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Abstract
We study the problem of stopping a Brownian motion at a given

distribution ν while optimizing a reward function that depends on the
(possibly randomized) stopping time and the Brownian motion. Our
first result establishes that the set T (ν) of stopping times embedding ν
is weakly dense in the set R(ν) of randomized embeddings. In particu-
lar, the optimal Skorokhod embedding problem over T (ν) has the same
value as the relaxed one over R(ν) when the reward function is semi-
continuous, which parallels a fundamental result about Monge maps
and Kantorovich couplings in optimal transport. A second part studies
the dual optimization in the sense of linear programming. While exis-
tence of a dual solution failed in previous formulations, we introduce a
relaxation of the dual problem that exploits a novel compactness prop-
erty and yields existence of solutions as well as absence of a duality
gap, even for irregular reward functions. This leads to a monotonic-
ity principle which complements the key theorem of Beiglböck, Cox
and Huesmann [Optimal transport and Skorokhod embedding, Invent.
Math., 208:327–400, 2017]. We show that these results can be applied
to characterize the geometry of optimal embeddings through a varia-
tional condition.
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1 Introduction

Given a centered and suitably integrable probability distribution ν and a
Brownian motion B, the Skorokhod embedding problem [79] consists in find-
ing a stopping time τ which embeds ν; that is, Bτ has distribution ν. A
number of solutions exist and we denote the set of all such τ by T (ν). Ex-
amples include the classical Root [77] and Rost [78] embeddings; see [71] for
a survey of various solutions. The optimal Skorokhod embedding problem
is to maximize (or minimize) the expectation E[Gτ ] over τ ∈ T (ν), where
Gt = G((Bs)s≤t, t) is an adapted functional. For instance, the Root embed-
ding minimizes E[τ2] and the Rost embedding maximizes it; cf. [78]. Some
early works related to optimal Skorokhod embeddings are [16, 47, 53, 61].
More recently, connections to numerous questions in probability, analysis
and finance as well as extensions such as the multi-marginal case [7, 24, 42]
have emerged and led to substantial activity; we refer to [48] for a survey
with many more references.

A perspective pioneered by [6] is to see Skorokhod embeddings along the
lines of optimal transport theory: optimal stopping times are analogues of
Monge solutions to an optimal transport problem between the Wiener mea-
sure and ν. A more general formulation of the embedding problem allows
for a randomized stopping time; this can be interpreted as using an enlarged
filtration or allowing for an external randomization (see Definition 2.1). The
corresponding set is denoted R(ν) and gives rise to a relaxed formulation of
the optimal Skorokhod embedding problem. Continuing the analogy, ran-
domized stopping times correspond to transports in the sense of Kantorovich.
We refer to [4, 74, 75, 83, 84] for background on optimal transport.

In the existing literature on the optimal Skorokhod embedding problem,
a number of optimal embeddings have been found for specific reward func-
tionals G; e.g., [23, 47, 50, 51, 52]. In these examples, optimal embeddings
are often unique and belong to the class T (ν) of stopping times even if one
allows for randomized stopping times a priori. On the other hand, results
concerning the general structure of the optimal Skorokhod embedding prob-
lem such as [6, 41, 42] use the formulation with randomized stopping times.
Thus, an obvious—but not previously addressed—question is how to bridge
this gap: when can the supremum value over randomized stopping times
be achieved with stopping times? More generally, can randomized stopping
times be approximated by stopping times in a suitable sense?

The analogy to classical optimal transport theory is apparent. While the
Kantorovich relaxation is crucial to develop the theory, most examples of
specific interest lead to transport maps in the sense of Monge. For instance,
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Brenier’s theorem states that the optimal transport for the quadratic cost
(or reward, after changing the sign) is given by the gradient of a convex
function if the first marginal measure is absolutely continuous (or, more
generally, regular [62]). When the first marginal is atomless, it was shown
in [3] that Monge transports form a dense subset of Kantorovich couplings
and that the values of the Monge and Kantorovich transport problems agree
for bounded continuous reward functions. This result was extended to un-
bounded continuous functions in [73]; see also [59] for a survey of related
density properties.

In the first part of this paper, we provide comparable results for the
optimal Skorokhod embedding problem. In Theorem 2.3 we show that the
optimal embedding problems over T (ν) and R(ν) have the same value when-
ever the reward functional G is lower semicontinuous in time. This assertion
can fail when G is not lower semicontinuous (Example 2.4), and that fail-
ure highlights a contrast with classical approximation results for randomized
stopping times that hold without regularity conditions [5, 27, 34, 37]: the
constraint given by the fixed embedding target ν is not compatible with
the classical results and techniques. In Theorem 3.1 we establish the more
general result that T (ν) ⊆ R(ν) is dense for weak convergence. Our proof
is constructive and gives insight into why the first result can fail when G
is irregular. In a nutshell, the idea is to use a short initial segment of the
Brownian path as a randomization device for the rest of the problem. In
fact, we show that for randomized stopping times ξ ∈ R(ν) and reward
functions G that do not depend on an initial segment of the paths (in a
sense to be made precise), the expectation of G stopped at ξ can be exactly
replicated by a stopping time τ ∈ T (ν), without any need for approximation
(cf. Proposition 3.9). These ideas seem to be novel in the literature.

The optimal Skorokhod embedding problem over R(ν) is a linear pro-
gramming problem with constraints and thus has a dual programming prob-
lem. Formally, the domain of the dual problem is the set of all pairs (M,ψ)
where M is a martingale with M0 = 0 and ψ : R → R is a function such
that Mt + ψ(Bt) ≥ Gt for t ≥ 0. The dual problem then consists in min-
imizing ν(ψ) :=

∫
ψ dν over all such pairs (M,ψ). More specifically, [6]

uses martingales M that satisfy a quadratic growth condition relative to B
and functions ψ that are continuous and satisfy a growth condition, or [42]
works with similar functions ψ and supermartingales M . Such a dual prob-
lem has been used in numerous examples to help determine specific optimal
Skorokhod embeddings; e.g., [22, 23, 25, 44, 47, 50, 51]. Moreover, it plays
a vital role in [6] (see also [41]) in deriving a general monotonicity princi-
ple that describes the barriers representing optimal Skorokhod embeddings
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through their hitting times. While dual solutions have been found in those
specific examples, it has been observed in [6] that the dual problem fails to
have a solution in general; that is, the minimum is not attained. We refer to
the survey [48] for further references.

The second part of this paper introduces a novel relaxation of the dual
problem and establishes the existence of its solution as well as the absence
of a duality gap. Both of these results are obtained without continuity con-
ditions for G, thus paralleling the generality of Kellerer’s theorem [58] in
optimal transport and improving the results on the absence of a duality gap
in [6, 42]. There are no previous existence results in our setting. We can men-
tion [39] for a PDE approach with attainment in a different dual problem.
Here the reward G is given by the integral of a continuous, finite-dimensional
Lagrangian with exponential decay and the marginals are absolutely contin-
uous with compact support. Remarkably, [39] allows for multidimensional
Brownian motion.

Even if G is continuous and bounded, our main issue is the lack of com-
pactness for the martingale component. Broadly speaking, for a given mini-
mizing sequence (Mn, ψn) the functions ψn may have large positive values,
so that the inequality Mn

t +ψn(Bt) ≥ −‖G−‖∞ does not immediately result
in a lower bound for Mn. On the other hand, the limit of a sequence of
continuous-time (super-)martingales may fail to be a supermartingale in the
absence of a lower bound. A crucial feature of our relaxation is to work with
local martingales that have uniform lower bounds on sets where the Brown-
ian motion is bounded and bounded away from the extremes of the support
of ν. It turns out that on such sets we can obtain enough compactness, while
preserving the “weak” side of the duality. Less surprisingly, our functions ψ
are merely in L1(ν) rather than continuous. We provide counterexamples
showing that our positive results on duality can fail if one were to insist on
true (super-)martingales or continuous functions; cf. Section 7.

An analogous duality result was obtained in [12] (see also [11]) for the
so-called martingale optimal transport problem in a single period. The main
compactness issue sketched above does not arise in that setting; basically,
limits of martingales remain martingales in the discrete-time setting. A softer
part of our proof does overlap with [12], namely the use of capacity theory
to generalize from continuous to measurable reward functionals. Martingale
optimal transport refers to a transport problem where the transports are
constrained to be martingales. Originally motivated by model uncertainty in
financial applications [47], a rich literature has emerged around this subject;
see [48, 71, 82] for surveys and, e.g., [1, 8, 15, 9, 18, 19, 31, 35, 38, 40, 54,
67, 69, 70, 85] for models in discrete time and [14, 20, 23, 32, 33, 36, 44,
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45, 46, 49, 56, 66, 68, 80, 10, 81] for continuous time. Many of these works
exploit connections to the Skorokhod embedding problem. In particular, the
optimal Skorokhod embedding problem can be related, by a time change, to
the continuous-time martingale transport between two marginals. While a
duality theory with dual existence has been elusive for the latter transport
problem, the arguments in the present paper are expected to lead to such a
result since the compactness issues are similar. This will be investigated in
future work.

Our results on duality allow us to derive a monotonicity principle in the
spirit of [12], under an integrability condition on G. Namely, there exists a
universal support Γ that characterizes all optimal embeddings: ξ ∈ R(ν) is
optimal if and only if ξ(Γ) = 1. This complements the monotonicity princi-
ple of [6] which gives a geometric condition on the support that is necessary
for optimality, but not sufficient. By contrast, our result yields a necessary
and sufficient condition. However, the geometry of the support is merely
described in a weaker form, through the construction of Γ as the set where a
dual optimizer equals the reward functional (we exemplify in Section 6 how
this can be utilized to obtain more specific geometric statements). It is an
interesting question for future research how to unify these results, though
the answer does not seem to be within reach with present concepts and
knowledge. It is noteworthy that the integrability condition is crucial for
any monotonicity principle to hold; indeed, we provide a surprising example
showing that for general G, the optimality of embeddings cannot be char-
acterized in terms of the support. This contrasts with cyclical monotonicity
properties in classical optimal transport [84] as well as the result of [12] which
suggest that optimality of transports can be characterized by their geometry
in great generality.

In Section 6 we illustrate how our result on dual existence can be excep-
tionally useful to describe the geometry of optimal Skorokhod embeddings in
a concrete case. Namely, we specialize to a particular class of convex-concave
reward functions Gt = g(t) which give rise to embeddings that can be rep-
resented as hitting times of sets consisting of both a left and a right barrier
in the (t, x)-plane. This class of “cave” embeddings with a double boundary,
unifying the ones of Root and Rost, was introduced in [6]. In contrast to
Root’s and Rost’s, such barriers are not determined by ν alone but depend
on the details of the function g, and the arguments in [6] do not lead to a
characterization of the optimal barriers. We provide such a characterization
through a variational condition, very much inspired by [22] which studies a
different class of reward functions. The condition is related to the principle
of smooth fit for free boundary problems, and thus it is no surprise that the
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proof of sufficiency for optimality takes the form of a verification argument.
In [22], the proof of necessity is an impressive tour de force through a dis-
cretization that is carried out in the separate paper [21]. On the strength
of our result on dual existence, we can provide a much more direct proof.
First, we show that when the reward function is Markovian (that is, a de-
terministic function of time and current state), the abstract martingale M
in the dual can be replaced by a function of two variables. Then, we can
apply relatively soft probabilistic arguments to derive the variational char-
acterization. Importantly, our proof reveals that similar conditions should
extend to much more general classes of embeddings, and also suggests that
regularity results for the stopping boundaries can be obtained through the
dual maximizer. These aspects will be investigated in separate work.

The remainder of this paper is organized as follows. Section 2 details
the optimal Skorokhod embedding problem and states the equality of the
formulations with randomized and non-randomized stopping times for reg-
ular reward functions. The proof is given in Section 3 where it is shown
more generally how randomized stopping times can be approximated by
non-randomized ones. Section 4 introduces the relaxed dual problem and
provides the existence of a solution. The absence of a duality gap is proved
in Section 5 where we also state the monotonicity principle. In Section 6 we
discuss cave embeddings and characterize the optimal barriers by exploit-
ing our abstract results. Counterexamples regarding the formulation of the
dual problem and the monotonicity principle are gathered in Section 7. For
simplicity of exposition, we use a second moment condition on ν throughout
the paper. Appendix A explains how this can be replaced by a finite first
moment without much effort.

2 The Primal Problem

Let C0(I) be the set of continuous real-valued functions ω = (ωt)t∈I with
ω0 = 0, for any interval 0 ∈ I ⊆ R. We denote by S the space of stopped
continuous paths; that is, pairs (ω, t) with t ∈ R+ and ω ∈ C0([0, t]). The
set S is a Polish space under the topology induced by the metric

d((f, s), (g, t)) = |t− s| ∨ sup
u≥0
|fu∧s − gu∧t|.

