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Abstract

Linear programs with quadratic (“ridge”) regularization are of recent interest in optimal
transport: unlike entropic regularization, the squared-norm penalty gives rise to sparse ap-
proximations of optimal transport couplings. More broadly, quadratic regularization is used in
overparametrized learning problems to single out a particular solution. It is well known that the
solution of a quadratically regularized linear program over any polytope converges stationarily
to the minimal-norm solution of the linear program when the regularization parameter tends
to zero. However, that result is merely qualitative. Our main result quantifies the convergence
by specifying the exact threshold for the regularization parameter, after which the regularized
solution also solves the linear program. Moreover, we bound the suboptimality of the regu-
larized solution before the threshold. These results are complemented by a convergence rate
for the regime of large regularization. We apply our general results to the setting of optimal
transport, where we shed light on how the threshold and suboptimality depend on the number
of data points.
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1 Introduction

Let c ∈ Rd and let P ⊂ Rd be a polytope. Moreover, let ⟨·, ·⟩ be an inner product on Rd and ∥ · ∥
its induced norm. We study the linear program

minimize ⟨c,x⟩ subject to x ∈ P (LP)

and its quadratically regularized counterpart,

minimize ⟨c,x⟩+ ∥x∥2

η
subject to x ∈ P. (QLP)
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Here η ∈ (0,∞) is called the inverse regularization parameter (whereas 1/η is the regularization).
In the limit η → ∞ of small regularization, (QLP) converges to (LP). More precisely, the unique
solution xη of (QLP) converges to a particular solution x∗ of (LP), namely the solution with
smallest norm: x∗ = argminx∈M ∥x∥2, where M denotes the set of minimizers of (LP). Our main
goal is to describe how quickly this convergence happens.

Linear programming and regularization are fundamental tools in data science. Many statistical
methodologies, including for instance quantile regression [32], statistical depths [31] or multivariate
quantiles [30], rely on solving a linear program. Regularization by a quadratic penalty—also called
ridge penalty due to its prominent application in ridge regression—is used in many statistical prob-
lems (e.g., regularized quantile regression [36]) but also in data science more broadly, for instance
in overparametrized learning problems where the aim is to single out a particular solution [5, 8, 54].

The aforementioned convergence of the solution xη of (QLP) to the minimum-norm solution x∗

of (LP) is stationary: there exists a threshold η∗ such that xη = x∗ for all η ≥ η∗. This was
first established for linear programs in [40, Theorem 1] and [39, Theorem 2.1], and was more
recently rediscovered in the context of optimal transport [18, Property 5]. However, those results
are qualitative: they do not give a value or a bound for η∗. We shall characterize the exact value of
the threshold η∗ (cf. Theorem 2.5), and show how this leads to computable bounds in applications.
This exact result raises the question about the speed of convergence as η ↑ η∗. Specifically, we are
interested in the convergence of the error E(η) = ⟨c,xη⟩−minx∈P⟨c,x⟩ measuring how suboptimal
the solution xη of (QLP) is when plugged into (LP). In Theorem 2.5, we show that E(η) = o(η∗−η)
as η ↑ η∗ and give an explicit bound for E(η)/(η∗ − η). After observing that the curve η 7→ xη is
piecewise affine, this linear rate can be understood as the slope of the last segment of the curve
before ending at x∗. Figure 1 illustrates these quantities in a simple example. Our results for
η → ∞ are complemented by a convergence rate for the large regularization regime η → 0 where xη

tends to argminx∈P ∥x∥2; cf. Proposition 2.7.

η∗

E(η)

η1

Figure 1: Suboptimality E(η) of (QOT) when µ = ν = 1
3

∑3
i=1 δi/3 and c(x, y) = ∥x − y∥2.

Theorem 2.5 characterizes the location of η∗ and bounds the slope to the left of η∗.

While linear programs and their penalized counterparts go back far into the last century, our
interest is fueled by the surge of optimal transport in applications such as machine learning (e.g.,
[33]), statistics (e.g., [45]), language and image processing (e.g., [3, 47]) and economics (e.g., [24]).
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In its simplest form, the optimal transport problem between probability measures µ and ν is

inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y), (OT)

where Γ(µ, ν) denotes the set of couplings; i.e., probability measures γ with marginals µ and ν (see
[49, 50] for an in-depth exposition). Here c(·, ·) is a given cost function, most commonly c(x, y) =
∥x−y∥2. In many applications the marginals represent observed data: data points X1, . . . ,XN and
Y1, . . . ,YN are encoded in their empirical measures µ = 1

N

∑
i δXi

and ν = 1
N

∑
i δYi

. Writing
also cij = c(Xi,Yj), the problem (OT) is a particular case of (LP) in dimension d = N ×N . The
general linear program (LP) also includes other transport problems of recent interest, such as multi-
marginal optimal transport and Wasserstein barycenters [1], adapted Wasserstein distances [4] or
martingale optimal transport [7].

