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Entropic optimal transport—the optimal transport problem regularized
by KL divergence—is highly successful in statistical applications. Thanks to
the smoothness of the entropic coupling, its sample complexity avoids the
curse of dimensionality suffered by unregularized optimal transport. The flip
side of smoothness is overspreading: the entropic coupling always has full
support, whereas the unregularized coupling that it approximates is usually
sparse, even given by a map. Regularizing optimal transport by less-smooth
f -divergences such as Tsallis divergence (i.e., Lp-regularization) is known
to allow for sparse approximations, but is often thought to suffer from the
curse of dimensionality as the couplings have limited differentiability and the
dual is not strongly concave. We refute this conventional wisdom and show,
for a broad family of divergences, that the key empirical quantities converge
at the parametric rate, independently of the dimension. More precisely, we
provide central limit theorems for the optimal cost, the optimal coupling, and
the dual potentials induced by i.i.d. samples from the marginals. These results
are obtained by a powerful yet elementary approach that is of broader interest
for Z-estimation in function classes that are not Donsker.

1. Introduction. Optimal transport has become ubiquitous following computational ad-
vances enabling applications in statistics, machine learning, image processing, and other do-
mains where distributions or data sets need to be compared (e.g., [37, 43]). Given probability
measures P and Q on Rd, and a cost function c : Rd × Rd → R, the Monge–Kantorovich
optimal transport problem is

(1) OT(P,Q) = inf
π∈Π(P,Q)

∫
c(x, y)dπ(x, y)

where Π(P,Q) denotes the set of couplings; i.e., joint distributions π on Rd × Rd with
marginals P and Q. A key bottleneck for statistical applications is that optimal transport
suffers from the curse of dimensionality in terms of sample complexity (see [4, 12, 16]
among many others). More specifically, let X1, . . . ,Xn and Y1, . . . , Yn be i.i.d. samples
from P and Q, respectively, and consider their empirical measures Pn = 1

n

∑n
i=1 δXi

and
Qn = 1

n

∑n
i=1 δYi

. Then OT(Pn,Qn), the value of (1) computed with marginals (Pn,Qn)
instead of (P,Q), converges to the population value OT(P,Q) at a rate that deteriorates ex-
ponentially with the dimension d. For instance, for the important cost c(x, y) = ∥x − y∥2
defining the 2-Wasserstein distance, E[|OT(Pn,Qn)−OT(P,Q)|] ∼ n−2/d for dimension
d ≥ 5, under regularity conditions on the population marginals P and Q (see [33] for this
particular result).
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By contrast, the celebrated entropy-regularized optimal transport (EOT) avoids the curse of
dimensionality. The EOT problem penalizes (1) with the Kullback–Leibler (KL) divergence
KL(π|P ⊗Q) between the coupling π and the product P ⊗Q of the marginals,

(2) EOTε(P,Q) := inf
π∈Π(P,Q)

∫
cdπ+ εKL(π|P ⊗Q)

where ε > 0 is a fixed parameter determining the strength of regularization. Indeed, a series
of works starting with [18] has shown that EOTε(Pn,Qn) converges to EOTε(P,Q) at the
parametric rate n−1/2, thus the dimension d (and the parameter ε) only affect the constants.
Literature is reviewed in Section 1.1 below. The prevailing thinking is that EOT overcomes
the curse of dimensionality thanks to its smoothness. Indeed, the entropic penalty leads to
optimal couplings whose density is smooth (or at least as smooth as the cost c), and this
regularity holds independently of the marginals. In particular, it holds uniformly over the
empirical measures (Pn,Qn), and this fact drives the aforementioned result of [18].

The flip side of smoothness is that the optimal coupling of EOT always has full support
(i.e., the same support as P ⊗Q), for any value of the regularization parameter ε > 0. By con-
trast, the unregularized optimal transport coupling that it approximates, typically has sparse
support (the graph of a function, namely the Monge map). This disconnect can be undesir-
able depending on the application; for instance, the large support (or “overspreading”) can
amount to blurrier images in an image processing task as shown in [2], bias in a manifold
learning task as in [45], or unfaithful approximation of barycenters [29]. In such cases, sparse
approximations are desirable.

It is known that less-smooth f -divergence penalties give rise to sparse approximations.
Indeed, consider the divergence-regularized optimal transport problem with the divergence
Dφ(π|P ⊗Q) defined by a function φ,

ROTε(P,Q) := inf
π∈Π(P,Q)

∫
cdπ+ εDφ(π|P ⊗Q),(3)

Dφ(π|P ⊗Q) :=

∫
φ

(
dπ

d(P ⊗Q)

)
d(P ⊗Q),(4)

where φ : R+ → R is convex and satisfies certain conditions (see Assumption 2.1). While
the KL divergence of EOT is recovered for φ(t) = t log t, replacing this by a power φ(t) =
(p− 1)−1(tp− 1) for p > 1 (Tsallis divergence, including the quadratic or χ2 divergence for
p = 2) was studied starting with [35, 2, 15] and empirically seen to have sparse solutions.
Recent investigations underline this finding with theoretical results; see the literature review
below. The main objection against such regularizations is that they lack the smoothness of
EOT. Indeed, the density of the optimal coupling is only as smooth as the derivative of the
convex conjugate ψ(s) = supt≥0{st− φ(t)} of φ, which for φ(t) = (p− 1)−1(tp − 1) is k-
times differentiable only for k < p/(p−1). In particular, it does not enjoy the C∞-smoothness
crucially used in EOT, where the proof of sample complexity uses derivatives of higher and
higher order as the dimension d grows. Following the aforementioned prevailing thinking, it
is often assumed that (3) thus suffers from the curse of dimensionality when it is not smooth.
This idea is in line with the recent work [1] which gives an upper bound for the sample
complexity that deteriorates exponentially with the dimension d (see Section 1.1).

In the present paper, our goal is to refute this prevailing thinking. For a broad class of reg-
ularizations φ, we show that (3) overcomes the curse of dimensionality and converges at the
parametric rate, despite a lack of smoothness (and also of a PL inequality, cf. Section 1.1). In
fact, our results are much more detailed: we establish central limit theorems for all key ob-
jects. As a consequence, (3) provides approximate solutions to optimal transport with precise
statistical guarantees.
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Synopsis of main results. We consider marginals P,Q with bounded supports, at least one
of them connected. The transport cost c is a general C1 function. The main assumption on
the divergence is that the convex conjugate ψ of φ is C2. This includes the KL divergence
where ψ is C∞, but also Tsallis divergences that yield sparse approximations of unregu-
larized optimal transport. There are three main objects under consideration. The first is the
optimal cost ROTε(Pn,Qn); here the result is simple to state as the object is scalar. In Theo-
rem 3.5, we show that the optimal cost is asymptotically normal at rate

√
n. More precisely,√

n
(
ROT(Pn,Qn)−ROT(P,Q)

)
→N(0, σ2) where N(0, σ2) is the centered normal dis-

tribution with a variance σ2 detailed in Theorem 3.5. The second key object is the opti-
mal coupling πn ∈ Π(Pn,Qn). Here the asymptotic normality can be stated by integrating
a test function: Theorem 3.6 shows that for any bounded measurable function η, we have√
n
(∫
ηd(πn − π)

)
→N(0, σ2(η)), where again the variance is detailed in the theorem. The

third object is the pair of dual potentials; that is, functions (f∗, g∗) solving the dual problem
of (3) in the sense of convex analysis,

sup
(f,g)∈L∞(P )×L∞(Q)

∫ {
f(x) + g(y)− ε ·ψ

(
f(x) + g(y)− c(x, y)

ε

)}
d(P ⊗Q)(x, y).

(5)

The potentials determine the optimal coupling via

dπ = ψ′
(
f∗(x) + g∗(y)− c(x, y)

ε

)
d(P ⊗Q)

where ψ′ is the derivative of the conjugate of φ. Unlike in the special case of EOT, ψ′ is
generally not invertible, and hence the potentials are the main object in our study. Denoting
by (f∗, g∗) the population potentials and by (fn, gn) the empirical counterparts, our central
limit theorem for the potentials states that

√
n(fn − f∗, gn − g∗) converges (weakly wrt. the

uniform norm) to the Gaussian random process detailed in Theorem 3.4. Of course this result
can only hold if (f∗, g∗) is unique. Indeed, we obtain uniqueness (up to additive constants) as
a by-product of our analysis; this is a new result of its own interest and holds even for merely
continuous transport costs c (Theorem 3.2).

1.1. Related literature. Next, we review literature on optimal transport regularized by an
f -divergence. Following the main focus of the present work, we begin with divergences other
than the entropic one. After that, we review the existing sample complexity results for EOT.

1.1.1. Non-entropic divergences. Optimal transport problems regularized by Tsallis di-
vergence were first considered in the discrete setting, starting with [35] for applications
in ecological inference. Focusing on the particular case of quadratic (i.e., χ2) divergence,
[2] highlighted the sparsity of the solution for use in image processing and [15] studied
minimum-cost flow problems on graphs. The earlier work [10] considered optimal transport
with a more general convex regularization. In the continuous setting, divergence-regularized
optimal transport was first explored in the computational literature. Several works including
[13, 18, 26, 29, 40] approach the dual problem by optimization techniques. For instance, [29]
computes regularized Wasserstein barycenters using neural networks. From a computational
point of view, Tsallis divergences are attractive to mitigate a well-known issue of EOT for
small values of the regularization parameter ε, namely that optimization methods struggle
with the exponentially small values of the density (e.g., [39]).

On the theoretical side, [31] established duality results for the case of quadratic divergence.
Also for quadratic divergence, [30] showed convergence ROTε →OT as the regularization
parameter ε tends to zero. More recently, [14] derives a rate for this convergence, for general
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f -divergences. For the special case of quadratic divergence, [17] shows that this rate cor-
responds to the exact leading order and identifies the multiplicative constant, whereas [24]
focuses on the discrete case where convergence is stationary. The recent works [25, 44] study
the size of the optimal support in the regime ε→ 0, thus quantifying the sparsity of the solu-
tion (qualitatively proved in [36] but empirically known long before, as mentioned above).

The only previous work on sample complexity for non-entropic divergences is [1]. The
authors bound the expected absolute difference between the population and empirical optimal
costs. The bound depends on the smoothness and the dimension of the problem. Recall that
ψ denotes the conjugate of the convex function φ defining the divergence in (4). Let k ∈ N
be such that ψ ∈ Ck as well as c ∈ Ck. Moreover, let d be the dimension of the marginals. The
main result [1, Theorem 5.3] states that for d > 2k,

(6) E[|ROTε(P,Q)−ROTε(Pn,Qn)|]≲ n−
k

d .

For most applications, the bottleneck in this bound is the smoothness of ψ, rather than c.
Assuming merely ψ ∈ C2 as in the present work, the rate (6) is n−

2

d for d ≥ 5, suggesting
that the curse of dimensionality is exactly the same as for the unregularized optimal trans-
port problem mentioned at the beginning of this introduction. The bound (6) is obtained by
adapting the classical approach going back to [18] for EOT: estimating the regularity of the
empirical potentials to define a function space with controlled covering number and then ap-
plying empirical process theory. Because the potentials are only as smooth as ψ′, this yields
a bound (6) that in general deteriorates exponentially with the dimension (whereas when
ψ ∈ C∞ as for EOT, the dimension can be eliminated).

The present work indicates that the bound (6) is loose, even to the extent that its implicit
message regarding the curse of dimensionality is misleading. Indeed, we show that the actual
rate is n−

1

2 , independently of the dimension d, and in particular that the influence of the
dimension is more similar to EOT than to unregularized optimal transport. One may consider
this result highly surprising given the lack of smoothness (and failure of strong concavity,
cf. Section 1.1.2). As we derive central limit theorems with the usual

√
n scaling for all key

quantities, this rate is sharp. (Except possibly in degenerate examples where the Gaussian
limit has vanishing variance; then, the actual rate is likely faster.)

1.1.2. Entropic divergence. The literature on EOT is extremely large, and fairly well
known. We only review the literature on sample complexity, focusing on continuous pop-
ulation marginals (and with a view towards explaining why the existing approaches fail in
our setting). As mentioned above, parametric rates for the optimal EOT cost (2) were first
obtained by [18]. Assuming a smooth (i.e, C∞) transport cost c and compactly supported
marginals, the authors show that the potentials are smooth with Ck norm bounded indepen-
dently of the marginal measures, for any k ∈N. Thus the empirical potentials all belong to a
function class with controlled covering number. The result then follows by applying empiri-
cal process theory to the dual problem of EOT. A similar bound with improved constants and
more general (sub-Gaussian) marginals was obtained in [34] using a refinement of the same
approach. Moreover, [34] provided the first central limit-type theorem on EOT, namely for
the optimal cost. In this result, the centering is by the mean of the empirical cost, instead of
the population cost as in a usual central limit theorem. The proof follows an approach based
on the Efron–Stein inequality that is adapted from (unregularized) optimal transport; cf. [7].
A central limit theorem for the EOT cost in the classical sense (centered at the population
value) was first derived in [9]. The proof combines the result of [34] with an analysis of the
bias–variance decomposition showing that the bias tends to zero faster than n−1/2. This is
based on the fact that the empirical EOT potentials belong to a Donsker class. Namely, the
Ck-norm of the potentials is uniformly bounded for any k, and choosing k > d/2 implies



SPARSE REGULARIZED OPTIMAL TRANSPORT 5

the Donsker property [42, p. 157]. The authors also show that the potentials converge at the
parametric rate (in the norm of Ck, for any k ∈N); this is based on the strong convexity of the
dual problem (see [9, Lemma 4.6]). In concurrent work, [20] provided a very similar central
limit theorem for the EOT cost, using a different proof technique based on the functional delta
method for supremum-type functionals (see [6]). This argument again rests on the potentials
belonging to a Donsker class.

While the aforementioned central limit theorems were all about the optimal cost, central
limit theorems for the potentials and couplings were first derived in [23] and [21]. Both
works use the same methodology of Z-estimation and the delta method (see also Section 1.2
below). Specifically, [21, Theorem 3] shows that the potentials are Hadamard differentiable
as functions of the marginal measures, tangentially to perturbations in Ck(Ω)′ for any k ∈N.
As the unit ball in Ck(Ω) is a Donsker class for k > d/2, the delta method then yields the
central limit theorem for the potentials, and the theorems for the couplings are derived from
there.

The aforementioned works all deal with a transport cost function c ∈ C∞, and exploit the
fact that the EOT potentials are as smooth as that cost. A substantially different approach
was taken in [38]. Assuming only that c is bounded, the approach is based on the fact that
the dual problem of EOT is strongly concave, and hence satisfies a PL inequality, uniformly
over the empirical marginals (see [38, Lemma 16]). The authors then obtain the parametric
rate for the convergence of the empirical EOT cost; more precisely, the mean squared error
and bias are both bounded by 1/n, with constants that are fully dimension-independent. In
the setting of non-smooth cost, central limit theorems for the optimal costs and the optimal
couplings were established in [22]. The authors linearize the potentials in the empirical L2

norms and, unlike [21, 23], do not use empirical processes theory but instead approximate
the optimal couplings by infinite order U-statistics. This approximation holds by a uniform
contraction argument over the linearized Schrödinger system, which is deeply related to the
PL inequality in [38].