We note that any (ω, t) ∈ C0(R+) × R+ projects to an element (ω|[0,t], t)
of S. Conversely, we can embed S in C0(R+) × R+, say by continuing any
stopped path in a constant fashion. This identification will sometimes be
used implicitly.
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We fix a reward function G : S → [0,∞]. Any such G can be seen
as an “adapted” process (in the sense of Galmarino’s test) on the canonical
space C0(R+) in that Gt(ω) := G(ω, t) depends only on ω|[0,t]. If G is Borel
measurable, it can be identified with an optional process on C0(R+) when the
latter is equipped with the (raw) canonical filtration F = (Ft)t≥0 generated
by the coordinate-mapping process B; i.e., Ft = σ(Bs, s ≤ t) where Bt(ω) =
ωt for (ω, t) ∈ C0(R+) × R+. Conversely, any adapted (optional) process
induces a function (Borel function) on S. We recall that with respect to F,
any measurable adapted process is already optional (and even predictable)
and refer to [29, Nos. IV.94–103, pp. 145–152] or [6, Section 3] for further
background on path spaces and their filtrations.

We equip C0(R+) with the Wiener measure W so that B is a standard
Brownian motion with initial distribution B0 ∼ δ0. In what follows, prob-
abilistic notions generally refer to the Wiener measure and the canonical
filtration unless a different context is given. All metric spaces are equipped
with their Borel σ-fields, (in)equalities of processes are to be understood up
to evanescence (meaning that the projection of the exceptional set is W-null)
and (in)equalities of random variables are in the almost-sure sense.

Consider a centered distribution ν on R with finite second moment (but
see Appendix A for a generalization to finite first moment). Let T be the
set of all a.s. finite F-stopping times and let T (ν) be the subset of all τ ∈ T
such that E[τ ] < ∞ and Bτ ∼ ν. The set T (ν) is nonempty; a number of
classical embeddings τ ∈ T (ν) can be found in [71]. The optimal Skorokhod
embedding problem with respect to stopping times is

ST (G) = sup
τ∈T (ν)

E[Gτ ].

Here and below, outer integrals are used whenever the integrand is not mea-
surable. The optimal Skorokhod embedding problem is often discussed with
respect to randomized stopping times, defined as follows.

Definition 2.1. A probability measure ξ on C0(R+)×R+ with disintegration
ξ(dω, dt) = W(dω)ξω(dt) is a randomized stopping time if ξω(R+) = 1 for
almost all ω and ω 7→ ξω([0, t]) is Ft-measurable for all t ≥ 0. We denote
the set of randomized stopping times by R.

We emphasize that our randomized stopping times are defined to stop
in finite time. We can embed T in R in a canonical way: τ is mapped to
the randomized stopping time ξτ with kernel ξτω := δτ(ω). The image of T
under this embedding is denoted by RT ; we will refer to its elements as non-
randomized stopping times. We note the analogy betweenR and Kantorovich
transports on the one hand versus RT and Monge transports on the other.

7



Definition 2.2. The set R(ν) consists of all randomized stopping times
ξ ∈ R such that ξ(t) <∞ and ξ ◦B−1 = ν. We write RT (ν) for the subset
of non-randomized stopping times.

Here t is the projection given by t(ω, t) = t and the two conditions corre-
spond to a finite first moment and the marginal constraint ν. In particular,
if ξ = ξτ represents a stopping time, then ξ(t) = E[τ ] and ξ ◦B−1 is the law
of Bτ . The optimal Skorokhod embedding problem is then given by

S(G) = sup
ξ∈R(ν)

ξ(G)

where again ξ(G) :=
∫
Gdξ. More briefly, we will also call this the primal

problem.
It is an obvious question, not previously addressed in the literature, to

give a general condition under which the two formulations of the optimal
Skorokhod embedding problem have the same value. The answer we provide
is: whenever the reward function G has sufficiently regular paths.

Theorem 2.3. Let G : C0(R+) × R+ → [0,∞) be Borel and adapted, and
let t 7→ Gt(ω) be lower semicontinuous for all ω ∈ C0(R+). Then

sup
ξ∈R(ν)

ξ(G) = sup
τ∈T (ν)

E[Gτ ].

The proof is stated in the next section; it is a consequence of Theo-
rem 3.1 below and the proof of the latter will also help to understand where
and how the regularity of G comes into play. Theorem 2.3 should be con-
trasted with results in unconstrained optimal stopping where value func-
tions over stopping times and randomized stopping times agree for general
measurable reward functions; see e.g. [43, Theorem 2.1]. In particular, the
following (well-known) example shows that lower semicontinuity of G is an
important assumption in Theorem 2.3: the nonstandard constraint given by
the marginal ν markedly changes the character of the question, as will be
discussed in more detail in Section 3.

Example 2.4. Let ν have an atom of mass a ∈ (0, 1) at the origin and let
G be the bounded upper semicontinuous function G(ω, s) = 1{0}(s). Then

sup
ξ∈R(ν)

ξ(G) = a > 0 = sup
τ∈T (ν)

E[Gτ ].

Indeed, any τ ∈ T satisfies W{τ = 0} ∈ {0, 1} by the Blumenthal 0-1
law. Hence, any τ ∈ T (ν) must be strictly positive a.s. which entails that
E[Gτ ] = 0. On the other hand, we can find ξ ∈ R(ν) with ξ({0}) = a and
any such ξ attains the supremum.
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3 Approximation of Randomized Stopping Times
with Fixed Marginal

The main aim of this section is a density result with respect to the weak
topology on C0(R+)×R+ (induced by the continuous bounded functions on
that space, as usual). We recall that RT (ν) is the embedding of T (ν) in R.

Theorem 3.1. Let ν be a centered probability on R with finite second mo-
ment. Then RT (ν) ⊆ R(ν) is dense for the topology of weak convergence.

Again, this should be compared with classical results on the convergence
of (convex combinations of) stopping times to randomized ones, such as
[5, 27, 34, 37]. Such approximations may not, in general, respect the con-
straint given by the marginal ν. In fact, in contrast to the unconstrained
setting, the extreme points of R(ν) are not necessarily contained in RT (ν)
(a counterexample can be deduced from [6, Example 6.19]).

Proof of Theorem 2.3. WhenG is bounded, the claim is a direct consequence
of Theorem 3.1 and the characterization of weak convergence in [55, Corol-
lary 2.9 and Proposition 2.11]. (The main point of [55] is that since we are
dealing with measures that all have the same first marginal W, weak conver-
gence implies convergence under bounded test functions that are continuous
in t but merely measurable in ω.) The result for general G now follows by
monotone approximation.

Our proof of Theorem 3.1, presented in the remainder of this section, is
constructive and gives direct insight why a singularity at the origin (as in
Example 2.4) is an obstruction. One result to be established as part of the
proof is that for randomized stopping times ξ and reward functions G that
do not depend on an initial segment of the paths (in a sense to be made
precise), the expectation ξ(G) can be exactly replicated by a stopping time
τ ∈ T (ν), without any need for approximation (cf. Proposition 3.9 below).

3.1 Proof of Theorem 3.1

Our first aim is to formalize and show that any ξ ∈ R(ν) can be approxi-
mated by randomized stopping times that do not stop right after time 0. We
denote by | · | the Euclidean norm in any dimension.

Definition 3.2. Let η > 0 and τη = inf{t : |(t, ωt)| ≥ η}. We say that a
randomized stopping time ξ is bounded away from 0 with lower bound η > 0
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if
ξω([τη(ω),∞)) = 1 for almost all ω ∈ C0(R+).

The set of all such ξ is denoted Rη. We also set R+ = ∪η>0Rη; any ξ ∈ R+

is called bounded away from 0. Finally, Rη(ν) := Rη ∩ R(ν) and R+(ν) :=
R+ ∩R(ν).

The terminology of lower bound is convenient but slightly abusive: intu-
itively, ξ ∈ Rη above means that ξ happens after time τη (but the time τη is
not bounded away from zero in the usual sense). Some more notation will
be useful.

Definition 3.3. Let ω, ω′ ∈ C0(R+), t ∈ R+, τ ∈ T and ξ ∈ R.

(i) The path of ω and ω′ glued at time t is

(ω ⊕t ω′)(s) := ω(s ∧ t) + ω′(s− t ∨ 0), s ≥ 0.

(ii) The path of ω after time t is

ωt7→(s) := ω(t+ s)− ω(t), s ≥ 0.

(iii) The randomized stopping time ξ shifted by τ , denoted τ ⊕ ξ, is defined
by its kernel

(τ ⊕ ξ)ω([0, t]) := 1τ(ω)<tξωτ(ω)7→([0, t− τ(ω)]), t ≥ 0.

The definition in (iii) can be understood as the randomized stopping time
ξ applied to the Brownian motion started at (τ,Bτ ). For instance, if τ = t0
is deterministic and ξ = ξσ corresponds to a nonrandomized stopping time
σ > 0, then τ⊕ξ corresponds to the stopping time (t0⊕σ)(ω) = t0+σ(ωt0 7→).

Lemma 3.4. For 0 < η < 1, define

ρ′η(ω) := inf{t : |ωt| = η}, ρη(ω) := inf{t ≥ ρ′η(ω) : |ωt| ∈ {0,
√
η}}.

For almost all ω ∈ C0(R+), we have

(i) ρη(ω)→ 0 as η → 0,

(ii) d((ωρη(ω)7→, t), (ω, t))→ 0 as η → 0, for all t ≥ 0.
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Proof. We show that (i), (ii) hold on the set I of all paths ω ∈ C0(R+) that
are not initially constant; i.e., ω|[0,ε] 6≡ 0 for all ε > 0. Notice that W(I) = 1.

(i) If ω ∈ C0(R+) is such that ρη(ω) does not converge to 0, we can find
ε > 0 and a sequence ηn → 0 such that ρηn(ω) ≥ ε for all n. In particular,
this implies that sups≤ε |ω(s)| ≤ √ηn for all n and therefore ω|[0,ε] ≡ 0; that
is, ω /∈ I.

(ii) Fix ω ∈ I and t > 0. Let η > 0 be small enough so that ρη(ω) < t
and consider some 0 < s < t. For s ≤ ρη(ω) we clearly have

|ωρη(ω)7→(s)− ω(s)| ≤ sup
u≤2ρη(ω)

3|ω(u)|.

Whereas for ρη(ω) < s ≤ t we have

|ωρη(ω)7→(s)− ω(s)| ≤ √η + sup
s≤t
|ω(ρη(ω) + s)− ω(s)|.

Combining these two inequalities, we obtain that

sup
s≤t
|ωρη(ω)7→(s)− ω(s)| ≤ sup

u≤2ρη(ω)
3|ω(u)|+√η + sup

s≤t
|ω(ρη(ω) + s)− ω(s)|.

Since ω is uniformly continuous on compact intervals, the right-hand side
tends to 0 when ρη(ω)→ 0, and the latter holds by (i) as η → 0.

Remark 3.5. IfG ∈ Cb(C0(R+)×R+) and ξ ∈ R, then ξ(G) = ξ(G(B·∧t, t))
by the adaptedness property of ξ ∈ R. As a result, the weak convergence
on R is also induced by the subset of adapted functions G which, in turn,
can be identified with Cb(S).

We can now show that any ξ ∈ R(ν) can be approximated with embed-
dings that are bounded away from 0—except in the trivial case ν = δ0 where
the assertion clearly fails.

Proposition 3.6. Let ν 6= δ0. Then R+(ν) is weakly dense in R(ν).

Proof. As ν 6= δ0, its potential function x 7→ uν(x) :=
∫
|x−y| ν(dy) satisfies

uν(0) > 0, and then by continuity of uν we even have miny∈[−√η,√η] uν(y) ≥√
η for η > 0 small enough. This shows that

µη :=
1

2
(δ−√η + δ√η) ≤c ν

where ≤c denotes the convex order. As a result, for η > 0 small enough we
can embed ν in a Brownian motion with initial distribution µη by a stopping
time χη with E[χη] <∞. (See [71] for the relevant background.)
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Given ξ ∈ R(ν), let ρη be as in Lemma 3.4 and define a family of ran-
domized stopping times ξη ∈ R via their disintegration,

ξηω := 1{ω(ρη(ω))=0}(ρη ⊕ ξ)ω + 1{|ω(ρη(ω))|=√η}(ρη ⊕ χη)ω.

Then we have ξη ∈ Rη(ν) by construction. Next, we show that ξη → ξ
weakly as η → 0. Let G : C0(R+) × R+ → R be bounded, continuous and
adapted, then

ξ(G) =

∫
C0(R+)

∫
R+

G(ω, s)ξω(ds)W(dω)

=

∫
C0(R+)

[∫
C0(R+)

∫
R+

G(ω, s)ξω(ds)W(dω)

]
W(dω′).

Using the stationarity and independence of Brownian increments, we can
similarly write the expectation ξη(G) as∫

C0(R+)

[
1ω′(ρη(ω′))=0

∫
C0(R+)

∫
R+

G(ω′ ⊕ρη(ω′) ω, s+ ρη(ω
′))ξω(ds)W(dω)

+1ω′(ρη(ω′)) 6=0

∫
C0(R+)×R+

G(ω′ ⊕ρη(ω′) ω, s+ ρη(ω
′))χη(dω, ds)

]
W(dω′).