As the optimal transport problem is computationally costly (e.g., [46]), [17] proposed to reg-
ularize (OT) by penalizing with Kullback–Leibler divergence (entropy). Then, solutions can be
computed using the Sinkhorn–Knopp (or IPFP) algorithm, which has lead to an explosion of high-
dimensional applications. Entropic regularization always leads to “dense” solutions (couplings
whose support contains all data pairs (Xi,Yj)) even though the unregularized problem (OT) typi-
cally has a sparse solution. In some applications that is undesirable; for instance, it may correspond
to blurrier images in an image processing task [10]. For that reason, [10] suggested the quadratic
penalization

inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y) +

1

η

∥∥∥∥ dγ

d(µ⊗ ν)

∥∥∥∥2
L2(µ⊗ν)

(QOT)

where dγ/d(µ⊗ν) denotes the density of γ with respect to the product measure µ⊗ν. See also [22]
for a similar formulation of minimum-cost flow problems, the predecessors referenced therein, and
[18] for optimal transport with more general convex regularization. Quadratic regularization gives
rise to sparse solutions (see [10], and [26, 27, 42, 52] for recent theoretical results). Applications of
quadratically regularized optimal transport include manifold learning [53] and image processing [35]
while [41] establishes a connection to maximum likelihood estimation of Gaussian mixtures. Com-
putational approaches are developed in [20, 25, 28, 35, 48] whereas [38, 19, 6, 42] study theoretical
aspects with a focus on continuous problems. In that context, [37, 21] show Gamma convergence
to the unregularized optimal transport problem in the small regularization limit. Those results
are straightforward in the discrete case considered in the present work. Conversely, the stationary
convergence studied here does not take place in the continuous case.

For linear programs with entropic regularization, [15] established that solutions converge expo-
nentially to the limiting unregularized counterpart. More recently, [51] gave an explicit bound for
the convergence rate. The picture for entropic regularization is quite different to quadratic regular-
ization as the convergence is not stationary. For instance, in optimal transport, the support of the
regularized solution contains all data pairs for any value of the regularization parameter, collapsing
only at the unregularized limit. Nevertheless, our analysis benefits from some of the technical ideas
in [51], specifically for the proof of the slope bound (3). The small regularization limit has also
attracted a lot of attention in continuous optimal transport (e.g., [2, 9, 14, 16, 34, 43, 44]) which
however is technically less related to the present work.

The remainder of this note is organized as follows. Section 2 contains the main results on
the general linear program and its quadratic regularization, Section 3 the application to optimal
transport. Proofs are gathered in Section 4.
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2 Main Results

Throughout, ∅ ̸= P ⊂ Rd denotes a polytope. That is, P is the convex hull of its extreme points
(or vertices) exp(P) = {v1, . . . ,vK}, which are in turn minimal with the property of spanning P
(see [12] for detailed definitions). We recall the linear program (LP) and its quadratically penalized
version (QLP) as defined in the Introduction, and in particular their cost vector c ∈ Rd. The set
of minimizers of (LP) is denoted

M = M(P, c) = argmin
x∈P

⟨c,x⟩;

it is again a polytope. To avoid a degenerate problem, we assume throughout that the projection
of the origin onto P is not a minimizer of (LP). (If it is a minimizer of (LP), then it is also the
minimizer of (QLP) for any η, so that our problem is trivial.) We abbreviate the objective function
of (QLP) as

Φη(x) = ⟨c,x⟩+ ∥x∥2

η
.

In view of Φη(x) = 1
η

∥∥x+ η c
2

∥∥2 − η
4∥c∥

2, minimizing Φη(x) over P is equivalent to projecting

−ηc/2 onto P in the Hilbert space (Rd, ⟨·, ·⟩). The projection theorem (e.g., [11, Theorem 5.2])
thus implies the following result. We denote by ri(C) the relative interior of a set C ⊂ Rd; i.e, the
topological interior when C is considered as a subset of its affine hull.