All of the above approaches fail in our setting because the empirical potentials are not
smooth (and do not belong to a Donsker class) while the dual problem is not strongly concave
and does not satisfy a uniform PL inequality.

While our main interest is in divergences other than the entropic one, let us mention that
we add to the literature even in the special case of EOT. Namely, we provide a central limit
theorem for the potentials under the assumption that the cost c is C1, where such a result pre-
viously existed only for c ∈ C∞ (see [21, 23]). Our proof technique is substantially different,
as we explain next.

1.2. Methodology. We follow the approach of Z-estimation in deriving central limit the-
orems; see [42, Chapter 3.3]. While the usual argument via Donsker classes is doomed to fail
due to the missing regularity of the empirical potentials, one key methodological innovation
is to overcome this issue with a novel line of argument. As our approach may be useful for
Z-estimation problems in other areas, we sketch the approach in general terms.

In Z-estimation, the empirical quantities θn of interest are described by an equation of
the form Φn(θn) = 0 with a random operator Φn while the population counterpart θ∗ is
described by Φ(θ∗) = 0 with a deterministic Φ. The goal is to show a central limit theorem
for the convergence θn → θ∗. More specifically, θn, θ∗ are elements of the parameter set Θ
which is contained in a Banach space (B,∥ ·∥). We assume for simplicity that Φn,Φ : B→B;
in general the image may be in another Banach space. In our particular problem, θn are the
empirical potentials (fn, gn) and θ∗ is the population counterpart (f∗, g∗). The nonlinear
operators Φn,Φ represent the first-order conditions of optimality in the dual problem. As in
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many applications of Z-estimation, these operators have the integral form

Φn(θ) =

∫
ϕ(θ)dPn, Φ(θ) =

∫
ϕ(θ)dP(7)

where ϕ is deterministic and Pn are empirical measures derived from i.i.d. samples of P.
The basic theorem of Z-estimation (see [42, Theorem 3.3.1]) separates the conditions for

the desired asymptotic normality of
√
n(θn−θ∗) into analytical conditions on the population

quantities θ∗,Φ and a stochastic condition stating that the remainder in a Taylor expansion is
negligible. Roughly, these conditions are

(i) [Φn −Φ](θ∗) satisfies a central limit theorem in B,
(ii) Φ is Fréchet differentiable at θ∗ with invertible derivative L :=DΦ(θ∗) ∈ L(B,B),
(iii) ∥θn − θ∗∥

P−→ 0,
(iv) the following expansion holds,

(8) ∆n := [Φn −Φ](θn)− [Φn −Φ](θ∗) = oP
(
n−1/2 + ∥θn − θ∗∥

)
.

While obtaining invertibility has its own challenges in our setting, we defer that discussion
to Section 3.1. Like in most applications, the main issue is to establish (8). The standard ap-
proach (see [42, Lemma 3.3.5]) is to use a sufficient condition whose main part is that the
random functions ϕ(θn)−ϕ(θ∗) form a P-Donsker class (for ∥θn−θ∗∥ sufficiently small). In
the setting of EOT, the smoothness of the empirical potentials indeed yields the Donsker prop-
erty, and together with the aforementioned Hadamard differentiability, this allowed [21, 23]
to infer the desired central limit theorem for the potentials. In the present case, this approach
is a nonstarter because the regularity of the potentials is too poor to give a Donsker class.

We take a different route. While our aim is, as before, a central limit theorem in B, we
also use an auxiliary Banach space Bs ⊂B equipped with a stronger norm ∥ · ∥s such that the
unit ball of Bs is compactly embedded in B. In our case, B is (up to some details) the space
of continuous functions on a compact set endowed with the uniform norm whereas Bs is (up
to an isomorphism) the space of Hölder continuous functions with a fixed Hölder exponent
β ∈ (0,1). The stronger Hölder norm guarantees the compact embedding. While we keep the
conditions (ii), (iii) above, we strengthen (i) to

(i’) [Φn −Φ](θ∗) satisfies a central limit theorem in Bs
as the stronger topology will be used to help establish (8). We verify (i’) by applying a general
central limit theorem for Hölder spaces detailed in Appendix B. The key intermediate step
towards (8) is that

(iv’) there are a compact K ⊂ B, random elements Un ∈ K, and random elements Vn ∈ B
with ∥Vn∥

P−→ 0, such that

∆n := [Φn −Φ](θn)− [Φn −Φ](θ∗) = (Un + Vn)∥θn − θ∗∥.

This is verified using the specifics of the problem at hand (cf. Lemma 5.4), without requiring
smoothness. Next, we outline how these conditions lead to (8). Note that the differentiability
condition (ii) implies

(θ∗ − θn) = L−1(Φ(θ∗)−Φ(θn)) +Rn

with ∥Rn∥= oP(∥θ∗ − θn∥). Using Φ(θ∗) = 0 = Φn(θn), this can be written as

θ∗ − θn = L−1(Φn(θn)−Φ(θn)) +Rn = L−1
(
∆n + [Φn −Φ](θ∗)

)
+Rn.
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By (i’), the sequence
√
n[Φn − Φ](θ∗) is tight in Bs. Using also (iv’) and the continuity of

L−1, we deduce a key decomposition (cf. Proposition 5.3)

θ∗ − θn = ∥θn − θ∗∥(U ′
n + V ′

n) + n−
1

2Wn(9)

with random functions U ′
n taking values in a compact K′ ⊂ B, random functions ∥V ′

n∥
P−→ 0,

and (LWn) tight in Bs. From here, we make (mild) use of the particular properties the func-
tionals (7) at hand. Namely, ϕ is differentiable, hence the fundamental theorem of calculus
allows us to write

∆n =

∫
(ϕ(θ)− ϕ(θn))d(P− Pn) =

∫
(θ∗ − θn)ϕnd(P− Pn)

for ϕn :=
∫ 1
0 ϕ

′(λθ∗ + (1− λ)θn)dλ. Inserting (9) yields

∆n = ∥θ∗ − θn∥
∫

(U ′
n + V ′

n)ϕnd(P− Pn) + n−
1

2

∫
Wnϕnd(P− Pn).

The stated properties of U ′
n, V

′
n enable us to verify that first term is oP

(
∥θn− θ∗∥

)
. Similarly,

the tightness of (LWn) in Bs and the fact that ∥ · ∥s-bounded sets are relatively compact in
B allow us to verify that the second term is oP

(
n−1/2

)
. This completes the derivation of (8).

The central limit theorem for the potentials then follows by standard arguments. The proofs
of the central limit theorems for the optimal cost and the optimal couplings are based on the
result for the potentials, (8) and the central limit theorem for two-sample U -statistics.

Finally, we comment on the uniqueness of the population potentials, shown in Theorem 3.2
when the cost c is continuous and one marginal has connected support. The usual technique
to obtain uniqueness—familiar in unregularized optimal transport and adapted in [36] for the
regularized problem with quadratic divergence—is to argue that the gradient of the poten-
tial equals the partial derivative of the cost c on the support of the optimal coupling. This
argument is a nonstarter if the cost c is not differentiable. In the present work, uniqueness is
instead deduced from the invertibility of L. Clearly uniqueness of the population potentials
is a precondition for any result on the convergence to them. On the other hand, we mention
that the empirical potentials are in general not unique. They are unique in the special case of
EOT and more generally when the optimal coupling has sufficiently large support, but not in
general. The family of all potentials can be parametrized by the components (in the sense of
connectedness of graphs) of the support, as shown in [36].

Organization. The remainder of this paper is organized as follows. Section 2 details the
problem formulation and notation, and summarizes basic facts about the regularized optimal
transport problem. Section 3 first states the main results, namely the uniqueness of the popu-
lation potentials and the three central limit theorems, then continues with an overview of the
proof strategy. The proofs start in Section 4 by analyzing the linearization of the first-order
condition of the potentials, here the key result is the invertibility of the derivative L (Propo-
sition 4.4). The proofs of the central limit theorems are presented in Section 5. We first show
in Section 5.1 that the empirical potentials are a consistent estimator. Section 5.2 contains the
technical core of the proof, namely the aforementioned decomposition into three terms, each
with a different compactness property. Section 5.3 concludes with the proofs of the central
limit theorems. In Appendix A we provide a numerical analysis of a particular example where
the population problem can be solved in closed form and hence the convergence rate can be
accurately observed. Appendix B provides an abstract central limit theorem for the Banach
space of Hölder functions that is used in the proof of our main results. Omitted proofs are
collected in Appendix C.
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2. Problem statement and preliminaries.

2.1. Notation. Let Ω be a compact subset of Rd. For f : Ω → R, we write ∥f∥∞ =
supx∈Ω |f(x)|. The space of continuous functions Ω → R is denoted C(Ω) and endowed
with ∥ · ∥∞. Moreover, Ck(Ω) denotes k-times continuously differentiable functions. For
α ∈ (0,1], the α-Hölder semi-norm of f : Ω→R is

[f ]α = sup
x ̸=y

|f(x)− f(y)|
∥x− y∥α

.

We set C0,α(Ω) = {f ∈ C(Ω) : [f ]α <∞}, a Banach space under the norm ∥f∥0,α := ∥f∥∞+
[f ]α. If B1 and B2 are Banach spaces, the space of bounded linear operators F : B1 →B2 is
denoted L(B1,B2) and endowed with the norm topology.

The open unit ball in Rd is denoted by B and its closure by B. Thus x+ rB is the ball
centered at x with radius r. The gradient of f : Rd → R is denoted ∇f and the gradients of
a function c :Rd ×Rd →R with respect to the first and second coordinates are denoted ∇xc
and ∇yc, respectively. The derivative of a univariate function ψ :R→R is denoted ψ′. Given
functions x 7→ f(x) and y 7→ g(y), we denote by f ⊕ g the function (x, y) 7→ f(x) + g(y).

We fix a probability space (Ω,A,P) where all random variables are defined. For a measur-
able function f : Rd → R and a random vector X :Ω→ Rd with distribution P , the expec-
tation of f(X) is denoted E[f(X)] =

∫
f(x)dP (x) =

∫
f dP. Almost-sure convergence is

denoted by a.s.−→, convergence in probability by P−→, and convergence in distribution (or weak
convergence) by w−→. The latter refers to convergence induced by continuous and bounded test
functions. For scalar random variables Xn, Yn, we write Xn =OP(Yn) if Xn/Yn is stochas-
tically bounded and Xn = oP(Yn) if Xn/Yn

P−→ 0.
More terminology, related to probability in Banach spaces, can be found in Appendix B.

2.2. Divergence. Given measures µ,ν on the same space, the divergence Dφ(µ|ν) is
determined by the function φ : [0,∞)→R via

Dφ(µ|ν) =
∫
φ

(
dµ

dν

)
dµ,

with the convention that Dφ(µ|ν) =∞ if µ ̸≪ ν. The following assumption on φ is in force
throughout the paper.

ASSUMPTION 2.1 (Divergence). The function φ : [0,∞) → R is strictly convex with
φ(1) = 0, limx→∞φ(x)/x=+∞ and such that the conjugate

y 7→ ψ(y) := φ∗(y) := sup
x≥0

{xy−φ(x)}

is in C2(R). Moreover, there exists C > 0 such that ψ′(x) ≥ x for x ≥ C , and there exist
t0 > 0 and δ > 0 such that ψ′(t0) = 1 and ψ is strictly convex on [t0 − δ,∞).

The detailed assumptions about the shape of ψ are useful to derive basic estimates for the
potentials; cf. Proposition 2.3. While they are a bit clumsy, they are verified in all examples
of our interest. The more restrictive assumption is that ψ is C2.

EXAMPLE 2.2. For the Kullback–Leibler divergence of EOT, we take φ(x) = x log(x)
which yields ψ(y) = ey−1. Note that ψ ∈ C∞ and ψ′(y) > 0 for all y, corresponding to the
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fact that the optimal coupling always has full support. Next, consider the polynomial (Tsallis)
divergence

φ(x) =
xα − 1

α

for α ∈ (1,∞). Then ψ′(y) = yβ−1
+ where 1

α + 1
β = 1 and y+ =max{y,0}. This truncation

at zero corresponds to the fact that the optimal coupling does not have full support in general.
Note that ψ is strictly convex on R+ and in C1. Moreover, ψ is C2 for β > 2; i.e., for any
α ∈ (1,2).

We note that the quadratic case α = 2 is not covered. For this boundary case, we expect
to provide similar results as in the present paper in separate work, assuming that c is the
quadratic cost and the marginals have additional regularity (see also Appendix A for nu-
merical hints). That setting implies additional convexity properties for the potentials. In the
present work, we focus on giving a general result for a broad class of divergences, costs and
marginals, thus showing that the conclusions do not hinge on a particular algebraic structure.

2.3. Regularized optimal transport. For brevity, we treat the regularized optimal trans-
port problem for regularization parameter ε = 1. The general case is recovered by a simple
scaling argument detailed in Remark 2.5 below. Thus the primal problem is

(10) ROT(P,Q) := inf
π∈Π(P,Q)

∫
cdπ+

∫
φ

(
dπ

d(P ⊗Q)

)
d(P ⊗Q).

The associated dual problem is

(11) DUAL(P,Q) := sup
(f,g)∈L∞(P )×L∞(Q)

∫ (
f ⊕ g−ψ(f ⊕ g− c)

)
d(P ⊗Q)

and its first-order condition for optimality is

(12)

{∫
ψ′(f∗(·) + g∗(y)− c(·, y))dQ(y) = 1 P -a.s.,∫
ψ′(f∗(x) + g∗(·)− c(x, ·))dP (x) = 1 Q-a.s.

The following proposition summarizes some basic facts to be used throughout the paper.
While the proofs are essentially known and largely contained in [1], we give a self-contained
and simpler proof in Appendix C.1, for the convenience of the reader and also to rectify
minor inaccuracies in [1].

PROPOSITION 2.3. Let P,Q be probability measures on Rd with compact supports
Ω,Ω′. Moreover, let c ∈ C(Ω×Ω′).

(i) The strong duality ROT(P,Q) = DUAL(P,Q) holds.
(ii) The primal problem (10) admits a unique optimizer π ∈Π(P,Q).
(iii) The dual problem (11) admits a (non-unique) optimizer (f∗, g∗) ∈ L∞(P )×L∞(Q).
(iv) A pair (f∗, g∗) ∈ L∞(P )×L∞(Q) is an optimizer of the dual problem (11) if and only

if it satisfies the first-order condition (12).
(v) Any dual optimizer (f∗, g∗) yields a primal optimizer via dπ := ψ′(f∗⊕g∗−c)d(P ⊗Q).
(vi) Let (f∗, g∗) ∈ L∞(P )×L∞(Q) satisfy (12). Then one can choose a version of (f∗, g∗)

satisfying (12) everywhere; that is,

(13)

{∫
ψ′(f∗(x) + g∗(y)− c(x, y))dQ(y) = 1 for all x ∈Ω,∫
ψ′(f∗(x) + g∗(y)− c(x, y))dP (x) = 1 for all y ∈Ω′.