Therefore,

|ξ(G)− ξη(G)|

≤
∫
C0(R+)

[∫
C0(R+)

∫
R+

|G(ω, s)−G(ω′ ⊕ρη(ω′) ω, s+ ρη(ω
′))|×

ξω(ds)W(dω)

]
W(dω′) + 2‖G‖∞W{ω′ : ω′(ρη(ω′)) 6= 0}.

We note that W{ω′ : ω′(ρη(ω
′)) 6= 0} =

√
η → 0 as a consequence of the

martingale property.
On the other hand, Lemma 3.4 yields that ρη(ω′)→ 0 for all ω′ outside

a nullset, and for such ω′ the second part of that lemma and the continuity
of G imply that

|G(ω, s)−G(ω′ ⊕ρη(ω′) ω, s+ ρη(ω
′))| → 0

for all ω. By bounded convergence, we conclude that |ξη(G)− ξ(G)| → 0 for
η → 0 as desired.
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For brevity, let us write Cb for the set of bounded continuous functions
on C0(R+)× R+. Next, we introduce the subset of test functions which are
independent of the initial segment of the path, or more precisely, their value
depends on the path ω before time τη only through the level ωτη(ω) at that
time.

Definition 3.7. Given η > 0, we write Cηb for the set of all G ∈ Cb with the
property that if ω, ω′ ∈ C0(R+) satisfy

τη(ω) = τη(ω
′) =: t0 and ω|[t0,∞) = ω′|[t0,∞), then G(ω, t) = G(ω′, t)

for all t ≥ 0. We set C+
b := ∪η>0C

η
b .

This definition is chosen so that the monotonicity property

Cηb ⊇ C
η′

b for η ≤ η′ (3.1)

holds. In particular, C+
b is the increasing limit of Cηb as η → 0.

Lemma 3.8. The weak topology on R(ν) induced by C+
b coincides with the

usual weak topology.

Proof. Let G ∈ Cb; then Gk(ω, t) := G(ωτ1/k(ω)7→, t) defines a function be-
longing to C1/k

b ⊆ C+
b . We have d((ωτ1/k(ω)7→, t), (ω, t)) → 0 similarly as in

Lemma 3.4 and as (Gk) is uniformly bounded this implies that ξ(Gk)→ ξ(G)
for all ξ ∈ R(ν). As a result, C+

b separates the points of R(ν); i.e., the in-
duced weak topology T + is Hausdorff. Since R(ν) is compact in the usual
weak topology T (see for instance [6, Theorem 3.14]) and T + ⊆ T , this
already implies the result. Indeed, the identity map from T to T + is con-
tinuous and maps compacts to compacts, hence is a homeomorphism.

A key insight is that for G ∈ C+
b , the expectation under a randomized

stopping time that is suitably bounded away from zero is (exactly) repli-
cated by a non-randomized stopping time. In particular, the necessity for
approximation when G ∈ Cb can be attributed to the initial portion of the
paths.

Proposition 3.9. Let η > 0 and ξ ∈ Rη(ν). Then there exists a non-
randomized stopping time ξ̄ ∈ Rη(ν) such that ξ̄(G) = ξ(G) for all G ∈ Cηb .

Before stating the proof, let us show how to combine the above results
to conclude Theorem 3.1.

13



Proof of Theorem 3.1. The case ν = δ0 is trivial; we assume that ν 6= δ0.
Fix ξ ∈ R(ν), then by Proposition 3.6 we can find ξn ∈ R1/n(ν) such that
ξn → ξ. Next, we use Proposition 3.9 to find corresponding non-randomized
stopping times ξ̄n ∈ R1/n(ν). Let G ∈ C+

b , then G ∈ Cηb for some η > 0
and for all n ≥ 1/η we have by (3.1) that ξ̄n(G) = ξn(G). In particular,
Lemma 3.8 implies that (ξ̄n) and (ξn) have the same weak limit; that is,
ξ̄n → ξ.

3.2 Proof of Proposition 3.9

The basic idea for this proof is to use the initial segments of the paths as
a randomization device which, since we are only testing with G ∈ Cηb , does
not affect the evaluation of G. We first state two auxiliary results.

Let λ be the Lebesgue measure on [0, 1]. We consider the product space
C̄0(R+) := C0(R+) × [0, 1] equipped with the product σ-field F̄ = F ⊗
B([0, 1]), the product measure W̄ = W⊗ λ and the product filtration F̄. Let
B̄ be the process defined by t 7→ B̄t(ω, u) = ωt for (ω, u) ∈ C̄0(R+); note
that B̄ is a Brownian motion under W̄. The following is well known (see for
instance the proof of [6, Theorem 3.8] and the subsequent lemma).

Lemma 3.10. Let ξ ∈ R have disintegration ξ = W(dω)ξω(ds). There exists
an F̄-stopping time ρ such that

ρ(ω, u) = inf{t ≥ 0 : ξω([0, t]) ≥ u} for a.e. (ω, u) ∈ C̄0(R+) (3.2)

and W̄ ◦ (B̄, ρ)−1 = ξ; that is, EW̄[G(B̄, ρ)] = ξ(G) for every G ∈ Cb.

The second auxiliary result concerns the “internal” randomization device
that will be used in lieu of the external randomization ([0, 1], λ) as in the
preceding lemma. This is somewhat involved because the randomization
needs to be implemented conditionally on the level Bτη(ω)—indeed, G ∈ Cηb
is independent of how a path reached this level at time τη(ω), but of course
not of the level itself.

Fix η ≥ 0. We note that the level h(ω) := Bτη(ω) of a path ω at the
(almost surely finite) time τη satisfies h(ω) ∈ (−√η,√η). Moreover,

τη(ω) =
√
η2 − h(ω)2

depends on ω only through h = h(ω). Given h ∈ R, we introduce the set

Ch := {ω ∈ C0(R+) : τη(ω) <∞, Bτη(ω) = h};

14



we think of Ch as a set of initial segments of paths (since the path after τη
will not be used). Given f ∈ Ch and ω ∈ C0(R+), we set

f ⊕ ω := f ⊕τη(f) ω

for brevity. We also denote by Wh the conditional law of B given Bτη = h.
That is, Wh is a stochastic kernel on (−√η,√η)× C0(R+) such that

W[A|Bτη = h] = Wh(A) = Wh(A ∩ Ch)

for h ∈ (−√η,√η) and A ∈ B(C0(R+)). In particular,

W(A) =

∫
R
Wh(A)µ(dh), µ := Law(Bτη).

Lemma 3.11. The measure Wh is atomless for all h ∈ (−√η,√η).

Proof. Consider the map Φ : C0(R+) → C0(R+) given by Φ(ω) = ωτη(ω)7→.
By the stationarity and independence of Brownian increments, the pushfor-
ward Wh ◦ Φ−1 is the Wiener measure and in particular atomless. As a
consequence, Wh is atomless, for if Wh had an atom then any pushforward
would also have an atom.

Lemma 3.12. Let (Py(dz)) be a stochastic kernel (Y,Y)×(Z,B(Z))→ [0, 1]
where Z is a Polish space and (Y,Y) is a measurable space. If Py is atomless
for all y ∈ Y , there exists a jointly measurable map (y, z) 7→ φy(z) ∈ [0, 1]
such that Py ◦ φ−1

y = λ for all y ∈ Y .

Proof. Recall that any two Polish spaces of uncountable cardinality are
homeomorphic as Borel spaces; cf. [72, Theorem 2.12, p. 14]. As atom-
less measures can exist only on uncountable spaces, we deduce that there
is a Borel homeomorphism Φ : (Z,B(Z)) → ([0, 1],B([0, 1])). Consider
Qy = Py ◦ Φ−1; then (Qy) are atomless probability measures; i.e., their
c.d.f.’s Fy(x) := Qy((−∞, x]) are continuous in x. By construction, they
are also measurable in y. In particular, as Caratheodory functions, they
are jointly measurable in (x, y); cf. [2, Lemma 4.51, p. 153]. Finally, recall
that if F is the c.d.f. of a random variable X with continuous distribution,
then F (X) ∼ λ. As a result, φy = Fy ◦ Φ satisfies the requirement of the
lemma.

Combining the two preceding lemmas, we obtain the following.

15



Corollary 3.13. There exists a jointly Borel measurable map

C0(R+)× (−√η,√η)→ [0, 1], (ω, h) 7→ φh(ω)

such that Wh ◦ φ−1
h = λ for each h.

We can now provide the proof of the proposition.

Proof of Proposition 3.9. Let ξ = W(dω)ξω(ds) be a disintegration of the
given randomized stopping time ξ ∈ Rη(ν) and define ξ̄ = W(dω)ξ̄ω(ds)
through

ξ̄f⊕ω :=

∫
Ch(f)

ξg⊕ωWh(f)(dg), f, ω ∈ C0(R+).

Clearly ξ̄f⊕ω depends on f only through h(f). We show below that ξ̄ ∈
Rη(ν) and ξ̄(G) = ξ(G) for all G ∈ Cηb . Admitting this for the moment, it
remains to construct a non-randomized stopping time with the same law as ξ̄.
Following Lemma 3.10, we can associate a stopping time (ω, u) 7→ ρ(ω, u) on
the probability space (C0(R+) × [0, 1],W ⊗ λ) with ξ̄, and we can choose a
version of ρ such that ρ(f ⊕ ω, u) depends on f only through h(f). Finally,
let φh be as in Lemma 3.13, then by construction, τ(ω) := ρ(ω, φh(ω)(ω)) is a
stopping time on C0(R+) such that W ◦ (B, τ)−1 = W̄ ◦ (B̄, ρ)−1 = ξ̄. Thus,
its embedding ξτ ∈ RT is the required non-randomized stopping time.

It remains to verify that ξ̄ ∈ Rη(ν) and ξ̄(G) = ξ(G) for all G ∈ Cηb .
Let f ∈ Ch and ω ∈ C0(R+); then ξ̄f⊕ω is adapted and concentrated on
[τη(f),∞)) since ξg⊕ω has these properties for all g ∈ Ch (recall that τη is
constant on Ch). This yields that ξ̄ ∈ Rη. Next, let G ∈ Cηb . Then ξ̄(G) is
equal to∫

C0(R+)

∫
R+

G(ω, s)ξ̄ω(ds)W(dω)

=

∫
R

∫
C0(R+)

∫
Ch

∫
R+

G(f ⊕ ω, s)ξ̄f⊕ω(ds)Wh(df)W(dω)µ(dh)

=

∫
R

∫
C0(R+)

∫
Ch

∫
Ch

∫
R+

G(f ⊕ ω, s)ξg⊕ω(ds)Wh(dg)Wh(df)W(dω)µ(dh)

=

∫
R

∫
C0(R+)

∫
Ch

∫
Ch

∫
R+

G(g ⊕ ω, s)ξg⊕ω(ds)Wh(dg)Wh(df)W(dω)µ(dh)

=

∫
C0(R+)

∫
R+

G(ω, s)ξω(ds)W(dω) = ξ(G).

This also implies that ξ̄(t) = ξ(t) < ∞, since t ∧ n ∈ Cηb for all n ∈ N.
Finally, to see that ξ and ξ̄ embed the same distribution ν, we show that

16



ξ̄(φ(B)) = ξ(φ(B)) for φ ∈ Cb(R). Indeed, consider G := φ(Bt∨τη) ∈ Cηb
(recall that adaptedness was not required). Since we already know that
ξ, ξ̄ ∈ Rη, we have ξ(φ(B)) = ξ(G) = ξ̄(G) = ξ̄(φ(B)) and the proof is
complete.

4 The Dual Problem

We first introduce the domain of the dual problem. To that end, recall
that ν is a centered distribution on R with finite second moment and let
J ⊆ R be the smallest convex set with ν(J) = 1. Thus, a boundary point
of J is contained in J if and only if it is an atom of ν. We fix1 an increasing
sequence (Kn) of compact intervals 0 ∈ Kn ⊆ J whose union is J and let

Tn = inf{t ≥ 0 : Bt ∈ ∂Kn}

be the first hitting time of the boundary ∂Kn. Recall that probabilistic no-
tions are understood with respect to the canonical space C0(R+) and that S
can be embedded in C0(R+) × R. We fix a (not necessarily measurable)
function G : S → [0,∞] and introduce the following.

Definition 4.1. Let D(G) be the set of all pairs (M,ψ) where the Borel
function ψ : J → R∪ {∞} is in L1(ν) and M is a (continuous) local (W,F)-
martingale with M0 = 0 such that

M + ψ(B) ≥ G on ∪n [0, Tn] (up to evanescence)

and M·∧Tn is bounded below for all n. The dual problem is

I(G) = inf
(M,ψ)∈D(G)

ν(ψ).

The continuity of M refers to its paths being a.s. continuous. We re-
call that Brownian local martingales always admit continuous versions and
assume implicitly that all local martingales are continuous in what follows.
We also note that ∪n[0, Tn] = R+×Ω if J = R. In Section 7 it will be shown
that the value of the dual problem I(G) can change if M is restricted to true
martingales or if ψ is restricted to continuous functions. As the relaxations
in Definition 4.1 are novel, we detail some technical observations.