Lemma 2.1. Given η > 0, (QLP) admits a unique minimizer xη. It is characterized as the unique
xη ∈ P such that 〈

−ηc

2
− xη,x− xη

〉
≤ 0 for all x ∈ P.

In particular, if xη ∈ ri(C) for some convex set C ⊂ P, then also〈
−ηc

2
− xη,x− xη

〉
= 0 for all x ∈ C.

Figure 2 illustrates how xη is obtained as the projection of −ηc/2. The algorithm of [29] solves
the problem of projecting a point onto a polyhedron, hence can be used to find xη numerically.

Next, we are interested in the error or suboptimality

E(η) = ⟨c,xη⟩ −min
x∈P

⟨c,x⟩ (1)

measuring how suboptimal the solution xη of (QLP) is when used as a feasible point in (LP). It
follows from the optimality of xη for (QLP) that η 7→ E(η) is nonincreasing. (Figure 2 illustrates
that it need not be strictly decreasing even on [0, η∗]). The optimality of xη also implies that
E(η) ≤ η−1(∥x∗∥2−∥xη∥2); in fact, an analogous result holds for any regularization. The following
improvement is particular to the quadratic penalty and will be important for our main result.

Lemma 2.2. Let xη be the unique minimizer of (QLP) and let x∗ be any minimizer of (LP).
Then

E(η) ≤ ∥x∗∥2 − ∥xη∥2 − ∥x∗ − xη∥2

η
for all η > 0.

Remark 2.3. The bound in Lemma 2.2 cannot be improved in general. Indeed, consider the
example P = [0, 1] and c = −1. Then x∗ = 1 and xη = η/2 for η ∈ (0, 2], whereas xη = x∗ for
η ≥ 2. It is straightforward to check that the inequality in Lemma 2.2 is an equality for all η > 0.
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η = 0

η = 1

η = 2

η = η∗

(−ηc/2)η≥0

P

x∗

Figure 2: The minimizer xη of (QLP) is the projection of −ηc/2 onto P. The curve η 7→ xη is
piecewise affine and converges stationarily to a point x∗; i.e., xη = x∗ for all η ≥ η∗.

The next lemma details the piecewise linear nature of the curve η 7→ xη. This result is known
(even for some more general norms, see [23] and the references therein), and so is the stationary
convergence [39, Theorem 2.1]. For completeness, we detail a short proof in Section 4.

Lemma 2.4. Let xη be the unique minimizer of (QLP). The curve η 7→ xη is piecewise linear and
converges stationarily to x∗ = argminx∈M ∥x∥2 as η → ∞. That is, there exist n ∈ N and

0 = η0 < η1 < · · · < ηn =: η∗

such that [ηi, ηi+1] ∋ η 7→ xη is affine for every i ∈ {0, . . . , n− 1}, and moreover,

xη = x∗ for all η ≥ η∗.

Correspondingly, the suboptimality E(η) = ⟨c,xη − x∗⟩ is also piecewise linear and converges sta-
tionarily to zero.

We can now state our main result for regime of small regularization: the threshold η∗ beyond
which xη = x∗ and a bound for the slope of the suboptimality E(η) of (1) before the threshold.
See Figures 1 and 2 for illustrations. We recall that M denotes the set of minimizers of (LP) and
exp(P) denotes the extreme points of P.

Theorem 2.5. Let xη be the unique minimizer of (QLP) and let x∗ be the minimizer of (LP) with
minimal norm, x∗ = argminx∈M ∥x∥2. Let 0 = η0 < η1 < · · · < ηn = η∗ be the breakpoints of the
curve η 7→ xη as in Lemma 2.4; in particular, η∗ is the threshold such that xη = x∗ for all η ≥ η∗.

(a) The threshold η∗ is given by

η∗ = 2 max
x∈exp(P)\M

⟨x∗,x∗ − x⟩
⟨c,x− x∗⟩

. (2)

The right-hand side attains its maximum on the set M(P, c∗) of minimizers for the linear

program (LP) with the auxiliary cost c∗ := η∗c
2 + x∗. Moreover, we have xη ∈ M(P, c∗) for

all η ∈ [ηn−1, η
∗], so that η∗ = 2 ⟨x∗,x∗−xη⟩

⟨c,xη−x∗⟩ for all η ∈ [ηn−1, η
∗].
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(b) The slope E(η)
(η∗−η) of the last segment of the curve η 7→ E(η) satisfies the bound

E(η)
(η∗ − η)