For such a version (f∗, g∗), the uniform bound ∥f∗ ⊕ g∗∥∞ ≤ 5∥c∥∞ + (ψ′)−1(1) <∞
holds. Moreover, if ρ is a modulus of uniform continuity for c on Ω×Ω′, then f∗ and g∗
are also uniformly continuous with modulus ρ.
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(vii) Let (f∗, g∗) solve (13) and abbreviate ξ∗(x, y) := f∗(x) + g∗(y)− c(x, y). Then there
exists δ > 0 such that∫

ψ′′(ξ∗(·, y))dQ(y)≥ δ on Ω,

∫
ψ′′(ξ∗(x, ·))dP (x)≥ δ on Ω′.

Functions (f∗, g∗) that are optimal for the dual problem (11), or equivalently solve the first-
order condition (12), will be called potentials of the regularized optimal transport problem.

REMARK 2.4 (Limited Smoothness). Proposition 2.3 (vi) may suggest that the poten-
tials f∗ and g∗ are “as smooth as the cost c.” While this holds for the KL divergence of
EOT, ψ is in general only C2 for the polynomial divergences included in our setting, and this
implies that f∗ and g∗ are only C1 in general. Indeed, the formula

∇f∗(·) =
∫
ψ′′(f∗(·) + g∗(y)− c(·, y))∇xc(·, y)dQ(y)∫

ψ′′(f∗(·) + g∗(y)− c(·, y))dQ(y)

highlights how the smoothness of both ψ and c affects the regularity of f∗. (See also [36] for
a concrete counterexample.) As mentioned in the introduction, the limited smoothness of the
empirical potentials is a major obstacle for deriving our main results.

REMARK 2.5 (Regularization parameter). The regularized optimal transport problem is
often considered with a regularization parameter ε > 0, which was taken to be ε= 1 above.
In general,

ROTε(P,Q) := inf
π∈Π(P,Q)

∫
cdπ+ ε

∫
φ

(
dπ

d(P ⊗Q)

)
d(P ⊗Q),

the associated dual problem is

(14) DUALε(P,Q) := sup
(f,g)∈L∞(P )×L∞(Q)

∫ {
f ⊕ g− ε ·ψ

(
f ⊕ g(y)− c

ε

)}
d(P ⊗Q)

and the first-order condition for optimality reads
∫
ψ′
(
f(·)+g(y)−c(·,y)

ε

)
dQ(y) = 1,∫

ψ′
(
f(x)+g(·)−c(x,·)

ε

)
dP (x) = 1.

The results for the general problem can be deduced from the special case ε= 1 by a simple
scaling. Namely, defining c̄= c/ε, we have

ROTε(P,Q) = εROT(P,Q, c̄)

where ROT(P,Q, c̄) is the problem with ε= 1 and cost c̄. Moreover, the optimal couplings of
these two problems coincide. Similarly for the dual: (fε, gε) is optimal for (14) if and only if
(εfε, εgε) is optimal for the problem DUAL(P,Q, c̄) with ε= 1 and cost c̄. For convenience,
we detail in Remark 3.7 below how the main results translate to a general parameter ε > 0.

3. Main results. Our main results are central limit theorems for the potentials, the opti-
mal costs, and the optimal couplings. The following condition on the population marginals P
and Q is imposed throughout this section.

ASSUMPTION 3.1 (Marginals). The probability measures P and Q on Rd have compact
supports Ω and Ω′, respectively, and Ω is connected.
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A central limit theorem for the potentials can only hold if the limiting (population) po-
tentials (f∗, g∗) are unique in a suitable sense. Indeed we obtain a uniqueness result un-
der quite general conditions as by-product of our approach to the central limit theorem.
Note that potentials always admit a degree of freedom: if (f∗, g∗) are potentials, then so
are (f∗ + a, g∗ − a) for any a ∈ R. Additionally, there is some freedom in changing poten-
tials on nullsets, which can be mended by using continuous versions as in Proposition 2.3. To
eliminate those degrees of freedom, we define the Banach space

C⊕ = (C(Ω)×C(Ω′)/∼⊕

where (f, g)∼⊕ (u, v) if f ⊕ g = u⊕ v, endowed with the quotient norm

∥(f, g)∥⊕ = inf
a∈R

{∥f − a∥∞ + ∥g+ a∥∞}.

The equivalence class of (f, g) will be denoted by [(f, g)]⊕ when we want to emphasize
the identification; however, we often just write (f, g) for the sake of brevity. We can now
state the uniqueness of the population potentials. We emphasize that this result holds for
costs c that are merely continuous, in contrast to related results in the literature that rely on
differentiating c (cf. Section 1.2).

THEOREM 3.2. Let c ∈ C(Ω× Ω′) and let (P,Q) satisfy Assumption 3.1. Then the as-
sociated potentials (f∗, g∗) are unique in C⊕. That is, there exist (f∗, g∗) ∈ C(Ω) × C(Ω′)
solving (13), and any pair solving (13) is of the form (f∗ + a, g∗ − a) for some a ∈R.

Next, we present the central limit theorems. Given (population) marginals P,Q satisfying
Assumption 3.1, we consider the two-sample case. Let X1, . . . ,Xn be i.i.d. samples from P
and let Y1, . . . , Yn be i.i.d. samples from Q; more precisely, the two sequences are indepen-
dent and defined on the common probability space (Ω,A,P). The random samples give rise
to the empirical measures Pn = 1

n

∑n
i=1 δXi

and Qn = 1
n

∑n
i=1 δYi

, which in turn lead to em-
pirical potentials (fn, gn) by Proposition 2.3. More precisely, Proposition 2.3 yields (fn, gn)
satisfying (12) on the supports supp(Pn) and supp(Qn), respectively, but we can extend
(fn, gn) to continuous functions on Ω×Ω′. While (fn, gn) are not unique, we choose and fix
them. Note that all these objects are random; that is, depend on the parameter ω ∈Ω deter-
mining the realization of the random samples. We choose (fn, gn) such that the dependence
on ω is measurable. To simplify the notation we also introduce

(15) ξ∗(x, y) := f∗(x) + g∗(y)− c(x, y) and ξn(x, y) := fn(x) + gn(y)− c(x, y).

ASSUMPTION 3.3 (Cost). The transport cost c is in C1(Ω×Ω′).

This assumption is in force for the three central limit theorems below, in addition to As-
sumption 2.1 on the divergence and Assumption 3.1 on the population marginals (P,Q). We
can now state our main result.

THEOREM 3.4 (CLT for potentials). Let GP = (GP (y))y∈Ω′ be a centered Gaussian
process in C(Ω′) with covariance function

E[GP (y)GP (y
′)]

= E
{(
ψ′(ξ∗(X,y))−E

[
ψ′(ξ∗(X,y))

]) (
ψ′(ξ∗(X,y

′))−E
[
ψ′(ξ∗(X,y

′))
])}
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for (y, y′) ∈ Ω′, where X ∼ P . Let GQ = (GQ(x))x∈Ω be a centered Gaussian process in
C(Ω) with analogous covariance, independent of GP . Then the weak limit

√
n

(
fn − f∗
gn − g∗

)
w−→−L−1

[(
GQ∫

ψ′′(ξ∗(·,x))dQ(y)
GP∫

ψ′′(ξ∗(x,·))dP (x)

)]
⊕

holds in C⊕, where L−1 ∈ L(C⊕,C⊕) is the inverse of the (bounded, bijective) linear operator

L : C⊕ →C⊕, (f, g) 7→

f(·) + ∫
ψ′′(ξ∗(·,y))g(y)dQ(y)∫
ψ′′(ξ∗(·,y))dQ(y)

g(·) +
∫
ψ′′(ξ∗(x,·))f(x)dP (x)∫
ψ′′(ξ∗(x,·))dP (x)

 .

THEOREM 3.5 (CLT for costs). We have
√
n
(
ROT(Pn,Qn)−ROT(P,Q)

) w−→N(0, σ2)

where the variance σ2 is that of the random variable

f∗(X) + g∗(Y )−
(∫

ψ (ξ∗(x,Y ))dP (x) +

∫
ψ (ξ∗(X,y))dQ(y)

)
(16)

for (X,Y )∼ P ⊗Q.

Let π ∈ Π(P,Q) denote the optimal coupling for the population marginals and let πn ∈
Π(Pn,Qn) denote the empirical counterpart. To state the central limit theorem for πn →
π, recall that [(f, g)]⊕ denotes the equivalence class of (f, g) ∈ C(Ω) × C(Ω′) in C⊕. To
streamline the notation, we also define the operator

[(f, g)]⊕ 7→ ⊕(f, g) := f ⊕ g ∈ C(Ω×Ω′).

THEOREM 3.6 (CLT for couplings). For any bounded and measurable η : Ω×Ω′ →R,
√
n

(∫
ηd(πn − π)

)
w−→N(0, σ2(η))

with σ2(η) = Var(VX + VY ) where, for Z ∈ {X,Y },

VZ := E

[∫
U(x, y,X,Y )η̄(x, y)ψ′(ξ∗(x, y))d(P ⊗Q)(x, y)− η̄(X,Y )ψ′(ξ∗(X,Y ))

∣∣∣∣∣Z
]

for (X,Y )∼ P ⊗Q and η̄ := η−
∫
ηψ′′(ξ∗)d(P ⊗Q) and

U(·, ·,X,Y ) :=⊕

L−1

[(
ψ′(ξ∗(·,Y ))∫

ψ′′(ξ∗(·,y))dQ(y)
ψ′(ξ∗(X,·))∫

ψ′′(ξ∗(x,·))dP (x)

)]
⊕

 .

REMARK 3.7 (Regularization parameter). Let us detail how the main results, stated
above for ε = 1, read in the case of a general regularization parameter ε > 0. The follow-
ing can be deduced by the scaling argument in Remark 2.5. First, (f∗, g∗) are replaced by the
rescaled potentials (fε, gε) as defined in Remark 2.5, and ξ∗ is replaced by

ξε(x, y) =
fε(x) + gε(y)− c(x, y)

ε
.

Apart from those changes, the formula for L remains unchanged. In the statement of Theo-
rem 3.4, we further add a multiplicative factor ε in front of L−1. While in Theorem 3.5, we
replace ROT by ROTε on the left-hand side and add a multiplicative factor ε in front of the
bracket in (16). Finally, the statement of Theorem 3.6 requires not further changes, with the
understanding that π,πn are now the optimal couplings for ROTε.
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3.1. Proof strategy. Our arguments center on the potentials (f∗, g∗) and their empirical
counterparts (fn, gn). The first-order condition of optimality (13) can be written in operator
form as Γ(f∗, g∗) = (1,1) and Γn(fn, gn) = (1,1). In fact, for reasons discussed later, we
work with closely related operators Γ̃ and Γ̃n. Linearizing the first-order condition yields an
identity of the form

(17) Γ̃(fn, gn)− Γ̃n(fn, gn) = L(fn − f∗, gn − g∗) + (. . . )

where L is a linear operator and (. . . ) are terms that do not cause difficulties.
The first step is to show the invertibility of L (Proposition 4.4). To this end, we show that

L= Id + A where A is a compact operator. Thus by Fredholm’s alternative, L is invertible
if (and only if) −1 is not an eigenvalue of A. To prove the latter, suppose that (f, g) is an
eigenvector corresponding to the eigenvalue −1 of A. We first show that

(18) ∥(f, g)∥⊕ = ∥A(f, g)∥⊕,

which implies that f is constant on the set ∪y∈SQ(x)SP (y) for all x ∈ argmax |f |, where
SQ(x) and SP (y) are the sections of the set S = {(x, y) ∈Ω×Ω′ : ψ′′(ξ∗(x, y))> 0}. In the
case of EOT, S is the full space and one immediately concludes that f is constant, completing
the proof. In the general case, S can be smaller (even sparse, see Remark 4.3) and then
∪y∈SQ(x)SP (y) does not cover the whole space Ω in general. Instead, we prove that (18)
implies that f is constant in a neighborhood of fixed radius α around the set argmax |f |. We
then iterate this reasoning to show that f is constant on the whole space Ω.

Once the invertibility of L is shown, we focus on the central limit theorem. A high-level
perspective on the proof was already given in Section 1.2 based on Z-estimation. Here, we
give a more pedestrian sketch. The basic idea is that if we had a central limit theorem for the
left hand side of (17), then we could apply L−1 on both sides and deduce the desired result
for (fn − f∗, gn − g∗). To follow this strategy, one would like to replace the left hand side
Γ̃(fn, gn)− Γ̃n(fn, gn) by the more tractable expression Γ̃(f∗, g∗)− Γ̃n(f∗, g∗). Indeed, gen-
eral arguments show that the latter expression satisfies a central limit theorem (Lemma 5.2).
Let us proceed with that replacement, by defining the difference

∆n := [Γ̃− Γ̃n](f∗, g∗)− [Γ̃− Γ̃n](fn, gn)

and hence

Γ̃(f∗, g∗)− Γ̃n(f∗, g∗) = L(fn − f∗, gn − g∗) +∆n + (. . . ).

At this point we would like an estimate along the lines of ∥∆n∥⊕ = o (∥(f∗ − fn, g∗ − gn)∥⊕).
A first attempt may be to bound ∥∆n∥⊕ in terms of

(19) ∥(f∗ − fn, g∗ − gn)∥⊕ sup
∥(f,g)∥⊕≤1

∥[Γ̃n − Γ̃](f, g)∥∞.

However, this expression does not behave like o(∥(f∗ − fn, g∗ − gn)∥⊕). Indeed, the empir-
ical measures would have to converge in total variation for the supremum over continuous
functions to be of order o(1). Loosely speaking, this failure arises because the unit ball of C⊕
is not compact. We resolve this with a finer analysis decomposing ∆n into two sequences,
one that is valued in a compact subset of C0 and one whose uniform norm converges to zero
almost surely (Lemma 5.4).

This leads to a key decomposition of (f∗ − fn, g∗ − gn) into three sequences (Propo-
sition 5.3): two as just described, and a third arising from the aforementioned central limit
theorem in Lemma 5.2. A crucial detail is that we establish this central limit theorem not only
in C⊕ but for a stronger norm whose unit ball is compactly embedded in the uniform topology
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and hence satisfies the universal Glivenko–Cantelli property, avoiding the roadblock (19). On
the strength of the decomposition, we derive in Corollary 5.7 that

∥∆n∥⊕ = oP

(
∥(f∗ − fn, g∗ − gn)∥⊕ + n−

1

2

)
.

Using this, the three-sequence decomposition, and the central limit theorem for two-sample
U -statistics, Section 5.3 completes the proofs of our main results.

4. Linearization of the Optimality Condition. Throughout this section, the transport
cost c ∈ C(Ω×Ω′) is fixed and (P,Q) are fixed marginals satisfying Assumption 3.1. (Dif-
ferentiability of c is not assumed.) Note that Proposition 2.3 applies not only to those pop-
ulation marginals (P,Q) but also to the empirical measures (Pn,Qn) of their i.i.d. samples.
We choose continuous versions of the potentials as detailed in Proposition 2.3. While at this
point we do not yet know the uniqueness of the population potentials, we may choose and fix
one such pair (f∗, g∗). By (13), the potentials (f∗, g∗) ∈ C(Ω)× C(Ω′) are a solution of the
equation Γ(f∗, g∗) = (1,1), where

Γ : C⊕ →C(Ω)×C(Ω′),

(f, g) 7→
(
Γ(1)(f, g)

Γ(2)(f, g)

)
=

(∫
ψ′(f(·) + g(y)− c(·, y))dQ(y)∫
ψ′(f(x) + g(·)− c(x, ·))dP (x)

)
.