1The results below do not depend on the choice of Kn. When ν has bounded support
with atoms at both endpoints, we can simply take Kn = J for all n.
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Remark 4.2. Setting T = limTn = inf{t ≥ 0 : Bt ∈ ∂J}, we have
∪n[0, Tn] = [0, T ] if J is closed and ∪n[0, Tn] = [0, T ) if J is open, but
in general either of the inclusions [0, T ) ⊆ ∪n[0, Tn] ⊆ [0, T ] can be strict
and the value of I(G) can change if ∪n[0, Tn] is replaced by [0, T ) in Def-
inition 4.1. One can, however, replace ∪n[0, Tn] by [0, T ] without altering
the value of I(G), since given (M,ψ) ∈ D(G) we may extend ψ by setting
ψ = ∞ on ∂J \ J without affecting ν(ψ). (We have nevertheless found it
less confusing to write ∪n[0, Tn] everywhere.)

Remark 4.3. Suppose that G is Borel measurable; i.e., G can be seen as
an optional process. Then the inequality M + ψ(B) ≥ G on ∪n[0, Tn] up to
evanescence is equivalent to the almost-sure inequalityMτ +ψ(Bτ ) ≥ Gτ for
all stopping times τ with τ ≤ Tn for some n. This follows from the optional
cross-section theorem; cf. [29, Theorem IV.84, p. 137].

Remark 4.4. Using Fatou’s lemma, boundedness from below of M·∧Tn im-
plies that for all stopping times σ ≤ τ ≤ Tn, the random variables Mσ,Mτ

are integrable and satisfy the optional sampling property E[Mτ |Fσ] ≤Mσ.

Lemma 4.5. Let (M,ψ) ∈ D(G). (i) We have W{τ ≤ Tn} → 1 and
M+ψ(B) ≥ G on [0, τ ] for all τ ∈ T (ν). (ii) We have M+ψ(B) ≥ G ξ-a.s.
for all ξ ∈ R(ν).

Proof. (i) Let τ ∈ T (ν); in particular, E[τ ] <∞. Since B·∧τ is a uniformly
integrable martingale and Bτ is supported on J , we have W{τ ≤ Tn} → 1
and hence [0, τ ] ⊆ ∪n[0, Tn]. In particular, M + ψ(B) ≥ G on [0, τ ] up to
evanescence.

(ii) Consider the stopping time ρ associated with ξ on the extended
space C̄0(R+); cf. Lemma 3.10. As W̄ ◦ (B̄, ρ)−1 = ξ, we can deduce the
claim by applying the arguments for (i) to ρ and B̄.

Lemma 4.6. Let (M,ψ) ∈ D(0) and write ψ∗∗ for the convex envelope on J .
Then (M,ψ∗∗) ∈ D(0); i.e.,

M + ψ∗∗(B) ≥ 0 on ∪n [0, Tn], (4.1)

and in particular ψ∗∗(0) ≥ 0.

Proof. We first observe that for x ∈ J ,

ψ∗∗(x) = inf
{

b
a+bψ(x− a) + a

a+bψ(x+ b) : a, b ∈ R+, [x− a, x+ b] ⊆ J
}
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where the sum is understood as ψ(x) if a = b = 0. Suppose that (4.1) fails,
then by the optional cross-section theorem there exist n ≥ 1 and a stopping
time σ ≤ Tn such that

W{Mσ + ψ∗∗(Bσ) < 0} > 0.

By the above formula for ψ∗∗(x) and a measurable selection argument, it
follows that there exist m ≥ n and Fσ-measurable random variables a, b ≥ 0
with [Bσ − a,Bσ + b] ⊆ Km such that

W
{
Mσ + b

a+bψ(Bσ − a) + a
a+bψ(Bσ + b) < 0

}
> 0. (4.2)

Let τ = inf
{
t ≥ σ : Bt − Bσ /∈ (−a, b)

}
and note that τ ≤ Tm. Then

optional sampling (cf. Remark 4.4) implies

Mσ + b
a+bψ(Bσ − a) + a

a+bψ(Bσ + b) ≥ E[Mτ + ψ(Bτ )|Fσ].

But (M,ψ) ∈ D(0) implies that Mτ + ψ(Bτ ) ≥ 0, and now a contradiction
to (4.2) ensues. In particular, ψ∗∗(0) ≥ 0. Hence, the convex function ψ∗∗

is bounded from below by a linear function and from above by ψ, so that
ψ∗∗ ∈ L1(ν).

The following normalization will be used repeatedly below.

Remark 4.7. Let (M,ψ) ∈ D(G) and c ∈ R. Define M ′ = M + cB and
ψ′(x) = ψ(x) − cx. Then (M ′, ψ′) ∈ D(G) since M ′ + ψ′(B) = M + ψ(B)
and B is a bounded martingale on [0, Tn] with B0 = 0.

Using this with the (left, say) derivative c := ∂−ψ∗∗(0) and recalling that
ψ∗∗(0) ≥ 0 by Lemma 4.6, we see that any (M,ψ) ∈ D(G) can be normalized
such that ψ∗∗ ≥ 0 and hence also ψ ≥ 0.

Next, we establish the key inequality for the “weak” duality and in par-
ticular that our definition of the dual domain is rigid enough despite the
relaxations.

Lemma 4.8. Let (M,ψ) ∈ D(0). (i) We have E[Mτ ] ≤ 0 for all τ ∈ T (ν).
(ii) We have ξ(M) ≤ 0 for all ξ ∈ R(ν).

Proof. (i) We prove the claim for any stopping time τ such that B·∧τ is
uniformly integrable, E[ψ(Bτ )] < ∞ and [0, τ ] ⊆ ∪n[0, Tn]; in particular,
these are satisfied for τ ∈ T (ν). Indeed, by Remark 4.7, we can assume
without loss of generality that ψ ≥ 0 and then 0 ≤ ψ∗∗ ≤ ψ. Since ψ∗∗ is
convex and ψ∗∗(Bτ ) is integrable, it follows that ψ∗∗(B·∧τ ) is a nonnegative
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uniformly integrable submartingale, hence of class (D). On the other hand,
Lemma 4.6 yields that M ≥ −ψ∗∗(B) on [0, τ ], so we conclude that M−·∧τ is
of class (D). Fatou’s lemma (in its version with a uniformly integrable lower
bound) now implies that E[Mτ ] ≤ 0.

(ii) Let ξ ∈ R(ν) and let ρ be the stopping time associated with ξ on the
extended space C̄0(R+); cf. Lemma 3.10. Then ξ ∈ R(ν) implies that ρ is
an embedding of ν into B̄ and the argument of (i) applied on C̄0(R+) yields
ξ(M) = EW̄[M(B̄)ρ] ≤ 0.

Definition 4.1 is tailored to imply the following closedness property; it
will be used to derive the absence of a duality gap in the next section and
immediately implies the existence of a dual optimizer.

Proposition 4.9. Consider Gk, G : S → [0,∞] and (Mk, ψk) ∈ D(Gk) for
k ≥ 1. Assume that Gk → G pointwise and supk ν(ψk) < ∞. Then there
exist (M,ψ) ∈ D(G) such that ν(ψ) ≤ lim inf ν(ψk).

Proof. Let c = sup ν(ψk). By passing to a subsequence we may assume that
lim ν(ψk) exists. By Remark 4.7, we may normalize ψk such that ψ∗∗k ≥ 0.

As ψk ≥ ψ∗∗k ≥ 0, Komlos’ lemma (see [28, Lemma A1.1] and its sub-
sequent remark) allows us to find convex combinations φk of (ψk, ψk+1, . . . )
which converge ν-a.s. Let ψ := lim supφn and note that

0 ≤ ν(ψ) = ν(lim inf φn) ≤ lim ν(φk) = lim ν(ψk)

by Fatou’s lemma. After replacing Mk with the corresponding convex com-
binations, we may assume that φk = ψk.

We have 0 ≤ ν(ψ∗∗k ) ≤ ν(ψk) ≤ c. As in the proof of [12, Proposition 5.5],
this implies a uniform (in k) bound for the Lipschitz constant of ψ∗∗k on each
compact subset of J , and hence a uniform bound 0 ≤ ψ∗∗k ≤ cn on Kn,
independent of k. By Lemma 4.6, it follows that

Mk ≥ −ψ∗∗k (B) ≥ −cn on [0, Tn].

This guarantees that (Mk) admit a limiting supermartingale Z in a suitable
sense. More precisely, [26, Theorem 2.7] and a diagonal argument show
that after taking suitable convex combinations Nk of (Mk,Mk+1, . . . ), there
exists an optional2 process Z which is a strong supermartingale (as defined

2 To be completely precise, [26] assumes the usual conditions for the filtration. We can,
for instance, apply their result in the W-augmented filtration Fa and then pass back to F
at the end of this paragraph: the local martingale M is necessarily continuous and hence
Fa-predictable, but then we can choose an F-predictable version (up to evanescence) of M
by applying [30, Appendix I.7, p. 399].
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in [30, Appendix I]) on [0, Tn] for all n and

Nk
τ → Zτ in probability

for any stopping time τ such that τ ≤ Tn for some n. We may assume that
Nk = Mk. As Z0 = 0, the process Z admits a Mertens decomposition Z =
M −A where A is nondecreasing, M is a local martingale and A0 = M0 = 0;
cf. [30, Appendix I.20, p. 414].

It remains to show that (M,ψ) ∈ D(G). Set H = lim supk(M
k+ψk(B));

then H is optional and H ≥ G on ∪n[0, Tn] up to evanescence. Thus, it
suffices to show that (M,ψ) ∈ D(H). Indeed, we have

Mτ ≥ Zτ ≥ −cn and Mτ + ψ(Bτ ) ≥ Zτ + ψ(Bτ ) ≥ Hτ

for all τ ≤ Tn. As H is optional, we conclude that (M,ψ) ∈ D(H) by using
Remark 4.3.

Applying Proposition 4.9 to a constant sequence, we deduce that dual
existence holds for general reward functions, in contrast to previous formu-
lations of the dual problem [6, 42] where existence can fail even for more
regular reward functions.

Corollary 4.10. Let G : S → [0,∞]. If I(G) < ∞, there exists a dual
optimizer (M,ψ) ∈ D(G).

5 Duality

In this section we combine the closedness result of Proposition 4.9 with
capacity theory and facts about optimal Skorokhod embeddings to establish
the absence of a duality gap. We first state the weak duality.

Lemma 5.1. Let G : S → [0,∞]. Then S(G) ≤ I(G).

Proof. We need to show that ν(ψ) ≥ ξ(G) whenever (M,ψ) ∈ D(G) and
ξ ∈ R(ν). Indeed, by Lemma 4.5 we have M + ψ(B) ≥ G ξ-a.s. Taking
expectations under ξ and recalling that ξ(M) ≤ 0 by Lemma 4.8, the claim
follows by the monotonicity of the (outer) integral.

Next, we state a duality result for semicontinuous functions. The follow-
ing is a consequence of [6, Theorem 1.2] as well as of [42, Theorem 2.4] after
noting that their dual domain is a subset of ours. We provide a sketch of
proof for the convenience of the reader.
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Proposition 5.2. Let G : S → R be bounded and upper semicontinuous.
Then S(G) = I(G).

Sketch of Proof. The inequality S(G) ≤ I(G) holds by Lemma 5.1. We
sketch an argument for the reverse inequality following [42] (and refer to the
latter for details). The key idea is to dualize the constraint ν and use the
Fenchel–Moreau theorem. Indeed, let V be the set of all centered probability
measures ν with finite first moment, equipped with the 1-Wasserstein metric.
One verifies that if νn → ν in V and ξn ∈ R(νn), then there exists ξ ∈ R(ν)
which is a weak limit of a subsequence (ξnk). Let ν ∈ V and let S(ν) =
S(G, ν) be the corresponding primal problem. Taking ξn ∈ R(νn) to be a
(1/n)-optimizer for the primal problem S(νn); i.e.,

ξn(G) ≥ sup
ξ′∈R(νn)

ξ′(G)− 1/n,

it follows that S(ν) ≥ ξ(G) ≥ lim supS(νn). In brief, ν 7→ S(ν) is upper
semicontinuous on V, and clearly it is also concave and finite-valued. The
space V can be seen as a closed convex subspace of a Hausdorff locally convex
vector space V of signed measures and ν 7→ S(ν) can be extended to V by
assigning the value −∞ outside of V. The topological dual is V ∗ = C1, the
space of continuous functions ψ : R → R with linear growth. The Fenchel–
Moreau theorem then shows that S(ν) is equal to its biconjugate,

S(ν) = S∗∗(ν) = inf
ψ∈C1

[
sup
ν′∈V

S(ν ′)− ν ′(ψ)

]
+ ν(ψ). (5.1)

Let us fix ψ ∈ C1 and focus on the inner optimization,

sup
ν′∈V

S(ν ′)− ν ′(ψ) = sup
ν′∈V

sup
ξ∈R(ν′)

ξ(G− ψ(B)).