≤ 1

2

〈
c,

x∗ − xηn−1

∥x∗ − xηn−1∥

〉2

≤ ∥c∥2

2
, η ∈ [ηn−1, η

∗). (3)

It is worth noting that the first bound in (3) is in terms of the angle between c and x∗ −xηn−1 .
The formula (2) for η∗ is somewhat implicit in that it refers to x∗. The following corollary states
a bound for η∗ using similar quantities as [51] uses for entropic regularization. In particular, we
define the suboptimality gap of P as

∆ := min
x∈exp(P)\M

⟨c,x⟩ −min
x∈P

⟨c,x⟩ = min
x∈exp(P)\M

⟨c,x− x∗⟩;

it measures the cost difference between the suboptimal and the optimal vertices of P.

Corollary 2.6. Let B = supx∈P ∥x∥ and D = supx,x′∈P ∥x−x′∥ be the bound and diameter of P,
respectively. Then

η∗ ≤ 2BD

∆
.

For integer programs, where c and the vertices of P have integer coordinates, it is clear that
∆ ≥ 1. In general, the explicit computation of ∆ is not obvious. In Section 3 below we shall find
it more useful to directly use (2).

We conclude this section with a quantitative result for the regime η → 0 of large regularization.
After rescaling with η, the quadratically regularized linear program (QLP) formally tends to the
quadratic program

minimize ∥x∥2 subject to x ∈ P. (QP)

The unique solution x0 of (QP) is simply the projection of the origin onto P. It is known in several
contexts that xη → x0 as η → 0 (e.g., [18, Properties 2,7]). The following result quantifies this
convergence by establishing that ∥xη − x0∥ tends to zero at a linear rate.

Proposition 2.7. Let xη and x0 be the minimizers of (QLP) and (QP), respectively. Then

∥xη − x0∥ ≤ 1

2
∥c∥η for all η > 0.

Remark 2.8. The bound in Proposition 2.7 is sharp in the example P = [0, 1] and c = −1.

Remark 2.9. Proposition 2.7 and its proof apply to an arbitrary closed, bounded convex set P
in a Hilbert space, not necessarily a polytope. In particular, the bounds also hold for continuous
optimal transport problems.

3 Application to Optimal Transport

Recall from the Introduction the optimal transport problem with cost function c(·, ·) between prob-
ability measures µ and ν,

inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y), (OT)
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where Γ(µ, ν) denotes the set of couplings of (µ, ν), and its quadratically regularized version

inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y) +

1

η

∥∥∥∥ dγ

d(µ⊗ ν)

∥∥∥∥2
L2(µ⊗ν)

. (QOT)

Throughout this section, we consider given points Xi,Yi, 1 ≤ i ≤ N (in RD, say) with their
associated empirical measures and cost matrix

µ =
1

N

N∑
i=1

δXi
, ν =

1

N

N∑
i=1

δYi
, Cij := c(Xi,Xj).

Any coupling γ gives rise to a matrix γij = γ(Xi,Yj) through its probability mass function. Those
matrices form the set

ΓN = {γ ∈ RN×N : γ 1 = N−11, γ⊤ 1 = N−11, γi,j ≥ 0}.

It is more standard to work instead with the Birkhoff polytope of doubly stochastic matrices,

ΠN = {π ∈ RN×N : π 1 = 1, π⊤ 1 = 1, πi,j ≥ 0},

that is obtained through the bijection πij = Nγij . By Birkhoff’s theorem (e.g., [13]), the extreme
points exp(ΠN ) are precisely the permutation matrices; i.e., matrices with binary entries whose

rows and columns sum to one. Let ⟨A,B⟩ := Trace(A⊤B) =
∑N

i=1

∑N
j=1 Ai,jBi,j be the Frobenius

inner product on RN×N and ∥ · ∥ the associated norm. Then (QOT) becomes a particular case of
(QLP), namely

min
γ∈ΓN

⟨C, γ⟩+ N2

η
∥γ∥2 or equivalently min

π∈ΠN

1

N
⟨C, π⟩+ 1

η
∥π∥2, (4)

where the factor N2 is due to µ ⊗ ν being the uniform measure on N2 points. To have the same
form as in (QLP) and Section 2, we write (4) as

min
π∈ΠN

⟨c, π⟩+ 1

η
∥π∥2 where cij := Cij/N. (5)

We can now apply the general results of Theorem 2.5 to (5) and infer the following for the regularized
optimal transport problem (QOT); a detailed proof can be found in Section 4.