Similarly, the empirical potentials (fn, gn) are a solution of Γn(fn, gn) = (1,1), where

Γn : C⊕ →C(Ω)×C(Ω′),

(f, g) 7→

(
Γ
(1)
n (f, g)

Γ
(2)
n (f, g)

)
=

(∫
ψ′(f(·) + g(y)− c(·, y))dQn(y)∫
ψ′(f(x) + g(·)− c(x, ·))dPn(x)

)
.

As mentioned in the preceding section, we choose and fix empirical potentials (fn, gn) that
are continuous on Ω×Ω′ and depend measurably on ω ∈Ω.

Recall the shorthand ξ∗(x, y) = f∗(x) + g∗(y)− c(x, y) from (15). The following lemma
details the first-order development of the operator

Γ̃ : C⊕ →C(Ω)×C(Ω′), (f, g) 7→ Γ̃(f, g) :=

(
Γ(1)∫

ψ′′(ξ∗(·,y))dQ(y)
Γ(2)∫

ψ′′(ξ∗(x,·))dP (x)

)
.

Here the denominators are bounded away from zero by Proposition 2.3. We introduce those
denominators so that the derivative L (see (20) below) becomes an operator C⊕ →C⊕ that is
a perturbation of the identity. (A priori, these operators could depend on the chosen and fixed
potentials (f∗, g∗), which causes no harm. Once the proof of uniqueness is complete, it will
be clear that there was in fact no ambiguity.)

LEMMA 4.1. The operator Γ̃ : C⊕ → C(Ω) × C(Ω′) is continuously Fréchet differen-
tiable; we denote its derivative at the point (f, g) ∈ C⊕ by L(f,g). That is, we have

lim
∥(u,v)∥⊕→0

∥Γ̃(f + u, g+ v)− Γ̃(f, g)−L(f,g)(u, v)∥C(Ω)×C(Ω′)

∥(u, v)∥⊕
= 0

and the function C⊕ ∋ (f, g) 7→ L(f,g) ∈ L(C⊕,C(Ω)× C(Ω′)) is continuous. The derivative
at (f∗, g∗) is given by

L(f∗,g∗) : C⊕ →C(Ω)×C(Ω′), (u, v) 7→

 u(·) +
∫
ψ′′(f∗(·)+g∗(y)−c(·,y))v(y)dQ(y)∫

ψ′′(ξ∗(·,y))dQ(y)

v(·) +
∫
ψ′′((f∗(x)+g∗(·)−c(x,·))u(x)dP (x)∫

ψ′′(ξ∗(x,·))dP (x)

 .
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PROOF. Using that ψ′ is C1, the proof is a direct calculation.

Composing with the quotient map, we define the operator L ∈ L(C⊕,C⊕) by

L : (u, v) 7→
[
L(f∗,g∗)(u, v)

]
⊕ .(20)

The main goal of this section is to show that L is invertible. We first state an auxiliary result
on the sections of the set S := {(x, y) ∈ Ω× Ω′ : ψ′′(ξ∗(x, y))> 0} whose interpretation is
discussed in Remark 4.3 below. The proof is reported in Appendix C.2.

LEMMA 4.2. Consider the sections of S = {(x, y) ∈Ω×Ω′ : ψ′′(ξ∗(x, y))> 0},

SQ(x) := {y ∈Ω′ : ψ′′(ξ∗(x, y))> 0}, SP (y) := {x ∈Ω : ψ′′(ξ∗(x, y))> 0}.
There exists α> 0 such that

(x+ αB)∩Ω⊂∪y∈SQ(x)SP (y) for all x ∈Ω.

REMARK 4.3. The set S = {(x, y) ∈Ω×Ω′ : ψ′′(ξ∗(x, y))> 0} is closely related to the
support of the optimal coupling π. Indeed, ψ′ ◦ ξ∗ is the density of π by Proposition 2.3. For
the KL and polynomial divergences detailed in Example 2.2, {t : ψ′(t)> 0}= {t : ψ′′(t)>
0}, hence S is exactly the set where the density is positive, and its closure is the support of π.
For the KL divergence of EOT, ψ′′ > 0 on all of R and thus S =Ω×Ω′, so that Lemma 4.2 is
trivial. For the polynomial divergences, however, it is known that the support is often sparse
(see Section 1.1), and then Lemma 4.2 is relevant.

The formula in Lemma 4.1 suggests to see L = Id + A as a perturbation of the identity
Id ∈ L(C⊕,C⊕). To prove the invertibility of L, we will show that the operator

A= (A1,A2) : C⊕ →C⊕, (f, g) 7→

 ∫
ψ′′(ξ∗(·,y))g(y)dQ(y)∫
ψ′′(ξ∗(·,y))dQ(y)∫

ψ′′(ξ∗(x,·))f(x)dP (x)∫
ψ′′(ξ∗(x,·))dP (x)

(21)

is compact and −1 is not an eigenvalue. Then, we conclude by the Fredholm alternative.
While similar results are known for EOT [3, 23], we require a substantially different proof
because our optimal coupling need not have full support.

PROPOSITION 4.4. The operator L ∈ L(C⊕,C⊕) admits an inverse L−1 ∈ L(C⊕,C⊕).

PROOF. We first show that the operator A of (21) is compact. We need to show that
if {(un, vn)}n∈N is bounded in C⊕ then {(A1un,A2vn)}n∈N is relatively compact in C⊕.
Since {(un, vn)} is bounded in C⊕, there exists a sequence {an} of real numbers such that
∥un−an∥∞ and ∥vn+an∥∞ are bounded. A sufficient condition for the relative compactness
of {(A1vn,A2un)} in C⊕ is that {A1(vn+an)} and {A2(un−an)} are relatively compact in
C(Ω) and C(Ω′), respectively. We only prove that {A2(un − an)} is relatively compact, the
former is analogous. By the Arzelà–Ascoli theorem, it suffices to show equicontinuity. As the
function

(∫
ψ′′(ξ∗(x, ·))dP (x)

)−1 is continuous by Proposition 2.3, and since the product of
an equicontinuous sequence with a continuous function (on the compact space Ω′) remains
equicontinuous, it moreover suffices to show that

(22)
∫
ψ′′(ξ∗(x, ·))(un(x)− an)dP (x), n ∈N

is equicontinuous. Indeed, let ρ be a modulus of continuity for
∫
ψ′′(ξ∗(x, ·))dP (x) and

C = supn ∥un − an∥∞, then Cρ is a modulus of continuity for the functions in (22). This
completes the proof that A is compact.
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Next, we show that −1 is not an eigenvalue of A. Suppose that

(23) f + a=−A1(g) and g− a=−A2(f)

for some (f, g) ∈ C(Ω)× C(Ω′) and a ∈R; we need to prove that [(f, g)]⊕ = [(0,0)]⊕. As a
first step, we show that a= 0 must hold in (23). Using (23) together with the definition of A2,
we have

(24)
∫
ψ′′(ξ∗(x, y))(f(x) + g(y))dQ(y) =−a

∫
ψ′′(ξ∗(x, y))dQ(y), for all x ∈Ω

and similarly by the definition of A1,

(25)
∫
ψ′′(ξ∗(x, y))(f(x) + g(y))dP (x) = a

∫
ψ′′(ξ∗(x, y))dP (x), for all y ∈Ω′.

Integrating in (24) and (25) w.r.t. P and Q, respectively, we get

a

∫
ψ′′(ξ∗(x, y))d(P ⊗Q)(y) = 0,

which implies a= 0. Hence, (23) simplifies to f =−A1(g) and g =−A2(f), which we can
concatenate to deduce

(26) f =A1A2(f).

Next, we claim that for any x ∈ argmax |f |, f is constant on the set ∪y∈SQ(x)SP (y)⊂Ω.
Indeed, taking norms on both sides of (26) yields

∥f∥∞ = ∥A1A2(f)∥∞.

It then suffices to show that, for any h ∈ C(Ω),

∥A1A2(h)∥∞ < ∥h∥∞
unless h is constant on the set ∪y∈SQ(x)SP (y) for all x ∈ argmax |h|. To see the latter, fix
x∗ ∈ argmax |h| and define the probability measure

A 7→ µx∗(A) =

∫
ψ′′(ξ∗(x∗, y))

∫
A
ψ′′(ξ∗(x,y))dP (x)∫
ψ′′(ξ∗(x,y))dP (x)

dQ(y)∫
ψ′′(ξ∗(x∗, y))dQ(y)

on Ω. Then
∫
h(x)dµx∗(x) =A1A2(h)(x∗) for any h ∈ C(Ω). In particular, using also (26),

∥f∥∞ = |f(x∗)|= |A1A2(f)(x∗)|=
∣∣∣∣∫ f(x)dµx∗(x)

∣∣∣∣ .
As f is continuous, this implies that f(x) = ∥f∥∞ for all x ∈ supp(µx∗), the support of µx∗ .
Observing that supp(µx∗) contains the set

⋃
y∈SQ(x∗)

SP (y) completes the proof of the claim
that f is constant on the set ∪y∈SQ(x)SP (y) for all x ∈ argmax |f |.

Next, we show that f = ∥f∥∞ on Ω. By Lemma 4.2 there is α> 0 such that

(x+ αB)∩Ω⊂∪y∈SQ(x)SP (y) for all x ∈Ω.

Fix x∗ ∈ argmax |f |. The above then implies f = ∥f∥∞ on (x∗ + αB) ∩ Ω. We iterate this
argument to prove that f = ∥f∥∞ on Ω. Indeed, let x̄ ∈Ω be arbitrary; we show that f(x̄) =
∥f∥∞. As Ω is compact and connected, there exist N ∈N and x1, x2, . . . , xN ∈Ω with x1 =
x∗, xN = x̄ and |xi − xi+1| ≤ α/2 (e.g., such xi arise from an open cover of Ω by balls
of radius α/2). We know f(x1) = ∥f∥∞ and the above argument shows that if f(xi) =
∥f∥∞ then also f = ∥f∥∞ on (xi + αB) ∩ Ω, which in particular yields f(xi+1) = ∥f∥∞.
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Inductively, we obtain f(x̄) = f(xN ) = f(x1) = ∥f∥∞. This completes the proof that f =
∥f∥∞ on Ω.

Using the fact that g =−A2(f), we derive that ∥g∥∞ =−∥f∥∞, implying that (f, g)∼⊕
(0,0). In summary, we have shown that −1 is not an eigenvalue of A, and hence that the linear
operator L = Id + A is injective. By Fredholm’s alternative, it follows that L : C⊕ → C⊕ is
also surjective. As C⊕ is a Banach space, the inverse is necessarily continuous, completing
the proof.

As a by-product of the invertibility of L, we obtain the uniqueness of the potentials.

PROOF OF THEOREM 3.2. Let (f∗, g∗) be as above and let (f̃∗, g̃∗) be another solution
of the first-order condition (13). We first note that any convex combination (λf̃∗ + (1 −
λ)f∗, λg̃∗ +(1−λ)g∗), for λ ∈ (0,1), is again a solution of (13). Indeed, by Proposition 2.3,
the set of solutions of (13) is the set of (continuous) optimizers of the dual problem (11),
and the latter set is convex since (11) is a concave maximization problem. We can now use
Lemma 4.1 to derive

0 =
d

dλ

∣∣∣∣
λ=0

Γ̃(λf̃∗ + (1− λ)f∗, λg̃∗ + (1− λ)g∗) = L(f̃∗ − f∗, g̃∗ − g∗).

As L is invertible by Proposition 4.4, it follows that (f̃∗ − f∗, g̃∗ − g∗) = 0 in C⊕.

5. Proofs of the Central Limit Theorems.

5.1. Consistency of the Potentials. We first state the consistency of the empirical poten-
tials towards the population counterpart.

LEMMA 5.1. For each n ∈ N, let (fn, gn) ∈ C⊕ be any solution of Γn(fn, gn) = (1,1).
Then

∥(fn, gn)− (f∗, g∗)∥⊕
a.s.−−→ 0.

PROOF. Recall that empirical quantities such as Pn, fn, . . . implicitly depend on the re-
alization X1(ω), . . . ,Xn(ω), Y1(ω), . . . , Yn(ω) of the sample. To make this dependence ex-
plicit, we add a superscript ω. As X1, . . . ,Xn, Y1, . . . , Yn are i.i.d., the Glivenko–Cantelli
theorem implies that there is a set Ω1 ⊂Ω with P(Ω1) = 1 such that for all ω ∈Ω1,

sup
∥f∥0,1≤1

∣∣∣∣∫ fd(Pωn − P )

∣∣∣∣→ 0 and sup
∥g∥0,1≤1

∣∣∣∣∫ gd(Qωn −Q)

∣∣∣∣→ 0.

By Proposition 2.3 there is a constant K > 0 such that ∥(fωn ⊕ gωn )∥0,1 ≤ K for all n ≥
1 and ω ∈ Ω. Recalling the notation ξn(x, y) := fn(x) + gn(y) − c(x, y), it follows that
∥ψ′(ξωn )∥0,1 ≤ K ′ for a constant K ′. We conclude that for all (x0, y0) ∈ Ω × Ω′ and all
ω ∈Ω1,

(1,1)− Γ(fωn , g
ω
n )(x0, y0) =

[
Γωn(f

ω
n , g

ω
n )− Γ(fωn , g

ω
n )
]
(x0, y0)

=

(∫
ψ′(ξωn (x0, y))d(Q

ω
n −Q)(y)∫

ψ′(ξωn (x, y0))d(P
ω
n − P )(x)

)
→ 0.(27)

Fix ω ∈Ω1. After passing to a subsequence, (fωn , g
ω
n ) converges in C⊕ to a limit (fω0 , g

ω
0 ). We

have Γ(fωn , g
ω
n )→ Γ(fω0 , g

ω
0 ) by the continuity of Γ, and thus (27) shows that Γ(fω0 , g

ω
0 ) =

(1,1). The uniqueness in Theorem 3.2 now implies that (fω0 , g
ω
0 ) = (f∗, g∗) as elements

of C⊕. More precisely, this argument shows that any convergent subsequence converges
to (f∗, g∗), and hence that the whole sequence (fωn , g

ω
n ) converges to (f∗, g∗) in C⊕. As

P(Ω1) = 1, this amounts to the claimed a.s. convergence.
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5.2. Key Decomposition. To facilitate the reading we will assume from now on that
(fn, gn) are appropriately shifted so that

∥(fn − f∗, gn − g∗)∥⊕ = ∥fn − f∗∥∞ + ∥gn − g∗∥∞.