Seeing the functional Y := G − ψ(B) as the reward function of an optimal
stopping problem, one can check that

v0(ψ) := sup
ν′∈V

sup
ξ∈R(ν′)

ξ(Y ) = sup
ξ∈R

ξ(Y ) = sup
τ∈T

E[Yτ ]

is simply the value function of the associated standard optimal stopping
problem. In particular, v0 = v0(ψ) is the initial value of the associated Snell
envelope Z; i.e., the minimal supermartingale dominating Y . We write its
Doob–Meyer decomposition as Z = v0+M−A whereM is a local martingale,
A is increasing and A0 = M0 = 0. Then

v0 +M ≥ Y or equivalently v0 +M + ψ(B) ≥ G.
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Since ψ has linear growth and G is bounded, v0 + M + ψ(B) ≥ G implies
that M·∧Tn is bounded below for all n. As a result, (M, ψ̄) ∈ D(G) for the
function ψ̄ := v0 + ψ. Since this holds for all ψ ∈ C1, (5.1) yields that

S(ν) = S∗∗(ν) = inf
ψ∈C1

v0(ψ) + ν(ψ) ≥ inf
(ψ̄,M)∈D(G)

ν(ψ̄) = I(G)

as desired.

On the strength of the closedness property in Proposition 4.9, we can use
capacity theory to extend the duality to measurable functions. Let [0,∞]S

be the set of all functions G : S → [0,∞], let USA+ be the sublattice of
upper semianalytic3 functions and let U be the sublattice of bounded upper
semicontinuous functions; note that U is stable with respect to countable
infima. A mapping C : [0,∞]S → [0,∞] is called a U-capacity if it is mono-
tone, sequentially continuous upwards on [0,∞]S and sequentially continuous
downwards on U .

Lemma 5.3. The mapping S : [0,∞]S → [0,∞] is a U-capacity.

Proof. As ξ(t) =
∫
x2 dν for all ξ ∈ R(ν), the set R(ν) is a nonempty com-

pact space of probability measures on S; see for instance [6, Theorem 3.14].
This implies that the associated sublinear map G 7→ supξ∈R(ν) ξ(G) ≡ S(G)
is a capacity. Indeed, continuity upwards is immediate by commuting two
suprema. Let Gn ∈ U decrease to G ∈ U , then there are ξn ∈ R(ν) such
that ξn(Gn) ≥ S(Gn)− 1/n. After passing to a subsequence, ξn → ξ weakly
for some ξ ∈ R(ν). Then S(G) = limm ξ(Gm) and for each m we have
ξ(Gm) ≥ lim supn ξn(Gm) ≥ S(Gm); thus S(G) ≥ lim supm S(Gm). The
reverse holds by monotonicity.

Lemma 5.4. The mapping I : [0,∞]S → [0,∞] is a U-capacity.

Proof. As I = S on U by Proposition 5.2, Lemma 5.3 already shows that I is
sequentially continuous downwards on U . Let G,Gn ∈ [0,∞]S be such that
Gn increases to G pointwise; we need to show that I(Gn)→ I(G). It is clear
that I is monotone; in particular, I(G) ≥ lim sup I(Gn), and I(Gn) → I(G)
if supn I(Gn) =∞.

3The function G is called upper semianalytic if the sets {G ≥ c} are analytic for all
c ∈ R, where a subset of S is called analytic if it is the image of a Borel subset of a Polish
space under a Borel mapping. Any Borel function is upper semianalytic and any upper
semianalytic function is universally measurable. See, e.g., [13, Chapter 7] for background.
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Hence, we only need to show I(G) ≤ lim inf I(Gn) under the condi-
tion that supn I(Gn) < ∞. Indeed, by the definition of I(Gn) there ex-
ist (Mn, ψn) ∈ D(Gn) with ν(ψn) ≤ I(Gn) + 1/n. Proposition 4.9 then
yields (M,ψ) ∈ D(G) with ν(ψ) ≤ lim inf[I(Gn) + 1/n], showing that
I(G) ≤ lim inf I(Gn).

We can now prove the main duality result. (Recall that dual attainment
was already stated in Corollary 4.10, without measurability assumptions.)

Theorem 5.5. Let G : S → [0,∞] be upper semianalytic. Then there is no
duality gap: S(G) = I(G) ∈ [0,∞].

Proof. In view of Lemma 5.3, Choquet’s capacitability theorem (see for in-
stance [58, Proposition 2.11]) shows that

S(G) = sup{S(G′) : G′ ∈ U , G′ ≤ G}, G ∈ USA+ .

By Lemma 5.4, the analogue holds for I, and hence the fact that S = I on U
by Proposition 5.2 already implies that S = I on USA+.

We deduce the following characterization of primal and dual optimizers.

Corollary 5.6. Let G : S → [0,∞] be upper semianalytic and S(G) < ∞.
Given (M,ψ) ∈ D(G) and ξ ∈ R(ν), the following are equivalent:

(i) (M,ψ) is optimal for I(G) and ξ is optimal for S(G),

(ii) M + ψ(B) = G ξ-a.s. and ξ(M) = 0,

(iii) M + ψ(B) = G ξ-a.s. and ξ(M) ≥ 0.

Proof. Theorem 5.5 shows that

ξ(ψ(B)) = ν(ψ) ≥ I(G) = S(G) ≥ ξ(G).

Given (iii), we have ξ(ψ(B)) ≤ ξ(G) and thus the above must be equalities;
that is, (i) holds. Given (i), these are again all equalities and then (ii) follows
after recalling that M + ψ(B) ≥ G ξ-a.s. and ξ(M) ≤ 0; cf. Lemma 4.5 and
Lemma 4.8. The implication from (ii) to (iii) is trivial.

Remark 5.7. The lower bound on G in our main duality results can be re-
laxed to the following condition: there exist ψ ∈ L1(ν) and a local martingale
M which is bounded on [0, Tn] for all n such that

G ≥ −M − ψ(B).

Indeed, the stated results can then be applied to G′ := G + M + ψ(B) ≥ 0
to derive the corresponding assertions for G.
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Next, we provide a monotonicity principle in the spirit of [12, Corol-
lary 7.8] which provides a universal support Γ characterizing all optimal
embeddings, under an integrability condition on G. As mentioned in the In-
troduction, this complements the monotonicity principle of [6] which gives a
geometric condition on the support that is necessary for optimality, but not
sufficient. The following condition is necessary and sufficient. However, the
geometry of Γ is merely described in a weaker form, through the construction
via a suitable dual optimizer in (5.2). We will exemplify in Section 6 how
to exploit such a description. For the statement, note that while ξ ∈ R is
defined as a measure on C0(R+)×R+, it naturally induces a measure on S:
for Γ ∈ B(S), we set ξ(Γ) = ξ{(ω, t) ∈ C0(R+)× R+ : (ω|[0,t], t) ∈ Γ}.

Corollary 5.8. Let G : S → [0,∞] be Borel and of class (D). There exists
a Borel set Γ ⊆ S such that a randomized stopping time ξ ∈ R(ν) is optimal
for S(G) if and only if it is concentrated on Γ; i.e., ξ(Γ) = 1.

Proof. Since G is of class (D), there exists a class (D) martingale N such that
G ≤ N ; cf. [30, Appendix I.24, p. 419]. In particular, ξ(G) ≤ ξ(N) = N0

for all ξ ∈ R(ν), showing that S(G) < ∞. Let (M ′, ψ) ∈ D(G) be a dual
optimizer as guaranteed by Corollary 4.10, normalized such that ψ ≥ 0.
Define

M = M ′1[0,τ ] +N1[τ,∞) where τ = inf{t ≥ 0 : M ′t = Nt}.

Then (M,ψ) ∈ D(G) is again a dual optimizer and as M+ is of class (D),
Fatou’s lemma (in its version with a uniformly integrable bound) yields that
ξ(M) ≥ 0 for any ξ ∈ R. We set

Γ := {M + ψ(B) = G} ⊆ S, (5.2)

then the equivalence of (i) and (iii) in Corollary 5.6 shows that ξ ∈ R(ν) is
optimal if and only if ξ(Γ) = 1.

In the above proof, the integrability of G is used to infer that there exists
a dual optimizer (M,ψ) such that ξ(M) = 0 for all ξ ∈ R(ν). We will see
in Section 7.3 that this need not hold when G is not of class (D), even if
S(G) < ∞. More surprisingly, Corollary 5.8 and even the very essence of
the monotonicity principle may fail: the optimality of an optimal embedding
cannot be described through its support in that case.
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6 Optimal Cave Embeddings

In this section, we consider an optimal Skorokhod embedding problem intro-
duced in [6] where the (unique) optimal embedding is the hitting time of a
set that is cave-shaped; that is, consists of a left and a right barrier. There
are typically infinitely many such caves that embed a given distribution ν,
leading to the question of how to characterize the optimal one. Our main
purpose here is to exemplify how our result on dual existence can be useful in
deriving a variational characterization. The characterization itself is similar
to the one provided by Cox and Kinsley in [22] for a different class of reward
functions. However, thanks to dual existence, our argument here is much
more direct than the one of Cox and Kinsley who develop a discretization
approach [21] in order to reduce to finite-dimensional linear programming
problems and obtain their result through tedious and delicate limiting argu-
ments. More importantly, the proof given here suggests that the variational
condition holds for much more general classes of embeddings, an issue to be
addressed in future work.

We first fix some terminology (see also [6, 22, 71]). Let (R+ × R)∗ =
(R+×R)\{(0, 0)} be the punctured half-plane. Following Root’s embedding,
a right barrier is a closed set R ⊆ (R+ × R)∗ which is closed to the right;
that is, (s, x) ∈ R and t ≥ s imply (t, x) ∈ R. Such a barrier is characterized
by a function x 7→ r(x) ∈ [0,∞] which traces its left boundary,

r(x) = inf{t ≥ 0 : (t, x) ∈ R}, inf ∅ := +∞.

Similarly, in the spirit of Rost, a left barrier L is a closed subset of (R+×R)∗

which is closed to the left. It is characterized by a function x 7→ l(x) ∈
{−1} ∪ [0,∞) where we now set

l(x) = sup{t ≥ 0 : (t, x) ∈ L}, sup ∅ := −1.

Note that we use the value −1 for gaps in the left barrier.

Definition 6.1. Given tp ∈ R+, a cave barrier with parting tp is a set L∪R
where L ⊆ [0, tp]×R is a left barrier and R ⊆ [tp,∞)×R is a right barrier.

Clearly, a cave barrier L∪R is characterized by two functions l ≤ tp ≤ r.
We denote by D the (open) complement (R+ × R)∗ \ (L ∪ R) and refer to
D as the continuation region of the cave barrier (or just as the cave, when
there is no ambiguity). Let τ = inf{t ≥ 0 : (t, Bt) /∈ D} be the first exit
time of D. This is the minimum of the two stopping times

τl = inf{t ≥ 0 : Bt ∈ L} ∈ [0, tp] ∪ {∞},
τr = inf{tp ≤ t < τl : Bt ∈ R} ∈ [tp,∞].
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Figure 1: (a) The dark area is added to the left barrier L to make it mono-
tone. (b) Example of Remark 6.2.

Similarly, if ν = Law(Bτ ) is the measure embedded by the cave barrier,
then ν = νl + νr is decomposed into the subprobabilities corresponding to
mass absorbed at the left and right barrier; or more precisely, νl = Law(Bτl)
and νr = Law(Bτr) with the convention that B∞ is valued in an external
cemetery state and the laws are restricted to R.

Two different cave barriers may have the same hitting time. First, con-
sider a left barrier L with corresponding function l. If l has a “sink” on
(0,∞), say, then (t, Bt) cannot hit that part of the boundary since the time
coordinate always runs forward (see Figure 1). If we replace l by the increas-
ing envelope of x 7→ l(x) on (0,∞) and its decreasing envelope on (−∞, 0),
the new barrier has the same hitting time. We call L monotone if l is already
equal to this envelope. Note that given L, there exists a minimal monotone
left barrier containing L. Next, consider a cave barrier and note that (t, Bt)
can only hit the boundary of the component of D that contains (0, 0). Thus,
we say that the cave is connected if D is. For brevity we say that a cave
barrier is regular if L is monotone and D is connected, and note that every
cave barrier has a minimal regular cave barrier containing it. This notion
is important due to the following fact: the first hitting times of two regular
caves are a.s. equal if and only if the caves are equal. We omit the details
and refer instead to [71, p. 365] and the end of the proof of [6, Theorem 2.4]
for analogous and detailed discussions.

It is also useful to note that an interval of constancy of l corresponds to
an interval where νl has no mass. On the other hand, νr has no mass on an
interval where r = ∞. Finally, an atom in ν is generated by a horizontal
portion in the boundary of L or R; that is, a discontinuity of l or r.
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Remark 6.2. Cave embeddings for a given distribution ν are trivially non-
unique because any cave can be regularized without changing the embedded
distribution. However, in contrast to Root and Rost embeddings, cave em-
beddings are non-unique even if this regularity is imposed.

