n1 + 1

(
A− c− βiKm−1

1 + βi

)

≤ n1
n1 + 1

(
A− c− βiKm−1

βi

)
<
A− c
βi
−Km−1.

Thus, Km = Km−1 +Q < (A− c)/βi ≤ (A− c)/β and the result follows.

E Other Utility Functions

In this appendix we discuss a generalization where consumers’ utility function u is not
quadratic. For simplicity we focus on the interior type of equilibria with Kex = 0 and a
smooth utility function u : R+ → R. Stated in terms of the quantity qi and the carbon
ki = riqi, firm i’s expected profit is

Ei[πi(ki, qi)] = u′(Q)qi − bEi[α2]Kriqi − [c+ (1− ri)d]qi

= u′(qi +Q−i)qi − bα2
i (ki +K−i)ki − (c+ d)qi + dki.
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Interior maximizers satisfy ∂qEi[πi(ki, qi)] = 0 which withQ−i =
∑

j 6=i qj leads to the equation

u′′(
∑

jqj)qi + u′(
∑

jqj) = c+ d, 1 ≤ i ≤ n.

Given any solution (q1, . . . qn), the equation implies that qi = c+d−u′(Q)
u′′(Q) for Q =

∑
j qj , for

all i. That is, just as in Example 3.2, any solution consists of a common quantity q0 for all
firms, and clearly q0 must be a solution of

u′′(
∑

jqj)qi + u′(
∑

jqj) = c+ d. (E.1)

As discussed below, this equation may have zero, one or more solutions for general u, but
typical examples are well-behaved. Any solution induces an equilibrium as follows: suppose
that (E.1) has an interior solution q0 and that the associated optimal ki ∈ [0, ri] are interior.
Then the first-order condition ∂kEi[πi(ki, qi)] = 0 yields that ki = ai −K for K =

∑
j kj , or

equivalently ri = ki/qi = (ai −K)/q0, a direct extension of Example 3.2.

Example E.1. (a) For the logarithmic utility u(x) = log(x), the unique solution of (E.1) is
q0 = n−1

(c+d)n2 whenever n ≥ 2.
(b) More generally, consider the CRRA utility u(x) = (1 − γ)−1x1−γ where 0 < γ < n

and γ = 1 corresponds to the logarithmic case. Then the unique solution of (E.1) is q0 =
γ

√
n−γ

(c+d)γnγ+1 . For γ ≥ n, no positive solution exists.

The following is a general sufficient condition for existence.

Proposition E.2. Define the relative risk aversion ρ(x) = −xu′′(x)
u′(x) . Suppose that u satisfies

the Inada conditions u′(0) = ∞ and u′(∞) = 0 and that sup0≤x≤ε ρ(x) < n for some ε > 0.
Then (E.1) has a solution. If moreover nu′′′(nx)x+(n+1)u′′(nx) < 0, the solution is unique.

Proof. Note that ρ(x) is nonnegative and that

ϕ(x) := u′′(nx)x+ u′(nx) = u′(nx)

[
1 +

u′′(nx)x

u′(nx)

]
= u′(nx)

[
1− 1

n
ρ(nx)

]
is a continuous function of x. Under the stated conditions, ϕ(0) = ∞ and ϕ(∞) ≤ 0.
Thus, existence of a solution follows from the intermediate value theorem. Moreover, unique-
ness must hold when ϕ is strictly decreasing, and that is implied by the fact that ϕ′(x) =
nu′′′(nx)x+ (n+ 1)u′′(nx) < 0.
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