We also fix a Hölder exponent β ∈ (0,1). As
∫
ψ′′(ξ∗(·, y))dQ(y) is bounded away from zero

and continuous (Proposition 2.3), the linear operator

F : C(Ω)×C(Ω′) ∋ (f, g) 7→

(
f∫

ψ′′(ξ∗(·,y))dQ(y)
g∫

ψ′′(ξ∗(x,·))dP (x)

)
∈ C(Ω)×C(Ω′)

is bounded and bijective. We define the Banach space BF,β of all functions (f, g) ∈ C(Ω)×
C(Ω′) with finite norm

∥(f, g)∥F,β := ∥F−1(f, g)∥0,β.

This norm is stronger than the uniform norm. Indeed, a crucial fact for our subsequent ar-
guments is that the unit ball of BF,β is compactly embedded in C(Ω)× C(Ω′) (by the same
reasoning as in [19, Lemma 6.33]).

It follows from Theorem B.41 of Appendix B that the central limit theorem

√
n (Γ(f∗, g∗)− Γn(f∗, g∗)) =

√
n

(∫
ψ′(ξ∗(·, y))d(Q−Qn)(y)∫
ψ′(ξ∗(x, ·))d(P − Pn)(x)

)
w−→
(
GQ

GP

)
holds in C0,β(Ω) × C0,β(Ω′), where GQ,GP are Gaussian processes as detailed in Theo-
rem 3.4. As a consequence, the isometric image Γ̃n = F(Γn) satisfies the following central
limit theorem in the space BF,β .

LEMMA 5.2. The following weak limit holds in BF,β ,

√
n [Γ̃− Γ̃n](f∗, g∗) :=

√
n
(
Γ̃(f∗, g∗)− Γ̃n(f∗, g∗)

)
w−→

(
GQ∫

ψ′′(ξ∗(·,y))dQ(y)
GP∫

ψ′′(ξ∗(x,·))dP (x)

)
.

In particular, the sequence
√
n [Γ̃− Γ̃n](f∗, g∗) is tight in BF,β .

The goal of this subsection, and indeed the key technical result, is the following decompo-
sition of (fn − f∗, gn − g∗) into three terms.

PROPOSITION 5.3. There exist random functions Un, Vn,Wn ∈ C(Ω) and U ′
n, V

′
n,W

′
n ∈

C(Ω′), and compact sets K⊂ C(Ω) and K′ ⊂ C(Ω′), such that

(i) (Un,U
′
n) takes values in K×K′ for all n,

(ii) ∥(Vn, V ′
n)∥∞

a.s.−−→ 0,
(iii) L(Wn,W

′
n) is tight in BF,β ,

(iv) for all n,

(28)
(
fn − f∗
gn − g∗

)
= ∥fn − f∗, gn − g∗∥⊕

(
Un + Vn
U ′
n + V ′

n

)
+ n−

1

2

(
Wn

W ′
n

)
.

Next, we collect the higher-level steps of the proof, while outsourcing the more technical
parts to the subsequent lemmas.

1To see that its condition is satisfied, note that ψ′(ξ∗(·, Y1)) −
∫
ψ′(ξ∗(·, y))dQ(y) is tight in C0,1(Ω) as

the composition of the measurable function Y1 : (Ω,A)→ Rd and the continuous function v 7→ ψ′(ξ∗(·, v))−∫
ψ′(ξ∗(·, y))dQ(y) ∈ C0,1(Ω).
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PROOF OF PROPOSITION 5.3. By Lemma 4.1 there are random functions (Vn,L, V ′
n,L) ∈

C(Ω)×C(Ω′) with ∥(Vn,L, V ′
n,L)∥∞

a.s.−→ 0 such that

Γ̃(fn, gn)− Γ̃(f∗, g∗) = L(fn − f∗, gn − g∗)− ∥(fn − f∗, gn − g∗)∥⊕(Vn,L, V ′
n,L).

Using the fact that Γ(f∗, g∗) = (1,1) = Γn(fn, gn) and setting

Γ̃n :=

 Γ(1)
n∫

ψ′′(ξ∗(·,y))dQ(y)
Γ(2)

n∫
ψ′′(ξ∗(x,·))dP (x)

 ,

this yields

(29) Γ̃(fn, gn)− Γ̃n(fn, gn) = L(fn − f∗, gn − g∗)− ∥(fn − f∗, gn − g∗)∥⊕(Vn,L, V ′
n,L).

Recall from Proposition 4.4 that L is a bounded bijection. Moreover, ∥Γ̃(f∗ − fn, g∗ −
gn)∥C⊕ → 0 a.s. by Lemma 5.1 and the continuity of Γ̃. Setting also

(30) ∆n := [Γ̃− Γ̃n](f∗, g∗)− [Γ̃− Γ̃n](fn, gn),

we deduce

(fn − f∗, gn − g∗)

= L−1([Γ̃− Γ̃n](f∗, g∗))−L−1(∆n) + ∥(fn − f∗, gn − g∗)∥⊕L−1(Vn,L, V
′
n,L).

Set (Wn,W
′
n) = n

1

2L−1([Γ̃ − Γ̃n](f∗, g∗)). Then L(Wn,W
′
n) is tight by Lemma 5.2 and

L−1([Γ̃− Γ̃n](f∗, g∗)) = n−
1

2 (Wn,W
′
n). Therefore,

(fn − f∗, gn − g∗) = n−
1

2 (Wn,W
′
n)−L−1(∆n) + ∥(fn − f∗, gn − g∗)∥⊕L−1(Vn,L, V

′
n,L).

Lemma 5.4 below derives a decomposition for the remaining term ∆n which completes
the proof of Proposition 5.3 after recalling that L−1 is continuous. Specifically, the func-
tion (Vn, V

′
n) in the assertion of Proposition 5.3 arises from combining the function

L−1(Vn,L, V
′
n,L) above with the function L−1(Ṽn, Ṽ

′
n) from Lemma 5.4.

The following lemma encapsulates the main step of the preceding proof of Proposition 5.3
and uses the notation ∆n from (30).

LEMMA 5.4. There exist compact sets K̃ ⊂ C(Ω) and K̃′ ⊂ C(Ω′), and random functions
Ũn, Ṽn ∈ C(Ω) and Ũ ′

n, Ṽ
′
n ∈ C(Ω′), such that

(i) (Ũn, Ũ
′
n) takes values in K̃ × K̃′ for all n,

(ii) ∥Ṽn, Ṽ ′
n∥∞

a.s.−−→ 0,
(iii) for all n,

∆n =

(
∥fn − f∗∥∞Ṽn
∥gn − g∗∥∞Ṽ ′

n

)
+

(
∥gn − g∗∥∞Ũn
∥fn − f∗∥∞Ũ ′

n

)
.

PROOF. We prove the claims concerning the functions on Ω; the functions on Ω′ are
obtained analogously. We start by recalling that

Γ(1)(fn, gn)− Γ(1)
n (fn, gn) =

∫
ψ′(ξn(·, y))d(Q−Qn)(y)
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and

Γ(1)(f∗, g∗)− Γ(1)
n (f∗, g∗) =

∫
ψ′(ξ∗(·, y))d(Q−Qn)(y).

Set

∆(1)
n := Γ(1)(f∗, g∗)− Γ(1)

n (f∗, g∗)−
(
Γ(1)(fn, gn)− Γ(1)

n (fn, gn)
)
.

Note that writing ∆
(1)
n is a slight abuse of notation: defining analogously ∆

(2)
n , we have

(31) ∆n =

(
∆

(1)
n∫

ψ′′(ξ∗(·, y))dQ(y)
,

∆
(2)
n∫

ψ′′(ξ∗(x, ·))dP (x)

)
.

The fundamental theorem of calculus implies that

∆(1)
n =

∫
{ψ′(ξ∗(·, y))−ψ′(ξn(·, y))}d(Q−Qn)(y)

=

∫ ∫ 1

0
ψ′′((1− λ)ξn(·, y) + λξ∗(·, y)

)
(ξ∗(·, y)− ξn(·, y))dλd(Q−Qn)(y).

We set ψn(·, y) :=
∫ 1
0 ψ

′′((1− λ)ξn(·, y) + λξ∗(·, y)
)
dλ and use the definitions of ξ∗, ξn to

deduce

∆(1)
n =

∫
ψn(·, y)(ξ∗(·, y)− ξn(·, y))d(Q−Qn)(y)

= (f∗ − fn)

∫
ψn(·, y)d(Q−Qn)(y) +

∫
ψn(·, y)(g∗(y)− gn(y))d(Q−Qn)(y).(32)

Considering the first term in (32) and adding back the denominator from (31), set

Ṽn :=
1∫

ψ′′(ξ∗(·, y))dQ(y)

∫
ψn(·, y)d(Q−Qn)(y).

Then Ṽn is a random variable with values in C(Ω). As ξn, ξ∗ have uniformly bounded Lip-
schitz norms by Proposition 2.3, it follows from Lemma 5.5 below that ∥Ṽn∥∞ → 0 a.s.
Regarding the second term in (32), set (using the convention 0/0 := 0 if necessary)

Ũn :=
1∫

ψ′′(ξ∗(x, ·))dP (x)

∫
ψn(·, y)

g∗(y)− gn(y)

∥gn − g∗∥∞
d(Q−Qn)(y).

Then Lemma 5.6 below, applied with dµ(y) := g∗(y)−gn(y)
∥gn−g∗∥∞

d(Q−Qn)(y), shows that Ũn is a

random variable with values in a compact set K̃ ⊂ C(Ω).

The next two technical lemmas were used in the preceding proof of Lemma 5.4.

LEMMA 5.5. For any C ∈R, the class of functions

F :=

{
Ω′ ∋ y 7→

∫ 1

0
ψ′′(h(x, y,λ))dλ : x ∈Ω, ∥h∥0,1 ≤C

}
is relatively compact in C(Ω). As a consequence,

sup
f∈F

∣∣∣∣∫ fd(Qn −Q)

∣∣∣∣ a.s.−−→ 0.
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PROOF. Let ρ be a modulus of continuity of ψ′′ on [−C,C], i.e., ψ′′(t1) − ψ′′(t2) ≤
ρ(|t1 − t2|) for all t1, t2 ∈ [−C,C], where ρ is monotone increasing and ρ(s)→ 0 as s→ 0.
Then the modulus of continuity of

∫ 1
0 ψ

′′(h(x, ·, λ))dλ is bounded as follows,∣∣∣∣∣
∫ 1

0
ψ′′(h(x, y1, λ))dλ−

∫ 1

0
ψ′′(h(x, y2, λ))dλ

∣∣∣∣∣
≤
∫ 1

0
|ψ′′(h(x, y1, λ))−ψ′′(h(x, y2, λ))|dλ

≤
∫ 1

0
ρ(|h(x, y1, λ)− h(x, y2, λ)|)dλ

≤ ρ(C∥y1 − y2∥).
In view of the Arzelà–Ascoli theorem, this implies that F is relatively compact in C(Ω). The
second claim follows from this compactness; see [42, Theorem 2.4.1].

LEMMA 5.6. Set ψn(·, y) :=
∫ 1
0 ψ

′′((1 − λ)ξn(·, y) + λξ∗(·, y))dλ. The family of func-
tions ∫

ψn(·, y)dµ(y), n≥ 1

where µ ∈ C(Ω)′ is any signed measure with ∥µ∥TV ≤ 2, is relatively compact in C(Ω′).

PROOF. Similarly as in the proof of Lemma 5.5, these functions are uniformly bounded
and admit a common modulus of continuity.

We conclude this subsection with a corollary of Proposition 5.3 that will be used to prove
the central limit theorem, Theorem 3.4.

COROLLARY 5.7. The sequence ∆n := [Γ̃− Γ̃n](f∗, g∗)− [Γ̃− Γ̃n](fn, gn) satisfies

∥∆n∥⊕ = oP

(
∥(f∗ − fn, g∗ − gn)∥⊕ + n−

1

2

)
.

PROOF. We write ∆n as in (31) and detail the proof for the first component only. As
in (32),

∆(1)
n =

∫
ψn(·, y)(f∗ − fn + g∗(y)− gn(y))d(Q−Qn)(y).(33)

Recall the notation from Proposition 5.3, in particular Un, Vn,Wn ∈ C(Ω) and U ′
n, V

′
n,W

′
n ∈

C(Ω′), and the compact sets K and K′. Inserting (28) into (33), we have

∆(1)
n = ∥(f∗ − fn, g∗ − gn)∥⊕

∫
ψn(·, y)(Un +U ′

n(y))d(Q−Qn)(y)︸ ︷︷ ︸
=:An

+ ∥(f∗ − fn, g∗ − gn)∥⊕
∫
ψn(·, y)(Vn + V ′

n(y))d(Q−Qn)(y)︸ ︷︷ ︸
=:Bn

+ n−
1

2

∫
ψn(·, y)(Wn +W ′

n(y))d(Q−Qn)(y)︸ ︷︷ ︸
=:Cn

.
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As ψn(x, ·) is an equicontinuous and bounded family,

F :=
{
y 7→ ψn(x, y)(f(x) + g(y)) : (f, g) ∈K×K′, x ∈Ω, n≥ 1

}
is relatively compact in C(Ω′). Thus F is uniformly Glivenko–Cantelli and we get

∥An∥∞ ≤ ∥(f∗ − fn, g∗ − gn)∥⊕ sup
g∈F

∣∣∣∣∫ g(y)d(Q−Qn)(y)

∣∣∣∣
= oP (∥(f∗ − fn, g∗ − gn)∥⊕) .

(34)

Next, recalling ∥(Vn, V ′
n)∥∞

a.s.−→ 0, the bound

∥Bn∥∞ ≤ ∥(f∗ − fn, g∗ − gn)∥⊕∥ψn∥∞∥(Vn, V ′
n)∥∞ sup

∥g∥∞≤1

∣∣∣∣∫ g(y)d(Q−Qn)(y)

∣∣∣∣
≤ 2∥(f∗ − fn, g∗ − gn)∥⊕∥ψn∥∞∥(Vn, V ′

n)∥∞
yields

∥Bn∥∞ = oP (∥(f∗ − fn, g∗ − gn)∥⊕) .(35)

Finally, as the unit ball wrt. ∥ · ∥F,β is compact in C(Ω) × C(Ω′) and L is a continuous
bijection, the class

F ′ := {y 7→ ψn(x, y)(f(x) + g(y)) : ∥L(f, g)∥F,β ≤ 1, x ∈Ω, n≥ 1}

is uniformly Glivenko–Cantelli. Since L(Wn,W
′
n) is tight in BF,β , ∥L(Wn,W

′
n)∥F,β is

stochastically bounded and we deduce

∥Cn∥∞ ≤ n−
1

2 ∥L(Wn,W
′
n)∥F,β sup

g∈F ′

∣∣∣∣∫ g(y)d(Q−Qn)(y)

∣∣∣∣≤ oP

(
n−

1

2

)
.(36)

Combining the bounds (34), (35) and (36), we conclude

∥∆(1)
n ∥∞ = oP

(
∥(f∗ − fn, g∗ − gn)∥⊕ + n−

1

2

)
.

The result follows since the denominator in (31) is continuous and bounded away from zero.

5.3. Deriving the central limit theorems. We can now establish the central limit theo-
rems. We begin with the one for the potentials.