In essence, this ambiguity arises because a given “piece” of ν can be
absorbed either by the left or the right boundary. A simple example can be
generated by taking ν = (δ−2 + δ−1 + δ1 + δ2)/4, so that the left and right
barriers are (the envelope of) horizontal spikes at these four locations; cf.
Figure 1. One can shorten the spikes on the right at ±1 and suitably enlarge
the ones on the left, thus changing νl and νr without altering the embedded
distribution ν = νl + νr.

Next, we turn to optimal Skorokhod embeddings for a reward function
Gt = g(t) that is deterministic and depends only on the time variable. More
specifically, we assume the following.

Assumption 6.3. The reward function Gt = g(t) is given by a bounded,
Lipschitz continuous function g : R+ → R of time such that for some tp ≥ 0,
g is differentiable on (tp,∞) and4

g is strictly convex and strictly decreasing on (0, tp),

g is strictly concave and strictly increasing on (tp,∞).

We also define g(∞) as the obvious limit. Such reward functions give
rise to cave embeddings as follows.

Proposition 6.4. Suppose that ν({0}) = 0 and that g satisfies Assump-
tion 6.3. There exists an optimal stopping time τ ∈ T (ν); that is, we have
E[g(τ)] = supξ∈R(ν) ξ(g(t)). Moreover, τ is the unique optimizer withinR(ν)
and given by the first hitting time of a regular cave barrier with parting tp.
The cave is unique among all regular caves. Finally, we have P{τ = t} = 0
for all t ∈ [0, tp].

Proof. The first two assertions are stated in [6, Theorem 2.5] which is itself
a direct consequence of the monotonicity principle in [6, Theorem 1.3]. The
latter states that if τ ∈ T (ν) is optimal, then (B·∧τ , τ) ∈ Γ W-a.s. for a
Borel set Γ ⊆ S satisfying

SG ∩ (Γ< × Γ) = ∅, (6.1)
4The decrease/increase can be replaced by: ∂+g(s) < g′(t) for all 0 ≤ s < tp < t.
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where Γ< ⊆ S is defined by

Γ< = {(f ′, t′) ∈ S : t′ < t and f ′ = f on [0, t′] for some (f, t) ∈ Γ}

and SG is the set of so-called stop-go pairs; cf. [6, Definition 1.4]. In the
present setting, due to the convexity and monotonicity properties of g,

SG = {((f, t), (f ′, t′)) ∈ S × S : f(t) = f ′(t′), t′ < t ≤ tp or tp ≤ t < t′}.
(6.2)

(In [6] there are further assumptions on g which are, however, not used in
the proofs.) [6, Theorem 2.5] also states that every optimal ξ ∈ R(ν) is the
hitting time of a cave, and that implies uniqueness of τ similarly as in [60].
Indeed, if τ1 and τ2 are optimizers we can define a randomized stopping
time τ ′ by independently picking τ1 or τ2 with probability 1/2. But then
τ ′ is optimal and it follows that τ ′ is non-randomized and thus τ1 = τ2 a.s.
The uniqueness of the cave holds because regular caves are in one-to-one
correspondence with their hitting times, as noted above.

For t < tp we have P{τ = t} = 0 since the left barrier cannot give rise
to an atom in τ . To see that P{τ = tp} = 0, consider a measurable set
Γ ⊆ S with P{(B·∧τ , τ) ∈ Γ} = 1 and suppose that P{τ = tp} > 0. Then
tp > 0 and Γ must contain a path f which is stopped at tp and satisfies
x := f(tp) ∈ (xmin, xmax). Thus, l(x) < tp, and we have (t′, x) ∈ D for
all l(x) < t′ < tp. It follows that there exists a stopped path (f ′, t′) ∈ Γ<

with f ′(t′) = x and t′ < tp, but then (f, tp) and (f ′, t′) form a stop-go pair
by (6.2) and now (6.1) yields a contradiction.

The previous proposition leaves open how to characterize the functions
l, r corresponding to the optimal barrier. Intuitively, the non-uniqueness of
caves embedding ν stems from the fact that a given piece of ν can be ab-
sorbed at either of the two barriers. However, transferring mass from one to
the other changes the reward E[g(τ)], and that is the basis of a variational
characterization. Consider an optimal cave for g at a point x ∈ R where
both barriers absorb mass, or more precisely, x ∈ supp νl ∩ supp νr. Intu-
itively, deforming l and r locally around x corresponds to transferring mass
from one boundary to the other, and if the cave is optimal, the derivative
corresponding to this variation should vanish. Of course we cannot absorb a
negative mass, so that if x ∈ supp νl \ supp νr or vice versa, only one-sided
variations are possible. Thus, the precise statement in Theorem 6.5 below
will consist of inequality conditions for each of the supports, amounting to
an equality only on the intersection.
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It seems difficult to find a tractable parametrization for all variations of a
cave that preserve the embedded distributions. Instead, we shall utilize the
dual problem; a formal derivation runs as follows. Consider for simplicity
the case x ∈ supp νl ∩ supp νr and recall that the dual problem admits a
solution (M,ψ). Since g is Markovian (a function of time and state), one
may expect that the martingaleM can also be chosen of the Markovian form
Mt = m(t, Bt). Moreover, the dual solution satisfies Mτ + ψ(Bτ ) = g(τ)
where τ is the exit time of D, which roughly translates to m(t, x) = g(t) −
ψ(x) for t ∈ {l(x), r(x)}. Assuming a smooth fit at the boundary, formally
taking derivatives yields ∂tm(t, x) = g′(t) for t ∈ {l(x), r(x)}. Since M is
a martingale, m is a solution of the heat equation and then so is ∂tm. A
version of the Feynman–Kac formula now yields that ∂tm(t, x) = Et,x[g′(τ)]
for l(x) ≤ t ≤ r(x). Thus, the difference

g(r(x))− g(l(x)) = m(r(x), x) + ψ(x)−m(l(x), x)− ψ(x)

= m(r(x), x)−m(l(x), x)

can be expressed as
∫ r(x)
l(x) ∂tm(t, x) dt =

∫ r(x)
l(x) Et,x[g′(τ)] dt. The identity

g(r(x))− g(l(x)) =

∫ r(x)

l(x)
Et,x[g′(τ)] dt

no longer refers to the dual solution. As mentioned above, this equation
needs to be weakened to an inequality if x is not in the support of both
measures νl, νr.

In what follows we assume throughout that ν is a centered distribution
with finite second moment and ν({0}) = 0. Some technical aspects of the
proof depend on whether ν has atoms at the endpoints of its support. We
focus on the case where ν has atoms at two endpoints: ν is concentrated
on a compact interval J = [xmin, xmax] with ν(xmin) > 0 and ν(xmax) > 0.
It is worth noting that given these properties of ν, the regular caves under
discussion satisfy l(x) = tp = r(x) at the two endpoints and the necessary
jumps of l and r imply horizontal portions of ∂D along {x = xmin} and {x =
xmax}; flat portions of floor and ceiling containing tp, so to speak. While D
is of bounded height, it can be unbounded to the right since r(x) = ∞ is a
possible value.

In the following result we use the right derivative ∂+g, but the same
holds for the left derivative.

Theorem 6.5. Let D be a regular cave with parting tp embedding ν and let
l, r be the functions delimiting D. Then τ = inf{t ≥ 0 : (t, Bt) /∈ D} is the
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unique optimizer for g in R(ν) if and only if∫ r(x)

l(x)
Et,x[∂+g(τ)] dt ≥ g(r(x))− g(l(x)) for x ∈ supp νl,∫ r(x)

l(x)
Et,x[∂+g(τ)] dt ≤ g(r(x))− g(l(x)) for x ∈ supp νr,

where Et,x[∂+g(τ)] := E[∂+g(τt,x)] for τt,x := inf{s ≥ t : (s, x+Bs−t) /∈ D}.

We use our setup for the dual problem from Section 4 with

Tn = T := inf{t ≥ 0 : Bt ∈ ∂J}, n ≥ 1.

Since in this setting we are not interested in the dual martingale M beyond
time T , we redefine D(G) slightly in the sense that M is only defined up
to T . Clearly, this does not affect the previous results, as one can trivially
extend M beyond T in a constant fashion to retrieve a dual element in the
previous sense.

Next, we consider the optimal cave D and focus on the necessity of the
variational condition. The first step in our proof is to construct the function
m(t, x). Importantly, we represent m through an optimal stopping problem
that will be used to derive the crucial relationship for ∂tm. We write I for
the interior of J ; that is, I = (xmin, xmax).

Proposition 6.6. There exists a dual optimizer (M,ψ) ∈ D(G) with Mt =
m(t, Bt) on [0, τ ] for a universally measurable function m : R+ × J → R ∪
{−∞} which is C∞ on D. Moreover, m can be taken to be the value function
of the optimal stopping problem with reward g(t)− ψ(x).

Proof. Let (M̃, ψ) ∈ D(G) be any dual optimizer; cf. Corollary 4.10. By
Remark 4.7 we may assume that ψ ≥ 0. Let TT = {σ ∈ T : σ ≤ T} and
consider the optimal stopping problem

sup
σ∈TT

E[Gψσ ], Gψt := gψ(t, Bt), gψ(t, x) := g(t)− ψ(x). (6.3)

Below, it will be useful to see this as a Markovian optimal stopping problem
in the sense of Mertens (we use the completed Brownian filtration throughout
this proof). Indeed, setting Yt = (t, Bt) we can define a process Ȳ as the
process Y with absorption on the complement of R+×I in R+×R. Then (6.3)
is equivalent to an infinite-horizon optimal stopping problem for the right-
continuous Markov process Ȳ .
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Next, we show that we can truncate Gψ from below without changing
the value of (6.3). Since g is bounded we may assume that g ≥ 0. We then
have g(t)− ψ(x) ≥ −ψ(x) and the value of supσ∈TT E[−ψ(Bσ)] with initial
condition Bt = x ∈ I is given by −ψ∗∗(x), where ψ∗∗ ≥ 0 is the convex hull
of ψ on the interval J . Thus, the value of the optimal stopping problem

sup
σ∈TT

E[Ḡψσ ], Ḡψt := ḡψ(t, Bt), ḡψ(t, x) := (g(t)−ψ(x))∨(−ψ∗∗(x)) (6.4)

is the same as (6.3). We have ν(ψ∗∗) ≤ ν(ψ) <∞ by the definition of D(G)
and due to the assumed form of ν this implies that ψ∗∗ is finite at the
endpoints of the compact interval J ; that is, ψ∗∗ is a bounded function and
thus ḡψ(t, x) is bounded from below. As a result, the reward function Ḡψ

in (6.4) is of class (D) and optional (but not necessarily right-continuous),
putting us in the setting of [63, 64, 34].

Consider the Snell envelope S of (6.4) as in [63, Theorem T4] or [34]; that
is, S is the minimal strong supermartingale satisfying S ≥ Ḡψ on [0, T ], and
S has the property that S0 = E[S0] = supτ∈TT E[Ḡψτ ]. (We use the symbol S
as in the cited references; there should be no possibility of confusion with
the space of stopped paths.) Noting that Ḡψ is bounded, it follows that
S·∧T is bounded. As (M̃, ψ) ∈ D(G), the local martingale M̃ is another
supermartingale satisfying M̃ ≥ Gψ ≥ Ḡψ, so that S ≤ M̃ by minimality
and in particular S0 ≤ M̃0 = 0. On the other hand, let τ be the primal
optimizer. Then

S0 ≥ E[Ḡψτ ] ≥ E[Gτ − ψ(Bτ )] = E[Gτ ]− ν(ψ) = 0

since τ ∈ TT and there is no duality gap; cf. Theorem 5.5. As a result, S0 = 0
and τ is an optimal stopping time for (6.4) and (6.3). In particular, S is a
martingale on [0, τ ].

The strong supermartingale S has a Mertens decomposition

S = M −A

where M is a local martingale, M·∧T is of class (D), A is a predictable in-
creasing process and M0 = A0 = 0; cf. [30, Appendix I.20, p. 414]. We
observe that (M,ψ) ∈ D(G) is a dual optimizer. Indeed, the defining prop-
erty of the Snell envelope shows that Mt ≥ St ≥ Gt − ψ(Bt) on [0, T ] and
M is uniformly bounded from below on [0, T ] since Mt ≥ St ≥ −ψ∗∗(Bt) as
above. Finally, the optimality property depends only on ψ.

The optimal stopping problem (6.4) is of a Markovian form as considered
in [34, 64]. More precisely, [34, Theorem 3.4] or [64, Theorem 3] show that the
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Snell envelope is given by St = v(t, Bt) where v is a universally measurable
function, the smallest supermedian-valued function exceeding ḡψ (as defined
below [64, Theorem 1]), and that v coincides with the value function of the
optimal stopping problem in the Markovian sense. Since S is a martingale
on [0, τ ], we have M = S = v(t, B) on [0, τ ] and thus m := v satisfies
m(t, Bt) = Mt on [0, τ ].