Proposition 3.1. (a) The optimal coupling γη of (QOT) is optimal for (OT) if and only if

η ≥ η∗ := 2N · max
π∈exp(ΠN )\M

⟨π∗, π∗ − π⟩
⟨C, π − π∗⟩

, (6)

in which case γη is the minimum-norm solution γ∗ of (OT).

(b) We have the following bound for the slope of the suboptimality,

lim sup
η→η∗

∫
c(x, y)dγη(x, y)−

∫
c(x, y)dγ∗(x, y)

η∗ − η

≤ 1

2

(∫
c(x, y)2d(µ⊗ ν)(x, y)−

(∫
c(x, y)d(µ⊗ ν)(x, y)

)2
)
. (7)
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The following example shows that Proposition 3.1 is sharp.

Example 3.1. Let c(Xi,Yj) = −δij , so that π∗ = Id is the identity matrix and C = − Id. Note
also that π0 has entries π0

i,j = 1/N . It follows from (6) that η∗ = 2N , and the right-hand side

of (7) evaluates to N−1
2N2 . We show below that [0, η∗] ∋ η 7→ xη is affine, or more explicitly, that

πη = 2N−η
2N π0 + η

2N π∗ =: π̃η. As a consequence, we have for every η ∈ [0, η∗) that∫
c(x, y)dγη(x, y)−

∫
c(x, y)dγ∗(x, y)

η∗ − η
=

⟨C, πη − π∗⟩
N(η∗ − η)

= − (2N − η) + (η − 2N)N

2N2(η∗ − η)

= − (η∗ − η) + (η − η∗)N

2N2(η∗ − η)
=

N − 1

2N2
,

matching the right-hand side of (7).
It remains to show that πη = π̃η. Using c = Id /N , the definition of π̃η and π∗ = Id, we see that

ηc
2 + π̃η = 2N−η

2N π0. The form of π0 also implies that
〈
π0, π′ − π

〉
= 0 for any π, π′ ∈ ΠN . Together,

it follows that
〈
−ηc

2 − π̃η, π̃η − π
〉
= 0 for all π ∈ ΠN . By Lemma 2.1, this implies π̃η = πη.

Next, we focus on a more representative class of transport problems. Our main interest is to
see how our key quantities scale with N , the number of data points.

Corollary 3.2. Assume that there exist [ϵm, ϵM ] ⊂ [0,∞) and a permutation σ∗ : {1, . . . , N} →
{1, . . . , N} such that

κ := min
i∈{1,...,N},j ̸=σ∗(i)

c(Xi,Yj) > ϵM and c(Xi,Yσ∗(i)) ∈ [ϵm, ϵM ] for all i ∈ {1, . . . , n}.

Then
4N

κ′ − 2ϵm
≤ η∗ ≤ 2N

κ− ϵM
, (8)

where κ′ := mini ̸=j c(Xi,Yσ∗(j)) + c(Xj ,Yσ∗(i)). If the cost is symmetric around σ∗ in the sense
that c(Xi,Yσ∗(j)) = c(Xj ,Yσ∗(i)) for all i, j ∈ {1, . . . , N}, then

2N

κ− ϵm
≤ η∗ ≤ 2N

κ− ϵM
, and in particular η∗ =

2N

κ
if ϵm = ϵM = 0. (9)

The proof is detailed in Section 4. We illustrate Proposition 3.1 and Corollary 3.2 with a
representative example for scalar data.

Example 3.2. Consider the quadratic cost c(x, y) = ∥x− y∥2 and Xi = Yi =
i
N , 1 ≤ i ≤ N with

N ≥ 2, leading to the cost matrix

Cij =
|i− j|2

N2
.

Then
η∗ = 2N3

and we have the following bound for the slope of the suboptimality,

lim sup
η→η∗

∫
c(x, y)dγη(x, y)−

∫
c(x, y)dγ∗(x, y)

η∗ − η
≤ N − 1

N6
. (10)
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Indeed, the value of η∗ follows directly from the last part of (9) with κ = 1/N2 and σ∗ being
the identity. The proof of (10) is longer and relegated to Section 4.

To study the accuracy of the bound (10), we compute numerically the limit

LN = lim
η→η∗

∫
c(x, y)dγη(x, y)−

∫
c(x, y)dγ∗(x, y)

η∗ − η

for N = j ∗ 30 with j = 2, . . . , 16. Figure 3 shows N 7→ LN in blue and the upper bound N 7→ N−1
N6

in red (in double logarithmic scale). We observe that both have the same order as a function of N .

log(N)

Figure 3: Accuracy of the bound (10). Plot of N 7→ limη→η∗

∫
c(x,y)dγη(x,y)−

∫
c(x,y)dγ∗(x,y)

η∗−η (blue)

and the upper bound N 7→ N−1
N6 (red) in double logarithmic scale.