PROOF OF THEOREM 3.4. Armed with the results of Sections 5.1 and 5.2, the central
limit theorem for the potentials follows by the standard reasoning in Z-estimation; see [42,
Theorem 3.3.1]. We give the details for the sake of completeness. We can write (29) as

L(fn − f∗, gn − g∗) = [Γ̃− Γ̃n](fn, gn) + ∥(fn − f∗, gn − g∗)∥⊕(Vn,L, V ′
n,L)

= [Γ̃− Γ̃n](f∗, g∗)−∆n + ∥(fn − f∗, gn − g∗)∥⊕(Vn,L, V ′
n,L).

In view of Lemma 5.2 and Corollary 5.7, we deduce that

∥L(fn − f∗, gn − g∗)∥⊕ = oP (∥(f∗ − fn, g∗ − gn)∥⊕) +OP

(
n−

1

2

)
.

Recalling that L has a bounded inverse (Proposition 4.4), it follows that

∥(fn − f∗, gn − g∗)∥⊕ ≤ oP (∥(f∗ − fn, g∗ − gn)∥⊕) +OP

(
n−

1

2

)
.
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As we also have ∥(fn − f∗, gn − g∗)∥⊕ = oP(1) by Lemma 5.1, this implies the rate ∥(fn −
f∗, gn − g∗)∥⊕ =OP

(
n−

1

2

)
. Substituting this into (29), we obtain∥∥∥Γ̃(fn, gn)− Γ̃n(fn, gn)−L(fn − f∗, gn − g∗)

∥∥∥
⊕
= oP

(
n−

1

2

)
which, using again Corollary 5.7 and ∥(fn − f∗, gn − g∗)∥⊕ = oP(1), leads to∥∥∥Γ̃(f∗, g∗)− Γ̃n(f∗, g∗)−L(fn − f∗, gn − g∗)

∥∥∥
⊕
= oP

(
n−

1

2

)
.(37)

Denote by G̃ the right-hand side in Lemma 5.2. As n1/2
(
Γ̃(f∗, g∗) − Γ̃n(f∗, g∗)

) w−→ G̃ in
C⊕ by Lemma 5.2, (37) implies that

n1/2L(fn − f∗, gn − g∗)
w−→ G̃

in C⊕ as well. Using that L−1 is continuous (Proposition 4.4) and applying the continuous
mapping theorem, we conclude that

n1/2 (fn − f∗, gn − g∗)
w−→ L−1G̃,

which was the claim.

We continue with the central limit theorem for the optimal cost.

PROOF OF THEOREM 3.5. From the fact that (f∗, g∗) and (fn, gn) are optimizers of the
dual problem (11) for (P,Q) and (Pn,Qn), respectively, we deduce the two inequalities

ROT(Pn,Qn)−ROT(P,Q)

≥
∫ {

f∗(x) + g∗(y)−ψ (f∗(x) + g∗(y)− c(x, y))
}
d((Pn ⊗Qn)− (P ⊗Q))(x, y)

and

ROT(Pn,Qn)−ROT(P,Q)

≤
∫ {

fn(x) + gn(y)−ψ (fn(x) + gn(y)− c(x, y))
}
d((Pn ⊗Qn)− (P ⊗Q))(x, y).

Using our shorthands (15) and dropping the integration variables from the notation, the dif-
ference between the upper and the lower bound is

(38)
∫ {

fn(x) + gn(y)−ψ (fn(x) + gn(y)− c(x, y))

− (f∗(x) + g∗(y)−ψ (f∗(x) + g∗(y)− c(x, y)))
}
d((Pn ⊗Qn)− (P ⊗Q))(x, y)

=

∫ {
(ξn − ξ∗)− (ψ(ξn)−ψ(ξ∗))

}
d((Pn ⊗Qn)− (P ⊗Q)).

Using the fundamental theorem of calculus in the same way as below (31), and setting ψ̃n :=
1 +

∫ 1
0 ψ

′((1− λ)ξn + λξ∗
)
dλ, the right-hand side of (38) can be written as∫
ψ̃n · (ξn − ξ∗)d((Pn ⊗Qn)− (P ⊗Q))
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which has the same structure as (33), except that now the integration is over both variables.
We proceed as below (33): insert the decomposition (28), split the integral into three terms,
and treat them with the same arguments as in Eqs. (34) to (36). The result is that

(38) = oP

(
∥(f∗ − fn, g∗ − gn)∥⊕ + n−

1

2

)
.

From Theorem 3.4 we further know that ∥(f∗ − fn, g∗ − gn)∥⊕ = OP
(
n−

1

2

)
, whence we

conclude that (38) = oP
(
n−

1

2

)
. Recall that (38) is the difference of the upper and lower

bounds for ROT(Pn,Qn)− ROT(P,Q). As a consequence, ROT(Pn,Qn)− ROT(P,Q)

equals the lower bound up to oP
(
n−

1

2

)
; to wit,

ROT(Pn,Qn)−ROT(P,Q) + oP

(
n−

1

2

)
=

∫ {
(f∗(x) + g∗(y)−ψ (f∗(x) + g∗(y)− c(x, y)))

}
d((Pn ⊗Qn)− (P ⊗Q))(x, y).

We can now apply the central limit theorem for U -statistics [41, Theorem 12.6] to derive
the result. (In fact, to obtain the formula for the variance σ2, it is easier to directly use the
formula of the Hájek projection stated just before [41, Theorem 12.6].)

Finally, we show the central limit theorem for the couplings.

PROOF OF THEOREM 3.6. Note that∫
ηd(πn − π) =

∫
η̄d(πn − π).

Recalling from Proposition 2.3 that dπ
dP⊗Q = ψ′(ξ∗) and dπn

dPn⊗Qn
= ψ′(ξn), we obtain∫

ηd(πn − π) =

∫
η̄{ψ′(ξn)−ψ′(ξ∗)}d((Pn ⊗Qn)− (P ⊗Q))︸ ︷︷ ︸

=:An

+

∫
η̄{ψ′(ξn)−ψ′(ξ∗)}d(P ⊗Q)︸ ︷︷ ︸

=:Bn

+

∫
η̄ψ′(ξ∗)d((Pn ⊗Qn)− (P ⊗Q))︸ ︷︷ ︸

=:Cn

.

Arguing as in (34) and then using Theorem 3.4, we have

An = oP (∥(f∗ − fn, g∗ − gn)∥⊕) = oP

(
n−

1

2

)
.

Turning to Bn, a first-order Taylor development of ψ′ yields

Bn =

∫
(ξn − ξ∗)η̄ψ

′′(ξ∗)d(P ⊗Q) + oP(∥(fn − f∗, gn − g∗)∥⊕)

=

∫
(ξn − ξ∗)η̄ψ

′′(ξ∗)d(P ⊗Q) + oP

(
n−

1

2

)
.

Moreover, we see from (37) that∥∥∥(fn − f∗, gn − g∗)−L−1
(
[Γ̃− Γ̃n](f∗, g∗)

)∥∥∥
⊕
= oP

(
n−

1

2

)
.
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After inserting the definitions of Γ̃ and Γ̃n, this yields the third equality in

Bn =

∫
(ξn − ξ∗)η̄ψ

′′(ξ∗)d(P ⊗Q) + oP

(
n−

1

2

)
=

∫
(⊕(fn − f∗, gn − g∗))η̄ψ

′′(ξ∗)d(P ⊗Q) + oP

(
n−

1

2

)
=−

∫
⊕

L−1

 ∫
ψ′(ξ∗(·,y))d(Qn−Q)(y)∫

ψ′′(ξ∗(·,y))dQ(y)∫
ψ′(ξ∗(x,·))d(Pn−P )(x)∫
ψ′′(ξ∗(x,·))dP (x)


⊕

 η̄ψ′′(ξ∗)d(P ⊗Q) + oP

(
n−

1

2

)

=− 1

n2

n∑
i,j=1

∫ {
⊕

L−1

 ψ′(ξ∗(·,Yj))−
∫
ψ′(ξ∗(·,y))dQ(y)∫

ψ′′(ξ∗(·,y))dQ(y)
ψ′(ξ∗(Xi,·)−

∫
ψ′(ξ∗(x,·))dP (x))∫

ψ′′(ξ∗(x,·))dP (x)


⊕

 η̄ψ′′(ξ∗)

}
d(P ⊗Q)

+ oP

(
n−

1

2

)
=: B̄n + oP

(
n−

1

2

)
.

Note also that B̄n is centered (w.r.t. P) because the precomposition of a centered random
variable with a bounded linear operator is again centered. Turning to Cn, we can write

Cn =
1

n2

n∑
i,j=1

η̄(Xi, Yj)ψ
′(ξ∗(Xi, Yj)) −

∫
η̄ψ′(ξ∗)d(P ⊗Q)

which is also centered. Moreover, the variances of B̄n and Cn are bounded by a constant
depending only on ∥ξ∗∥∞, ∥η∥∞,∥∥∥∥∥

(∫
ψ′′(ξ∗(·, y))dQ(y)

)−1
∥∥∥∥∥
∞

and

∥∥∥∥∥
(∫

ψ′′(ξ∗(x, ·))dP (x)
)−1

∥∥∥∥∥
∞

.

In summary, up to negligible terms,
∫
ηd(πn−π) is a U -statistic with finite variance. We can

then apply the central limit theorem for U -statistics (see [41, Theorem 12.6]) to conclude the
result. (Once again, to obtain the formula for the variance σ2(η), it is easier to directly use
the formula of the Hájek projection stated just before [41, Theorem 12.6].)

Funding. SE is grateful for support by the German Research Foundation through Project
553088969 as well as the Cluster of Excellence “Machine Learning — New Perspectives
for Science” (EXC 2064/1 number 390727645). MN acknowledges funding by NSF Grants
DMS-2407074 and DMS-2106056.

REFERENCES

[1] BAYRAKTAR, E., ECKSTEIN, S. and ZHANG, X. (2025). Stability and sample complexity of divergence
regularized optimal transport. Bernoulli 31 213–239.

[2] BLONDEL, M., SEGUY, V. and ROLET, A. (2018). Smooth and Sparse Optimal Transport. Proceedings of
Machine Learning Research 84 880–889.

[3] CARLIER, G. and LABORDE, M. (2020). A Differential Approach to the Multi-Marginal Schrödinger Sys-
tem. SIAM Journal on Mathematical Analysis 52 709-717. https://doi.org/10.1137/19M1253800

[4] CHEWI, S., NILES-WEED, J. and RIGOLLET, P. (2025). Statistical Optimal Transport. Springer.
[5] CHOW, Y. S. and TEICHER, H. (1997). Probability Theory. Springer New York.

https://doi.org/10.1007/978-1-4612-1950-7
[6] CÁRCAMO, J., CUEVAS, A. and RODRÍGUEZ, L.-A. (2020). Directional differentiability for supremum-

type functionals: Statistical applications. Bernoulli 26. https://doi.org/10.3150/19-bej1188
[7] DEL BARRIO, E. and LOUBES, J.-M. (2019). Central limit theorems for empirical transportation cost in

general dimension. The Annals of Probability 47 926 – 951. https://doi.org/10.1214/18-AOP1275

https://doi.org/10.1137/19M1253800
https://doi.org/10.1007/978-1-4612-1950-7
https://doi.org/10.3150/19-bej1188
https://doi.org/10.1214/18-AOP1275


26 A. GONZÁLEZ-SANZ, S. ECKSTEIN, AND M. NUTZ

[8] DEL BARRIO, E. and LOUBES, J.-M. (2020). The statistical effect of entropic regularization in optimal
transportation. arXiv:2006.05199.

[9] DEL BARRIO, E., SANZ, A. G., LOUBES, J.-M. and NILES-WEED, J. (2023). An Improved Central Limit
Theorem and Fast Convergence Rates for Entropic Transportation Costs. SIAM Journal on Mathematics of
Data Science 5 639-669. https://doi.org/10.1137/22M149260X

[10] DESSEIN, A., PAPADAKIS, N. and ROUAS, J.-L. (2018). Regularized Optimal Transport and the rot
mover’s Distance. J. Mach. Learn. Res. 19 1–53.

[11] DI MARINO, S. and GEROLIN, A. (2020). Optimal Transport losses and Sinkhorn algorithm with general
convex regularization. Preprint arXiv:2007.00976v1.

[12] DUDLEY, R. M. (1968). The speed of mean Glivenko-Cantelli convergence. Ann. Math. Statist. 40 40–50.
MR236977

[13] ECKSTEIN, S. and KUPPER, M. (2021). Computation of optimal transport and related hedging problems
via penalization and neural networks. Appl. Math. Optim. 83 639–667. MR4239795

[14] ECKSTEIN, S. and NUTZ, M. (2024). Convergence Rates for Regularized Optimal Transport via Quantiza-
tion. Math. Oper. Res. 49 1223-1240. https://doi.org/10.1287/moor.2022.0245

[15] ESSID, M. and SOLOMON, J. (2018). Quadratically regularized optimal transport on graphs. SIAM J. Sci.
Comput. 40 A1961–A1986. MR3820384

[16] FOURNIER, N. and GUILLIN, A. (2014). On the rate of convergence in Wasserstein distance of the empirical
measure. Probability Theory and Related Fields 162 707–738. https://doi.org/10.1007/s00440-014-0583-7

[17] GARRIZ-MOLINA, A., GONZÁLEZ-SANZ, A. and MORDANT, G. (2024). Infinitesimal behavior of
Quadratically Regularized Optimal Transport and its relation with the Porous Medium Equation.
arXiv:2407.21528.

[18] GENEVAY, A., CHIZAT, L., BACH, F., CUTURI, M. and PEYRÉ, G. (2019). Sample Complexity of
Sinkhorn Divergences. In Proceedings of the Twenty-Second International Conference on Artificial Intel-
ligence and Statistics (K. CHAUDHURI and M. SUGIYAMA, eds.). Proceedings of Machine Learning Re-
search 89 1574–1583. PMLR.

[19] GILBARG, D. and TRUDINGER, N. S. (1983). Elliptic partial differential equations of second order, second
ed. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
224. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-61798-0 MR737190

[20] GOLDFELD, Z., KATO, K., RIOUX, G. and SADHU, R. (2024). Statistical inference with regularized opti-
mal transport. Inf. Inference 13 Paper No. 13, 68. https://doi.org/10.1093/imaiai/iaad056

[21] GOLDFELD, Z., KATO, K., RIOUX, G. and SADHU, R. (2024). Limit theorems for entropic optimal trans-
port maps and Sinkhorn divergence. Electronic Journal of Statistics 18. https://doi.org/10.1214/24-ejs2217

[22] GONZÁLEZ-SANZ, A. and HUNDRIESER, S. (2023). Weak Limits for Empirical Entropic Optimal Trans-
port: Beyond Smooth Costs. arXiv:2305.09745.

[23] GONZÁLEZ-SANZ, A., LOUBES, J.-M. and NILES-WEED, J. (2024). Weak limits of entropy regularized
Optimal Transport; potentials, plans and divergences. arXiv:2207.07427.

[24] GONZÁLEZ-SANZ, A. and NUTZ, M. (2024). Quantitative Convergence of Quadratically Regularized Lin-
ear Programs. arXiv:2408.04088.