The smoothness of m on D follows from the martingale property of v
onD that is implied by the optimal stopping problem. Indeed, for (t, x) ∈ D,
consider an open rectangle R around (t, x) whose closure is contained in D.
Then v|R is smooth as it is the convolution with a smooth kernel, namely,
v(t, x) is the convolution of v|∂R with the exit distribution of (t, B) when B
is started at (t, x).

We can observe that the preceding arguments extend to more general
functions g(t, x) with a spatial dependence.

The following result connects ∂tm and ∂+g without going through a
delicate smooth fit condition as in the sketch above. Instead, it exploits the
representation of m through optimal stopping, and that is crucial in view of
the barrier being non-smooth (for general ν).

Lemma 6.7. Let x ∈ I. Then

∂tm(t, x) = Et,x[∂+g(τ)] = Et,x[∂−g(τ)] for l(x) < t < r(x).

Proof. Let x ∈ I and l(x) < t < t1 < r(x). Following the proof of Propo-
sition 6.6, m(t, x) is the value function of the stopping problem started
at (t, x) and the first exit time τ from D is optimal. Define a stopping
time τ1 for the initial condition (t1, x) as the first exit time of the region
D1 := D+{(t1− t, 0)}; that is, the region D translated to the right by t1− t.
Then Et1,x[ψ(Bτ1)] = Et,x[ψ(Bτ )] and hence

m(t1, x)−m(t, x) ≥ Et1,x[g(τ1)− ψ(Bτ1)]− Et,x[g(τ)− ψ(Bτ )]

= Et1,x[g(τ1)]− Et,x[g(τ)]

= Et,x[g(τ + t1 − t)]− Et,x[g(τ)]

= Et,x[g(τ + h)− g(τ)]

where h = |t1 − t|. Similarly, using t1 < t yields m(t, x) − m(t − h, x) ≤
Et,x[g(τ) − g(τ − h)]. Recall that m is differentiable. Dividing by h and
letting h ↓ 0, dominated convergence then yields

∂tm(t, x) ≤ Et,x[∂−g(τ)] ≤ Et,x[∂+g(τ)] ≤ ∂tm(t, x)
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where the middle inequality holds due to ∂−g ≤ ∂+g; cf. Assumption 6.3.
The claim follows. We remark that Et,x[∂−g(τ)] = Et,x[∂+g(τ)] can also be
deduced directly from the properties of τ ; cf. Proposition 6.4.

Proof of Theorem 6.5, Necessity. Let D be optimal. For x ∈ {xmin, xmax}
the result is trivial as l(x) = r(x). Given the properties of l, r and g, it then
suffices to show that∫ r(x)

l(x)
Et,x[∂+g(τ)] dt ≥ g(r(x))− g(l(x)) for νl-a.e. x ∈ I,∫ r(x)

l(x)
Et,x[∂+g(τ)] dt ≤ g(r(x))− g(l(x)) for νr-a.e. x ∈ I.

Let x ∈ I and l(x) ≤ l ≤ r ≤ r(x) with r < ∞. In view of Lemma 6.7 and
the fundamental theorem of calculus,∫ r

l
Et,x[∂+g(τ)] dt =

∫ r

l
∂tm(t, x) dt = m(r, x)−m(l, x).

By the construction of m we have m(t, x) ≥ g(t, x) − ψ(x) on D, while for
t = l(x) this inequality holds with equality for νl-a.e. x and for t = r(x) it
holds with equality for νr-a.e. x. Focusing on the first case, we obtain νl-a.e.
that ∫ rn

l(x)
Et,x[∂+g(τ)] dt ≥ g(rn)− g(l(x))

for a sequence rn ↑ r(x), and the claim follows after recalling that g is
continuous on [0,∞] and Et,x[∂+g(τ)] ≥ 0 for t ≥ tp. The νr-a.e. inequality
follows similarly.

Proof of Theorem 6.5, Sufficiency. We only provide a sketch of the argu-
ment; the details are similar to the proof of [22, Theorem 4.1]. Suppose
that the stated inequalities hold for l, r. Our goal is to construct a pair
(M,ψ) ∈ D(G) such that Mτ + ψ(Bτ ) = g(τ) and E[Mτ ] ≤ 0 for the exit
time τ defined by D; this will imply the optimality of τ by Corollary 5.6.
For notational convenience, let

h(t, x) = Et,x[∂+g(τ)], Γ(x) = g(l(x))− g(r(x)) +

∫ r(x)

l(x)
h(s, x) ds.

As a first step, we consider the function

H(t, x) = g(r(x))−
∫ r(x)

t
h(s, x) ds+ Γ(x)+
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and show that

g(t) ≤ H(t, x) for t ≥ 0, x ∈ J, (6.5)
g(l(x)) = H(l(x), x) for x ∈ supp νl, (6.6)
g(r(x)) = H(r(x), x) for x ∈ supp νr. (6.7)

Indeed, (6.5) follows directly from the definitions. For t ≥ tp we have that
g′(t) is decreasing and hence

g(t) = g(r(x))−
∫ r(x)

t
∂+g(s) ds ≤ g(r(x))−

∫ r(x)

t
h(s, x) ds+Γ(x)+ = H(t, x)

whereas for 0 ≤ t < tp we have ∂+g(s) ≤ ∂+g(u) for t ≤ s ≤ u and hence

g(t) = g(l(x)) +

∫ t

l(x)
∂+g(s) ds ≤ g(l(x)) +

∫ t

l(x)
h(s, x) ds ≤ H(t, x).

Moreover, the assumption in Theorem 6.5 states that Γ(x) ≥ 0 for x ∈
supp νl and Γ(x) ≤ 0 for x ∈ supp νr. This yields (6.6) and (6.7).

The rest of the proof consists in showing that H(t, Bt) = Mt + ψ(Bt)
on [0, τ ] and H(t, Bt) ≤Mt + ψ(Bt) on [0, T ] for a local martingale M with
M0 = 0 which is bounded below and a function ψ ∈ L1(ν). Once that is
achieved, (6.5)–(6.7) show that (M,ψ) ∈ D(G) have the desired properties.

To obtain the decomposition we consider the function m̄(t, x) := g(r(x))−∫ r(x)
t h(s, x) ds. One can show as in [22] that m̄(t, Bt) is a submartingale
on [0, τ ] and conclude that there is a unique increasing predictable pro-
cess A on [0, τ ] such that m̄(t, Bt) − At is a martingale on [0, τ ]. One can
further show that A agrees with a continuous additive functional on [0, τ ]
such that m̄(t, Bt)−At is well-defined on [0, T ] and a supermartingale. Us-
ing a representation result for additive functionals, one can therefore write
At = z(Bt) − z(B0) −

∫ t
0 z
′
−(Bs) dBs for a convex function z and conclude

that m̄(t, Bt)− z(Bt) is still a martingale on [0, τ ] and a supermartingale on
[0, T ]. We can choose z such that z ≥ z(0) = m̄(0, 0).

Set ψ(x) = z(x) + Γ(x)+, so that

H(t, x) = m̄(t, x)− z(x) + ψ(x).

Moreover, let M be the martingale part of the supermartingale m̄(t, Bt) −
z(Bt). To see that (M,ψ) is indeed a dual element, we show that m̄ and z
are bounded. Then it follows that z(x) + Γ(x)+ is bounded (as Γ is bounded

35



under our assumptions) and that m̄(t, x) − z(x), and hence M , is bounded
from below. Indeed, boundedness of m̄ follows from the identity

m̄(t, x) = g(r(x))−
∫ tp

t
h(s, x)1s<tp ds−

∫ r(x)

tp

h(s, x)1s>t ds.

The first two terms are trivially bounded. For the last term, observe that
on the domain of integration we have 0 ≤ h(s, x) ≤ ∂+g(s) which im-
plies boundedness. Next, suppose that z is unbounded, then we must have
z(xmin) = +∞ or z(xmax) = +∞ as z is convex and bounded from be-
low. Note that Bτ = xmin and Bτ = xmax with positive probability, but
E[m̄(τ,Bτ )−z(Bτ )] = m(0, 0)−z(0) = 0 by the martingale property. There-
fore, z must be bounded and the proof is complete.

7 Counterexamples

In this section we demonstrate that relaxing the regularity in the dual domain
is necessary to achieve a complete duality theory for general reward functions.
It is also shown that the monotonicity principle fails without an integrability
condition.

7.1 Local Martingale Property of M

We construct an example showing that it is crucial to use local martin-
gales M rather than true martingales as in previous works. More precisely,
we construct a continuous reward function G such that for a wide class of
marginals ν, any dual optimizer (M,ψ) ∈ D(G) fails to have the true mar-
tingale property; in fact, E[Mt] > 0 for all t > 0.

Let ν be a centered distribution which is equivalent to the Lebesgue
measure on R and satisfies ν(f) <∞, where

f(x) = exp(x4). (7.1)

We note that J = R and hence ∪n[0, Tn] = C0(R+) × R+ in Definition 4.1.
An important ingredient for our reward function is the process

Lt := exp

(
B4
t − 2

∫ t

0
(3B2

s + 4B6
s ) ds

)
, t ≥ 0 (7.2)

which can also be written as the stochastic exponential Lt = Et
(∫ ·

0 4B3
s dBs

)
.

We are grateful to Johannes Ruf for indicating this remarkably simple ex-
ample of a strict local martingale to us.
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Lemma 7.1 (J. Ruf). The stochastic exponential Lt = Et
(∫ ·

0 4B3
s dBs

)
is a

positive local martingale with E[Lt] < 1 for all t > 0. In particular, L is not
a martingale on [0, t] for any t ∈ (0,∞).

We defer the proof to the end of this subsection. As our payoff function,
we then choose

G = 1− L+ f(B);

Note that G is a continuous function on S. Moreover, it follows directly
from (7.1) and (7.2) that f(Bt) ≥ Lt and hence G ≥ 1. As L ≥ 0 and
f ∈ L1(ν), a particularly simple dual element is (M,ψ) := (0, 1+f) ∈ D(G);
therefore, D(G) 6= ∅ and I(G) ≤ 1 + ν(f) <∞, so that the conditions of our
main results in Sections 4 and 5 are all satisfied. This dual element features
a true martingale; however, it is not optimal.

Proposition 7.2. (i) (M,ψ) := (1 − L, f) ∈ D(G) is optimal for the dual
problem I(G). Moreover, any ξ ∈ R(ν) is optimal for S(G).

(ii) If (M,ψ) ∈ D(G) is any optimizer for I(G), then E[Mt] > 0 for all
t > 0, so that M cannot be a martingale.

Proof. (i) Let τ ∈ T (ν) and (M,ψ) := (1 − L, f) ∈ D(G). It is clear that
M + ψ(B) = G ξ-a.s., and ξ(M) ≥ 0 as L is a nonnegative supermartingale
with L0 = 0. The claim now follows from Corollary 5.6.

(ii) Let (M,ψ) ∈ D(G). We first prove that there exists c ∈ R such that

ψ(x) + cx ≥ f(x), x ∈ R. (7.3)

Indeed, let a, b ≥ 0 and σ = inf{t ≥ 0 : Bt /∈ (−a, b)}. Note that the local
martingale L·∧σ is bounded and hence a uniformly integrable martingale. On
the other hand, as σ ≤ Tn for n large enough, M·∧σ must be bounded below
(Definition 4.1) and hence a supermartingale. In particular, E[Lσ] = 1 and
E[Mσ] ≤ 0, so that Mσ + ψ(Bσ) ≥ Gσ = 1− Lσ + f(Bσ) implies

E[ψ(Bσ)] ≥ E[f(Bσ)].

As a, b were arbitrary, this yields as in the proof of Lemma 4.6 that the
convex hull satisfies (ψ − f)∗∗(0) ≥ 0. Taking c = ∂−(ψ − f)∗∗(0), we have
(ψ̄ − f)∗∗ ≥ 0 for ψ̄(x) = ψ(x) + cx and the claim follows.

In view of (7.3) and Remark 4.7 we may assume that ψ ≥ f . If (M,ψ) is
optimal, then ν(ψ) = I(G) = ν(f) by (i) and it follows that ψ = f ν-a.s. and
hence Lebesgue-a.e. But now M +ψ(B) ≥ 1−L+f(B) impliesMt ≥ 1−Lt
W-a.s. and in particular E[Mt] ≥ 1 − E[Lt] for all t > 0, so E[Mt] > 0 by
Lemma 7.1.
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Proof of Lemma 7.1. (i) We first provide an auxiliary result. Let W be a
Brownian motion on a filtered probability space with measure Q. Then the
SDE

dXt = 4X3
t dt+ dWt, X0 = 0

has a unique strong solution X up to its explosion time τ and Q{τ < T} > 0
for all T ∈ (0,∞). Indeed, existence and uniqueness of X follow from the
local Lipschitz continuity of the coefficients (see, e.g., [76, Exercise 2.10,
p. 383]). The scale function ofX is p(x) =

∫ x
0 e
−2y4 dy and the speed measure

is m(dx) = 2e2x4 dx. Thus

v(x) :=

∫ x

0
(p(x)− p(y))m(dy) =

∫ x

0

∫ x

y
e2(y4−z4) dz dy

and in particular v(∞) := limx→∞ v(x) is given by∫ ∞
0

∫ ∞
0

e2(y4−(y+u)4) du dy =

∫ ∞
0

∫ ∞
0

e−2(u4+4u3y+6u2y2−4uy3) du dy.