[25] GONZÁLEZ-SANZ, A. and NUTZ, M. (2024). Sparsity of Quadratically Regularized Optimal Transport:
Scalar Case. arXiv:2410.03353.

[26] GULRAJANI, I., AHMED, F., ARJOVSKY, M., DUMOULIN, V. and COURVILLE, A. (2017). Improved
Training of Wasserstein GANs. In Proceedings of the 31st International Conference on Neural Information
Processing Systems 5769–5779.

[27] JAIN, N. C. (1976). Central limit theorem in a Banach space. In Probability in Banach Spaces (A. BECK,
ed.) 113–130. Springer, Berlin, Heidelberg.

[28] LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-20212-4

[29] LI, L., GENEVAY, A., YUROCHKIN, M. and SOLOMON, J. M. (2020). Continuous Regularized Wasserstein
Barycenters. In Advances in Neural Information Processing Systems (H. LAROCHELLE, M. RANZATO,
R. HADSELL, M. F. BALCAN and H. LIN, eds.) 33 17755–17765. Curran Associates, Inc.

[30] LORENZ, D. and MAHLER, H. (2022). Orlicz space regularization of continuous optimal transport prob-
lems. Appl. Math. Optim. 85 Paper No. 14, 33. MR4409806

[31] LORENZ, D., MANNS, P. and MEYER, C. (2021). Quadratically regularized optimal transport. Appl. Math.
Optim. 83 1919–1949. MR4261277

[32] MALLASTO, A., GEROLIN, A. and MINH, H. Q. (2021). Entropy-regularized 2-Wasserstein distance be-
tween Gaussian measures. Information Geometry 5 289–323. https://doi.org/10.1007/s41884-021-00052-8

[33] MANOLE, T. and NILES-WEED, J. (2024). Sharp convergence rates for empirical optimal transport with
smooth costs. Ann. Appl. Probab. 34 1108–1135. https://doi.org/10.1214/23-aap1986 MR4700254

https://doi.org/10.1137/22M149260X
https://www.ams.org/mathscinet-getitem?mr=236977
https://www.ams.org/mathscinet-getitem?mr=4239795
https://doi.org/10.1287/moor.2022.0245
https://www.ams.org/mathscinet-getitem?mr=3820384
https://doi.org/10.1007/s00440-014-0583-7
https://doi.org/10.1007/978-3-642-61798-0
https://www.ams.org/mathscinet-getitem?mr=737190
https://doi.org/10.1093/imaiai/iaad056
https://doi.org/10.1214/24-ejs2217
https://doi.org/10.1007/978-3-642-20212-4
https://www.ams.org/mathscinet-getitem?mr=4409806
https://www.ams.org/mathscinet-getitem?mr=4261277
https://doi.org/10.1007/s41884-021-00052-8
https://doi.org/10.1214/23-aap1986
https://www.ams.org/mathscinet-getitem?mr=4700254


SPARSE REGULARIZED OPTIMAL TRANSPORT 27

[34] MENA, G. and NILES-WEED, J. (2019). Statistical bounds for entropic optimal transport: sample complex-
ity and the central limit theorem. In Advances in Neural Information Processing Systems (H. WALLACH,
H. LAROCHELLE, A. BEYGELZIMER, F. D' ALCHÉ-BUC, E. FOX and R. GARNETT, eds.) 32. Curran
Associates, Inc.

[35] MUZELLEC, B., NOCK, R., PATRINI, G. and NIELSEN, F. (2017). Tsallis Regularized Optimal Trans-
port and Ecological Inference. Proceedings of the AAAI Conference on Artificial Intelligence 31.
https://doi.org/10.1609/aaai.v31i1.10854

[36] NUTZ, M. (2024). Quadratically Regularized Optimal Transport: Existence and Multiplicity of Potentials.
SIAM J. Math. Anal., to appear.

[37] PEYRÉ, G. and CUTURI, M. (2019). Computational Optimal Transport: With Applications to Data Science.
Foundations and Trends® in Machine Learning 11 355–607. https://doi.org/10.1561/2200000073

[38] RIGOLLET, P. and STROMME, A. J. (2025). On the sample complexity of entropic optimal transport. Ann.
Statist. 53 61–90. https://doi.org/10.1214/24-aos2455 MR4865008

[39] SCHMITZER, B. (2019). Stabilized sparse scaling algorithms for entropy regularized transport problems.
SIAM J. Sci. Comput. 41 A1443–A1481. https://doi.org/10.1137/16M1106018 MR3947294

[40] SEGUY, V., DAMODARAN, B. B., FLAMARY, R., COURTY, N., ROLET, A. and BLONDEL, M. (2018).
Large Scale Optimal Transport and Mapping Estimation. In International Conference on Learning Repre-
sentations.

[41] VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge University Press.
https://doi.org/10.1017/cbo9780511802256

[42] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes.
Springer. https://doi.org/10.1007/978-1-4757-2545-2

[43] VILLANI, C. (2009). Optimal Transport: Old and New. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-540-71050-9 MR2459454

[44] WIESEL, J. and XU, X. (2024). Sparsity of Quadratically Regularized Optimal Transport: Bounds on con-
centration and bias. Preprint arXiv:2410.03425v1.

[45] ZHANG, S., MORDANT, G., MATSUMOTO, T. and SCHIEBINGER, G. (2023). Manifold Learning with
Sparse Regularised Optimal Transport. arXiv:2307.09816.

https://doi.org/10.1609/aaai.v31i1.10854
https://doi.org/10.1561/2200000073
https://doi.org/10.1214/24-aos2455
https://www.ams.org/mathscinet-getitem?mr=4865008
https://doi.org/10.1137/16M1106018
https://www.ams.org/mathscinet-getitem?mr=3947294
https://doi.org/10.1017/cbo9780511802256
https://doi.org/10.1007/978-1-4757-2545-2
https://doi.org/10.1007/978-3-540-71050-9
https://www.ams.org/mathscinet-getitem?mr=2459454


28 A. GONZÁLEZ-SANZ, S. ECKSTEIN, AND M. NUTZ

APPENDIX A: SIMULATIONS

In this section we provide numerical examples to illustrate our results, and circumstantial
evidence that the obtained results may extend to quadratic regularization. We recall from
Example 2.2 that quadratic regularization is a boundary case of Assumption 2.1.

For our experiments we need to solve the population problem very accurately. In EOT,
one typically uses quadratic cost with Gaussian marginals in such situations, as that example
allows for a closed-form solution (e.g., [8, 32]). The first subsection below details the only
example with semi-closed form solution for more general divergences that we are aware of.
The second subsection uses that example to numerically study the convergence rate for two
divergences.

A.1. Example with semi-explicit population potentials. Let Td = Rd/Zd be the flat
torus and let µ be the volume measure on Td. Denote by [x] the equivalence class of a vector
x ∈Rd. The distance on Td is given by

d([x], [y]) = inf
z∈Zd

∥x− y− z∥.

We consider the marginals P =Q= µ and the transport cost c([x], [y]) = d2([x], [y]). In this
symmetric “self-transport” problem, the population potentials (f∗, g∗) can be chosen such
that g∗ = f∗; this choice also removes the ambiguity about an additive constant. Indeed, f∗ is
uniquely determined by the equation

1 =

∫
ψ′
(
f∗([x]) + f∗([y])− d2([x], [y])

ε

)
dµ([y]), x ∈Rd.

Define the constant Cε,d,ψ ∈R via

1 =

∫
ψ′
(
2Cε,d,ψ − d2([0], [y])

ε

)
dµ([y]).

For fixed x ∈Rd, consider the translation y 7→ Tx(y) := x+ y on Rd, which induces the map

[y] 7→ Sx([y]) := [Tx(y)] = [x+ y]

on the quotient space Td = Rd/Zd. Note that Sx is an isometry and that the “translation
invariance” of the volume measure implies (Sx)#µ= µ. Hence

1 =

∫
ψ′
(
2Cε,d,ψ − d2([0], [y])

ε

)
dµ(y) =

∫
ψ′
(
2Cε,d,ψ − d2([x], Sx([y]))

ε

)
dµ(y)

=

∫
ψ′
(
2Cε,d,ψ − d2([x], [y])

ε

)
d(Sx)#µ(y) =

∫
ψ′
(
2Cε,d,ψ − d2([x], [y])

ε

)
dµ(y)

for all x ∈R, showing that f∗ ≡Cε,d,ψ .

A.2. Numerical illustrations. While the above example allows for explicit calculation,
we emphasize that it actually leads to a degenerate regime, since the variance of the limits is
zero. This is most easily seen in Theorem 3.5, where the variance is governed by the terms
f∗(X) and

∫
ψ
(
f∗(X)+g∗(y)−c(X,y)

ε

)
dµ(y) for X ∼ µ (as well as the symmetric terms for

Y ). We see that both terms are constant due to f∗ = g∗ ≡ Cε,d,ψ and the shift invariance
of the cost c = d2 and µ. Hence, we expect to see rates which are even faster than n−1/2,
irrespective of dimension. While ideally we would like to also illustrate the results in non-
degenerate examples, we are not aware of further examples where explicit solutions exist,
and the latter are required to correctly visualize the asymptotic regime.
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FIG 1. Log-log plots of |OTε(Pn,Qn)−OTε(P,Q)| for dimensions d ∈ {1,5,10} (left, middle, right) and two
different divergences, namely φ(x) = 2

3 (x
3/2 − 1) leading to ψ(x) = 1

3x
3
+ + 2

3 (top) and φ(x) = 1
2 (x

2 − 1)

leading to ψ(x) = 1
2x

2
+ + 1

2 (bottom). We use ε = 0.5. We numerically observe approximate rates nα with
α≈−1 for all cases, irrespective of dimension. The approximation is based on thirty independent evaluations of
|OTε(Pn,Qn)−OTε(P,Q)| illustrated by the gray dots, while the black dots are the respective averages for
each n ∈ {10,30,100,300,1000,3000}.

To obtain approximate solutions for the empirical marginals Pn and Qn, we use the
Sinkhorn-like iterations described for instance in [30]. The results are illustrated in Fig-
ure A.2. As predicted by Theorem 3.5, we observe rates even faster than n−1/2, and the slopes
are similar for each dimension. (This is in contrast to upper bounds in [1], which would only
yield max{n−1/2, n−2/d} in this case.) We observe similar slopes for φ(x) = 2

3(x
3/2−1) and

φ(x) = 1
2(x

2− 1). Note that the former divergence satisfies Assumption 2.1 as the conjugate
is cubic, whereas the latter (quadratic) divergence does not.

APPENDIX B: CENTRAL LIMIT THEOREM IN HÖLDER SPACE

The aim of this section is to provide a central limit theorem in the Hölder space C0,β(Ω)
with 0 ≤ β < 1 for an i.i.d. sequence of random variables with values in C0,1(Ω) and finite
second order moments. While it is possible that this result is known, we have not found
a suitable reference in the literature. We first recall some preliminaries on type II spaces,
following the excellent survey [27].

DEFINITION B.1. Let (E,∥ · ∥E) and (F,∥ · ∥F ) be separable Banach spaces such that
E ⊂ F . The pair (E,F ) is said to be of type II if there exists C ≥ 0 such that

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

F

≤C ·
n∑
i=1

E
[
∥Xi∥2E

]
for any n ∈ N and any sequence X1, . . . ,Xn of centered and independent E-valued random
variables with E[∥Xi∥E ]<∞ for all i= 1, . . . , n.
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The type II property is fundamental to derive central limit theorems in Banach spaces (see
[27] and the references therein). To state the central limit theorem, recall that the expectation
E[X] of a random variable X with E[∥X∥E ] <∞ in a Banach space E is defined as the
following element of the bidual E′′:

E′ ∋ g 7→ E[g(X)] ∈R,

where E′ denotes the dual of E. A measure on E is called Gaussian if its finite-dimensional
distributions are Gaussian; i.e., given g1, . . . , gn ∈ E′, the distribution on Rn induced by
(g1, . . . , gn) is Gaussian. A random variable G ∈ E is called Gaussian if its distribution is
Gaussian.

THEOREM B.2 ([27, Theorem 3.1]). Let (E,F ) be of type II. Then every sequence
{Xn}n ⊂ E of i.i.d. random vectors with E[∥Xi∥2E ] <∞ and E[Xi] = 0 satisfies the cen-
tral limit theorem in E; i.e., there exists a centered Gaussian random variable G ∈ E such
that

√
n

(
1

n

n∑
i=1

Xi

)
w−→G in E.

To establish the desired central limit theorem, we need to show that the Banach pair
(C0,1(Ω),C0,β(Ω)) is of type II. To that end, we first state an alternative characterization
and a sufficient condition for being of type II. Recall that a Rademacher sequence {ϵn}n is a
sequence of i.i.d. (scalar) random variables with P(ϵn = 1) = P(ϵn =−1) = 1

2 .

PROPOSITION B.3 ([27, Theorems 3.1 and 2.3]). Let (E,∥ · ∥E) and (F,∥ · ∥F ) be sep-
arable Banach spaces such that E ⊂ F . The following are equivalent:

(i) The pair (E,F ) is of type II,
(ii) for any sequence {xn}n ⊂ E such that

∑∞
n=1 ∥xn∥2E <∞, and any Rademacher se-

quence {ϵn}n, the sum
∑∞

n=1 xnϵn converges a.s. in F .

Moreover, the following is a sufficient condition for (i) and (ii):

(iii) for any sequence {xn}n ⊂ E such that
∑∞

n=1 ∥xn∥2E < ∞, and any i.i.d. sequence
{ηn}n of standard Gaussian random variables, the sum

∑∞
n=1 xnηn converges a.s. in F .

We can now state and prove the desired central limit theorem in C0,β(Ω). We recall that
a random variable X in a Banach space (E,∥ · ∥E) is tight if for every ε > 0 there exists a
compact set Kε such that

P(X ∈Kε)≥ 1− ε.

THEOREM B.4. Let β ∈ [0,1) and let Ω be a compact subset of Rd. Let {Xn}n be
an i.i.d. sequence of random functions in C0,1(Ω) where X1 is tight, E[∥X1∥20,1] <∞ and
E[X1] = 0. Then {Xn}n satisfies the central limit theorem in C0,β(Ω); i.e., there exists a
tight centered Gaussian random variable G ∈ C0,β(Ω) such that

√
n

(
1

n

n∑
i=1

Xi

)
w−→G in C0,β(Ω).

Note that, necessarily, E[G(x)G(x′)] = E[X1(x)X1(x
′)] for all x,x′ ∈Ω.
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PROOF. Proposition B.3 is not directly applicable as C0,1(Ω) and C0,β(Ω) are not sepa-
rable.2 However, we can restrict to separable subspaces as follows. Since X1 is tight, there
exists a sequence {Km}m∈N of compact subsets of C0,1(Ω) such that X1 (and then also Xn

for any n) is a.s. valued in ∪m∈NKm. Note that ∪m∈NKm is separable. Let E be the closed
linear hull of ∪m∈NKm in C0,1(Ω), and let F be the closed linear hull of ∪m∈NKm in C0,β(Ω).
Then E and F are separable Banach spaces, hence Proposition B.3 applies.

Let {fn}n ⊂ E be a sequence of functions with
∑∞

n=1 ∥fn∥20,1 <∞ and let {ηn}n∈N be
an i.i.d. sequence of (scalar) standard Gaussian random variables. In view of Theorem B.2
and Proposition B.3, our goal is to show that the partial sum

∑N
n=1 fnηn converges a.s. in F

(equivalently in C0,β(Ω)) to some limit G.
Note that for every x ∈Ω, the partial sum GN (x) :=

∑N
n=1 ηnfn(x) converges a.s. by Kol-

mogorov’s Three Series Theorem, hence we can define G(x) as the a.s. limit
∑∞

n=1 ηnfn(x).
Thus G is a scalar, centered Gaussian process indexed by x ∈Ω. To show that the a.s. conver-
gence GN →G also holds in the norm of C0,β(Ω), it suffices to show weak convergence in
C0,β(Ω), because by the Lévy–Itô–Nisio theorem [28, Theorem 2.4], these two convergences
are equivalent for the partial sum GN =

∑N
n=1 ηnfn of the independent and symmetric ran-

dom variables {ηnfn}n. In view of the pointwise convergence, weak convergence is implied
by relative compactness (for the weak convergence topology), hence by Prokhorov’s theorem
[28, Theorem 2.1] it suffices to check that given δ ∈ (0,1) there exists a compact K⊂ C0,β(Ω)
such that

P(GN ∈K)≥ 1− δ for all N ≥ 1.(39)

Since C0,β′
(Ω) is compactly embedded in C0,β(Ω) for β′ > β (e.g., [19, Lemma 6.33]), it is

enough to show that

sup
N≥1

E[∥GN∥γ0,β′ ]<∞

for some β′ > β and γ ≥ 1.
To that end, we shall use Kolmogorov’s regularity theorem. Recall that two processes

X(x) and X̃(x) indexed by x ∈Ω are modifications of one another if P{X̃(x) =X(x)}= 1
for all x ∈Ω, whereas they are called indistinguishable if

P{X̃(x) =X(x) for all x ∈Ω}= 1.

Kolmogorov’s regularity theorem asserts that if {G(x)}x∈Ω is a real-valued stochastic pro-
cess satisfying

E[|G(x)−G(y)|γ ]≤C∥x− y∥d+ϵ(40)

for some γ ≥ 1 and ϵ > 0, then G admits a modification G̃ with

E
[
∥G̃∥γ0, ϵ

γ

]
≤Cd,γ,ϵ,C(41)

where the constant Cd,γ,ϵ,C depends only on d, γ, ϵ and C . In particular, establishing (40)
for G = GN with constants independent of N implies (41) for a version G̃N with a right-
hand side Cd,γ,ϵ,C independent of N . Moreover, as we already know that x 7→ GN (x) is
continuous, the modification G̃N is necessarily indistinguishable from GN . In summary, es-
tablishing (40) for G=GN with constants independent of N implies

sup
N≥1

E
[
∥GN∥γ0, ϵ

γ

]
<∞,

2We thank Kengo Kato for pointing out this glitch in an earlier version of this manuscript.
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which is the desired bound provided that β′ := ϵ
γ ∈ (β,1].

Fix α≥ 1 large enough such that setting ϵ := α and γ := d+α, we have β′ := ϵ
γ = α

d+α >
β. As explained above, it suffices to show

E[|GN (x)−GN (y)|γ ]≤C∥x− y∥γ(42)

for some C > 0 independent of N , as that will imply (39) and thus the claim.
By the Marcinkiewicz–Zygmund inequality (e.g., [5, Theorem 10.3.2]) there exists a con-

stant C > 0 independent of N such that

E[|GN (x)−GN (y)|γ ] = E

[∣∣∣∣∣
N∑
n=1

ηn(fn(x)− fn(y))

∣∣∣∣∣
γ]

≤CE

∣∣∣∣∣
N∑
n=1

(ηn(fn(x)− fn(y)))
2

∣∣∣∣∣
γ

2


≤C∥x− y∥γE

∣∣∣∣∣
N∑
n=1

(ηn)
2∥fn∥20,1

∣∣∣∣∣
γ

2

 .
We may assume without loss of generality that sN :=

∑N
n=1 ∥fn∥20,1 > 0. Noting that sN ≤

s∞ <∞ by the choice of {fn}n, we deduce

E[|GN (x)−GN (y)|γ ]≤C(s∞)
γ

2 ∥x− y∥γE

( 1

sN

N∑
n=1

(ηn)
2∥fn∥20,1

) γ

2

 .
Now Jensen’s inequality yields

E[|GN (x)−GN (y)|γ ]≤C(s∞)
γ

2 ∥x− y∥γE

[
1

sN

N∑
n=1

(ηn)
γ∥fn∥20,1

]

=C(s∞)
γ

2 ∥x− y∥γ 1

sN

N∑
n=1

E[(ηn)γ ]∥fn∥20,1

=CE[|η1|γ ](s∞)
γ

2 ∥x− y∥γ 1

sN

N∑
n=1

∥fn∥20,1

=CE[|η1|γ ](s∞)
γ

2 ∥x− y∥γ ,

which is the desired estimate (42).

APPENDIX C: OMITTED PROOFS

C.1. Proofs for Section 2. In this subsection we prove Proposition 2.3 summarizing
background results that were used throughout the text. We first state a lemma recalling the
analogue of the c-conjugate that is standard in optimal transport. For the setting of regular-
ization by f -divergence, this notion was introduced by [11]. (Note, however, that some of the
results in [11] are flawed because the conjugate of φ was taken over R instead of R+, leading
to signed measures instead of couplings.)
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LEMMA C.1. Let P,Q be probability measures on Rd with supports Ω,Ω′. Let c ∈ C(Ω×
Ω′) be bounded and have modulus of continuity ρ. Given any bounded measurable function
g : Ω′ →R, there exists a unique function f : Ω→R such that

(43)
∫
ψ′(f(x) + g(y)− c(x, y))dQ(y) = 1 for all x ∈Ω.

Moreover, f is uniformly continuous with modulus ρ and its oscillation is bounded as

(44) sup
x∈Ω

f(x)− inf
x∈Ω

f(x)≤ 2∥c∥∞,

while infx,y{f(x) + g(y)} ≤ t0 + ∥c∥∞ and supx,y{f(x) + g(y)} ≥ t0 − ∥c∥∞, where t0 is
defined in Assumption 2.1. Finally, f solves the concave optimization

sup
f∈L∞(P )

∫ (
f ⊕ g−ψ(f ⊕ g− c)

)
d(P ⊗Q).

PROOF OF LEMMA C.1. As g and c are bounded, lims→∞ψ′(s + g(y) − c(x, y)) =∞
and lims→0ψ

′(s+ g(y)− c(x, y))< 1 by the properties of ψ, where the limits are uniform
in (x, y). As ψ′ is continuous, the intermediate value theorem yields the existence of f solv-
ing (43). Let x, x̃ ∈ Ω and assume without loss of generality that f(x̃) ≤ f(x). As ψ′ is
nondecreasing, (43) yields∫

ψ′(f(x) + g(y)− c(x, y))dQ(y) = 1 =

∫
ψ′(f(x̃) + g(y)− c(x̃, y))dQ(y)

≤
∫
ψ′(f(x̃) + g(y)− c(x, y) + ρ(∥x− x̃∥))dQ(y).

As ψ′ is, in addition, strictly increasing on [t0−δ,∞), this implies f(x)≤ f(x̃)+ρ(∥x− x̃∥),
showing that f has modulus of continuity ρ. The same argument, applied with x = x̃, also
shows that f(x) is uniquely determined by (43), and also that the oscillation of f is bounded
by the one of c:

(45) sup
x
f(x)− inf

x
f(x)≤ sup

x,y
c(x, y)− inf

x,y
c(x, y)≤ 2∥c∥∞.

Furthermore, ψ′(t0) = 1 by Assumption 2.1. Hence (43) implies that

inf
x,y

{f(x) + g(y)− c(x, y)} ≤ t0 ≤ sup
x,y

{f(x) + g(y)− c(x, y)}.

Thus infx,y{f(x) + g(y)} ≤ t0 + ∥c∥∞ and supx,y{f(x) + g(y)} ≥ t0 − ∥c∥∞.

PROOF OF PROPOSITION 2.3. (i) We first show ROT(P,Q) ≥ DUAL(P,Q), the so-
called weak duality. The definition of ψ implies that

ψ(f ⊕ g− c)≥ dπ

d(P ⊗Q)
· (f ⊕ g− c)−φ

(
dπ

d(P ⊗Q)

)
for any (f, g) ∈ L∞(P )× L∞(Q) and any π ∈ Π(P,Q) with π≪ P ⊗Q. Combining this
with

∫
f⊕g dπ =

∫
f⊕g d(P ⊗Q) yields the claimed weak duality. The converse inequality

will be shown in (v) below.
(ii) Primal existence follows directly from the weak compactness of Π(µ,ν) and the weak

lower semi-continuity of the objective.
(iii) To show dual existence, let (f̃n, g̃n)n be a maximizing sequence for DUAL(P,Q).

Define fn as the “conjugate” of g̃n as provided by Lemma C.1, and let similarly gn be the
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conjugate of fn (as provided by the symmetric analogue of Lemma C.1 with interchanged
roles of the marginals). By Lemma C.1, we see that (fn, gn) improves upon (f̃n, g̃n), so that
it is again a maximizing sequence. Moreover, fn and gn are ρ-continuous. And as (44) holds
for both f and g, the inequalities below (44) yield the uniform bound ∥fn ⊕ gn∥∞ ≤ t0 +
5∥c∥∞. We can shift (fn, gn) by a constant such that fn(x0) = 0 at some reference point x0 ∈
Ω. It follows from Lemma C.1 that fn and gn are uniformly bounded. The Arzelà–Ascoli
theorem then yields a subsequential uniform limit (f∗, g∗). Using the uniform convergence,
it is easy to see that (f∗, g∗) maximizes DUAL(P,Q).

(iv) If (f∗, g∗) maximizes DUAL(P,Q), taking the directional derivative in an arbitrary
direction (f, g) ∈ L∞(P )× L∞(Q), as well as its negative (−f,−g), yields the first-order
condition (12). Conversely, let (f∗, g∗) solve (12). Note that for any fixed (x, y), the function
R ∋ s 7→ s−ψ(s− c(x, y)) is concave with gradient 1−ψ′(s− c(x, y)). Given any functions
(f, g) ∈ L∞(P )×L∞(Q), it follows that for (x, y) ∈Ω×Ω′,

f(x)+g(y)−ψ (f(x) + g(y)− c(x, y))

≤ f∗(x) + g∗(y)−ψ (f∗(x) + g∗(y)− c(x, y))

+ {1−ψ′(f∗(x) + g∗(y)− c(x, y))(f(x)− f∗(x))}

+ {1−ψ′(f∗(x) + g∗(y)− c(x, y))(g(y)− g∗(y))}.

(46)

Integrating (46) with respect to P ⊗Q, the final two lines vanish due to (12), which shows
that (f∗, g∗) is an optimizer of (11).

(v) We have ψ′ ≥ 0 as ψ is increasing, hence dπ := ψ′(f∗ ⊕ g∗ − c)d(P ⊗Q) is a non-
negative measure. The first equation of (12) shows that its first marginal is P and the second
equation of (12) shows that its second marginal is Q. Hence π ∈Π(P,Q). Using the equality
φ(ψ′(z)) = ψ′(z)z −ψ(z) with z := f∗ ⊕ g∗ − c, integrating, and rearranging, we find∫ (

f∗ ⊕ g∗ −ψ(f∗ ⊕ g∗ − c)
)
d(P ⊗Q) =

∫
cdπ+

∫
φ

(
dπ

d(P ⊗Q)

)
d(P ⊗Q).

In view of the weak duality ROT(P,Q)≥DUAL(P,Q) shown at the beginning of the proof,
this shows that π is an optimizer of ROT(P,Q) and also completes the proof of the strong
duality ROT(P,Q) = DUAL(P,Q) stated in (i).

(vi) Given any solution (f∗, g∗) of (12), applying Lemma C.1 twice yields versions that
solve (13).

If f∗, g∗ solve (13), then they are conjugates of one another, hence Lemma C.1 yields the
modulus of continuity. As in the proof of (iii), the uniform bound follows from the inequali-
ties below (44) using that (44) holds for both f and g.

(vii) Let C be such that f∗ ⊕ g∗ − c≤C . By Assumption 2.1 there are t0 > 0 and δ,α > 0
such that ψ′(t0) = 1, and ψ′(t) < 1 for t ≤ t0 − δ, and ψ′′(t) ≥ α for t ∈ [t0 − δ,C]. Let
x ∈Ω. Consider the sets

A= {y ∈Ω′ : f∗(x) + g∗(y)− c(x, y)< t0 − δ},
B = {y ∈Ω′ : t0 − δ ≤ f∗(x) + g∗(y)− c(x, y)≤C}

and note that B =Ω′ \A. Set p :=Q(A). As ψ′ is nondecreasing, (13) implies

1 =

∫
ψ′(f∗(·) + g∗(y)− c(·, y))dQ(y)≤ pψ′(t0 − δ) + (1− p)ψ′(C).

This yields the upper bound p ≤ ψ′(C)−1
ψ′(C)−ψ′(t0−δ) < 1 which is uniform in x. As ψ′′ ≥ 0, we

deduce the uniform lower bound∫
ψ′′(f∗(·) + g∗(y)− c(·, y))dQ(y)≥ αQ(B) = (1− p)α.

The second claim is shown analogously.
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C.2. Proofs for Section 4. In this subsection we prove the auxiliary Lemma 4.2 on the
sections of the set S = {(x, y) ∈Ω×Ω′ : ψ′′(ξ∗(x, y))> 0}.

PROOF OF LEMMA 4.2. Recall from Proposition 2.3 (vii) that SQ(x) ̸= ∅ and SP (y) ̸= ∅
for all (x, y) ∈ Ω × Ω′. This implies that x ∈ O(x) := ∪y∈SQ(x)SP (y) for all x ∈ Ω. By
continuity of ζ := ψ′′ ◦ ξ∗, each set SP (y), and then also the union O(x), is relatively open
in Ω. That is,

(47) for each x ∈Ω there exists r > 0 such that (x+ rB)∩Ω⊂O(x).

Consider the set

A= {(x, z) ∈Ω×Ω : z ∈Ω \O(x)}.

If z ∈ O(x), then there exists y such that ζ(x, y) > 0 and ζ(z, y) > 0. By continuity of ζ ,
for x̃, z̃ sufficiently close to (x, z), we still have ζ(x̃, y) > 0 and ζ(z̃, y) > 0, showing that
z̃ ∈O(x̃). This proves that {(x, z) : z ∈O(x)} is open and hence that A is closed. Consider
also, for each r > 0, the closed subset

Ar =A∩ {(x, z) ∈Ω×Ω : z ∈ (x+ rB)}.

In view of the definition of A, the fact (47) translates to ∩r>0Ar = ∅. Now the finite inter-
section property of the compact set Ω×Ω yields that Ar = ∅ for some r > 0, which was the
claim.
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