Comparison with a Gaussian integral shows that this quantity is finite. In
view of the symmetry v(x) = v(−x), the same holds for v(−∞). Thus,
Feller’s test implies that both boundaries ±∞ are limit points of X in finite
time with positive probability; in fact, the explosion time τ even satisfies
τ < ∞ Q-a.s. by [57, Proposition 5.5.32, p. 350]. Using the homogeneity
of X, this already implies that Q{τ < T} > 0 for all T ∈ (0,∞); see, e.g.,
[17, Theorem 1.1] for an elegant argument.

(ii) We can now prove the lemma. As an exponential of a continuous
local martingale, it is clear that L is a local martingale and strictly positive,
hence a supermartingale. Let T ∈ (0,∞) and suppose for contradiction
that E[LT ] = 1, or equivalently, that L is a martingale on [0, T ]. Then we
can introduce the equivalent probability Q on FT via dQ/dW = LT and
Girsanov’s theorem shows that the process Wt := Bt − 4

∫ t
0 B

3
s ds is a Q-

Brownian motion on [0, T ]. Moreover, B satisfies dBt = 4B3
t dt + dWt and

B0 = 0 under Q. As shown in (i), this implies that Q{τ < T} > 0 for the
explosion time τ of B, contradicting that the Brownian motion B under W
is non-explosive.

7.2 Regularity of ψ

The following example shows that a duality gap can arise if the functions ψ in
the dual domain D(G) are required to be continuous. The reward G = 1Q(t)
was previously used in [42] to illustrate that their duality result can fail when
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the reward function is irregular in time. In our framework, duality holds by
Theorem 5.5. Nevertheless, it is instructive to detail the optimizers as this
highlights the mechanics of our definitions.

Example 7.3. Let G = 1Q(t) and ν = (δ−1 + δ1)/2.
(i) We have S(G) = I(G) = 0, a primal optimizer is given by the stopping

time τ = inf{t ≥ 0 : |Bt| = 1} and a dual optimizer is given by M ≡ 0 and
ψ = 1(−1,1).

To see this, let τ,M,ψ be as above and note that J = [−1, 1]. We choose
Kn = J and thus T := Tn = τ for all n. We claim that ψ(B) ≥ G on [0, T ] up
to evanescence. Indeed, ψ(B) = 1 on [0, T ), thus {ψ(B) < G} is contained in
the graph of T and of course also in {G = 1}. But since T has a continuous
distribution, W{T ∈ Q} = 0 and hence [T ] ∩ {G = 1} = {T ∈ Q} × R+ is
indeed negligible up to evanescence. As a result, (M,ψ) ∈ D(G). In view of
ν(ψ) = 0 and E[Gτ ] = 0, the optimality of (M,ψ) and τ now follows from
Corollary 5.6.

(ii) If the dual domain is restricted to continuous functions ψ, a duality
gap arises: the dual problem over continuous ψ has value 1 instead of 0.
Indeed, let (M,ψ) ∈ D(G) be such that ψ is continuous. We claim that
there exists c ∈ R such that ψ(x) ≥ 1 + cx for all x ∈ [−1, 1]; in particular,
this will imply that ν(ψ) ≥ 1. Let σ < T be a stopping time, let σ′n =
inf{t ≥ σ : t ∈ 2−nN} be the usual dyadic approximation σ′n ↓ σ and let
σn = σ′n ∧ T . Then we have

Mσn + ψ(Bσn) ≥ Gσn = 1 on {σn < T}

since σn has rational values on {σn < T}. As W{σn < T} → 1, the con-
tinuity of ψ and M yields that Mσ + ψ(Bσ) ≥ 1 and hence E[ψ(Bσ)] ≥ 1.
Since this holds in particular for the hitting time σ of any set {−a, b} where
−1 < −a ≤ 0 ≤ b < 1, it follows that ψ∗∗(0) ≥ 0 where ψ∗∗ is the convex
hull on (−1, 1). Let c = ∂−ψ∗∗(0), then using again the continuity it follows
that ψ(x) ≥ 1 + cx for all x ∈ [−1, 1], as claimed.

7.3 Monotonicity Principle

In this section we show that the monotonicity principle of Corollary 5.8 does
not hold without an integrability condition. Indeed, we have the following.

Proposition 7.4. There exist a Borel function G : S → [0,∞), a centered
distribution ν on R with all moments finite and S(G) <∞, and randomized
stopping times ξ1, ξ2 ∈ R(ν) which are equivalent as measures on S, such
that ξ1 is optimal for S(G) and ξ2 is not optimal for S(G).
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As ξ1(Γ) = 1 is equivalent to ξ2(Γ) = 1, for any Borel set Γ ⊆ S, it
follows that optimality of ξ ∈ R(ν) cannot be determined by its support.

We start with some preliminary results that will be used in the construc-
tion. Recall that ξ ∈ R is defined as a measure on C0(R+)×R+ and induces
a measure on B(S) via ξ(Γ) := ξ{(ω, t) ∈ C0(R+)× R+ : (ω|[0,t], t) ∈ Γ}; in
fact, ξ is completely characterized by the latter. A product measureW⊗λ on
C0(R+)×R+ induces a measure on S in the same fashion. In what follows,
we set f(x) = exp(x4) and denote by L the strict local martingale defined
in (7.2).

Lemma 7.5. There exists ξ̂int ∈ R such that ξ̂int(f(B)) + ξ̂int(t) < ∞ and
ξ̂int �W⊗ λ on S, where λ is the Lebesgue measure.

Proof. For n ≥ 1 we define τn = inf{t : |Bt| ≥ n} and

Sn = {(ω, t) ∈ S : sup
s≤t
|ωs| < n} = {(ω, t) ∈ S : t < τn(ω)}.

We first construct ξn ∈ R such that

ξn[0, τn] = 1 and ξn �W⊗ λ on Sn. (7.4)

Consider the adapted, increasing process An defined by

Ant := 1− e−t1t<τn ;

it is strictly increasing and differentiable up to τn and then jumps to the
value 1. Thus, the kernel

ξnω(dt) = dAnt (ω) = e−t1t<τn(ω) dt+ e−τ
n(ω)δτn(ω)(dt)

defines a randomized stopping time via ξn = W(dω)ξnω(dt) which satis-
fies (7.4).

Clearly (7.4) implies ξn(f(B)) ≤ exp(n4) and ξn(t) ≤ E[τn] = n2 ≤
exp(n4). Let (an)n≥1 be a sequence in (0, 1) such that

∑
n≥1 an = 1 and∑

n≥1 an exp(n4) < ∞. We define ξ :=
∑

n≥1 anξ
n; then ξ ∈ R satisfies

ξn(f(B)) < ∞ and ξn(t) < ∞. Since every stopped path is bounded, we
have ∪n≥1S

n = S and thus (7.4) implies ξ �W⊗ λ on S as desired.

Lemma 7.6. Let σ = inf{t : t2 + B2
t = 1}. There exists an Fσ-measurable

Bernoulli random variable X independent of Bσ.
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Proof. Define σ′ = inf{t : t2 + B2
t = 1/2}. Then Bσ′ is Fσ-measurable and

its conditional distribution given Bσ is atomless. In particular, there exists
a conditional median m(x) given Bσ = x; that is, P [Bσ′ ≥ m(x)|Bσ = x] =
1/2. By construction, X := 1Bσ′≥m(Bσ) has a Bernoulli distribution and is
independent of Bσ.

Lemma 7.7. We have ξ(L) ≤ 1 for all ξ ∈ R. If ξ embeds a distribution ν
with ν(f) <∞, then ξ(L) = 1.

Proof. As L is a positive local martingale with L0 = 1, we have ξ(L) ≤ 1
by Fatou’s lemma. Suppose that ξ ∈ R(ν) where ν(f) < ∞ and recall
that 0 ≤ Lt ≤ f(Bt). As f is convex, f(Bt) is a positive submartingale up
to ξ and hence of class (D), where we may use the representation of ξ as
nonrandomized stopping time in the enlarged filtration (cf. Lemma 3.10) to
apply the standard results of stochastic analysis. This implies that L is a
martingale of class (D) up to ξ and in particular ξ(L) = 1.

Proof of Proposition 7.4. Let G ≥ 0 be the payoff defined by

Gt = 1t>σ,X=0 + Lt−σ(Bσ 7→)1t>σ,X=1

where σ = inf{t : t2 + B2
t = 1}, the random variable X is as in Lemma 7.6

and, with the notation of Definition 3.3,

Lt−σ(Bσ 7→) = exp

(
(Bt −Bσ)4 − 2

∫ t

σ
(3(Bs −Bσ)2 + 4(Bs −Bσ)6) ds

)
.

Let ξint = σ⊕ ξ̂int be the randomized stopping time obtained by shifting
ξ̂int of Lemma 7.5 by σ (cf. Definition 3.3); that is, if ξ̂int = W(dω)ξ̂int

ω (ds),
then ξint = W(dω)ξint

ω (ds) where

ξint
ω [0, t] = 1σ(ω)<t ξ̂

int
ω·−ωσ(ω) [0, t− σ(ω)].

Using Lemma 7.7, we then have ξint(G) = ξ̂int(L) = 1.
Next, let ξ̂exp be an exponential random time, defined by its kernel

ξ̂exp
ω (ds) = e−s ds. As E[Lt] < 1 for t > 0 by Lemma 7.1, we have
ξ̂exp(L) =

∫∞
0 e−tE[Lt] dt < 1. Moreover, ξ̂exp is clearly equivalent to W⊗λ

on S, so that ξ̂exp � ξ̂int. The reverse is not true, but if we set

ξ̂avg = (ξ̂exp + ξ̂int)/2,

then ξ̂avg is equivalent to ξ̂int on S and we also have ξ̂avg(L) < 1.
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Define ξavg = σ ⊕ ξ̂avg. Then ξavg and ξint already have properties close
to the desired ones, but they do not embed the same distribution yet. To
achieve that, we randomly mix the two stopping times using X. Indeed, we
define the randomized stopping times ξ1 and ξ2 through their kernels

ξ1
ω := ξavg

ω 1X(ω)=0 + ξint
ω 1X(ω)=1, ξ2

ω := ξavg
ω 1X(ω)=1 + ξint

ω 1X(ω)=0.

Then
ξ1(G) =

1

2
ξ̂avg(1) +

1

2
ξ̂int(L) = 1

whereas
ξ2(G) =

1

2
ξ̂avg(L) +

1

2
ξ̂int(1) < 1.

By construction, ξ1 and ξ2 are equivalent on S and embed the same distri-
bution ν. The integrability properties of ξ̂exp and ξ̂int entail that ν has all
moments (even some exponential moments) and that ξ1(t) = ξ2(t) <∞.

A Appendix: Extension to Finite First Moment

In the body of this article we have assumed that the embedded measure ν has
a finite second moment, but the results can be extended to the case of a finite
first moment by using well-known facts, at the expense of a slightly more
convoluted definition. The crucial observation is that under the second mo-
ment condition, E[τ ] <∞ for τ ∈ T (ν) is equivalent to τ being minimal (or
uniformly integrable), and minimality can still be used in the first moment
case. For a randomized stopping time, the simplest definition is obtained by
referring to its stopping time representation in a larger filtration.

For the remainder of this section, ν is a centered distribution on R with
finite first moment.

Definition A.1. Let τ be a finite stopping time such that Bτ ∼ ν. Then τ
is called minimal if there exists no smaller embedding; that is, if σ is another
stopping time such that Bσ ∼ ν and σ ≤ τ a.s., then τ = σ a.s. We denote
by T (ν) the set of all such τ .

Let ξ be a randomized stopping time such that ξ ◦B−1 = ν and let ρ be
the associated F̄-stopping time; cf. Lemma 3.10. Then ξ is called minimal
if ρ is minimal in the above sense. We denote by R(ν) the set of all such ξ.

We can now state the announced extension.

Remark A.2. The results in Sections 3–5 continue to hold under the first
moment condition.
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Proof. The modifications are as follows. (i) In the proof of Lemma 3.8 we
used that R(ν) is weakly compact. This still holds in the present setting;
cf. [6, Section 7.1]. (ii) A stopping time τ is minimal if and only if B·∧τ is
uniformly integrable; cf. [65, Theorem 3]. Thus, in the proofs of Lemmas 4.5
and 4.8, we can use directly that B·∧τ is uniformly integrable instead of
deriving this from E[τ ] < ∞. (iii) Proposition 5.2 still holds, e.g., by [6,
Theorem 7.2 and Example 7.2.1]. (iii) The proof of Lemma 5.3 again used
that R(ν) is weakly compact; cf. (i). The other proofs did not use directly
that ν has finite second moment.
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