4 Proofs

Proof of Lemma 2.2. Let x ∈ P. Inserting the definition of Φη, expanding ∥x−xη∥2, and applying
Lemma 2.1 yield

Φη(x) = Φη(x
η) +

〈
c+

2xη

η
,x− xη

〉
+

∥x− xη∥2

η
≥ Φη(x

η) +
∥x− xη∥2

η
.

Therefore,

0 ≥ Φη(x
η)− Φη(x) +

∥x− xη∥2

η
= ⟨c,xη − x⟩+ ∥xη∥2 − ∥x∥2 + ∥x− xη∥2

η

and in particular choosing x = x∗ gives

E(η) = ⟨c,xη − x∗⟩ ≤ ∥x∗∥2 − ∥xη∥2 − ∥x∗ − xη∥2

η

as claimed.
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Proof of Lemma 2.4 and Theorem 2.5. Step 1. Let η(1) < η(2). We claim that if xη(1) ,xη(2) ∈ ri(F)
for some face1 F of P, then [η(1), η(2)] ∋ η 7→ xη is affine. Indeed, xη(i) = projP(−η(i)c/2) is the
projection of −η(i)c/2 onto P. As xη(i) ∈ ri(F), it follows that xη(i) = projA(−η(i)c/2) is also the
projection onto the affine hull A of F . Since A is an affine space, the map η 7→ projA(−ηc/2) is
affine. For η(1) ≤ η ≤ η(2), convexity of ri(F) then implies projA(−ηc/2) ∈ ri(F) , which in turn
implies projA(−ηc/2) = projF (−ηc/2) = projP(−ηc/2) = xη.

Step 2. We can now define η1, . . . , ηn recursively as follows. Recall first that each x ∈ P is in the
relative interior of exactly one face of P (possibly P itself), namely the smallest face containing x
[12, Theorem 5.6]. Let F0 be the unique face such that x0 := argminx∈P ∥x∥ ∈ ri(F0) and define

η1 := inf{η > 0 : xη /∈ ri(F0)},

where we use the convention that inf ∅ = +∞. Then (0, η1) ∋ η 7→ xη is affine by Step 1. For i > 1,
if ηi−1 < ∞, let Fi−1 be the face such that xηi−1 ∈ ri(Fi−1) and define

ηi := inf{η > ηi−1 : xη /∈ ri(Fi−1)}.

Again, (ηi−1, ηi) ∋ η 7→ xη is affine by Step 1. Moreover, by continuity, [ηi−1, ηi] ∋ η 7→ xη is also
affine.

Step 3. Next, we establish the value (2) of η∗. Let us first observe that (2) is strictly positive.
Indeed, the denominator is clearly positive. Suppose that the numerator ⟨x∗,x− x∗⟩ ≤ 0 for all
x ∈ exp(P) \M. Note that by the definition of x∗, we also have ⟨x∗,x− x∗⟩ ≤ 0 for all x ∈ M.
Thus ⟨x∗,x− x∗⟩ ≤ 0 for all x ∈ exp(P), meaning that x∗ is the projection of the origin onto P,
the degenerate situation we had excluded in our setup.

Let η > 0 and suppose that x∗ = xη. Then by Lemma 2.1,

−⟨x∗,x− x∗⟩ ≤
〈ηc

2
,x− x∗

〉
for all x ∈ P.

Using also that ⟨c,x− x∗⟩ > 0 for x ∈ P \M, we deduce

η ≥ 2
⟨x∗,x∗ − x⟩
⟨c,x− x∗⟩

for all x ∈ exp(P) \M. (11)

Conversely, assume that (11) holds; we show that x∗ = xη. Recall that exp(P) = {v1, . . . ,vK}
denotes the set of extreme points of P. Let x ∈ P, then there exist {λi}Ki=1 ⊂ [0, 1] with 1 =

∑K
i=1 λi

such that x =
∑K

i=1 λivi. We note that (11) yields〈ηc
2
,x− x∗

〉
=

∑
i:vi∈exp(P)\exp(M)

λi

〈ηc
2
,vi − x∗

〉
≥ −

∑
i:vi∈exp(P)\exp(M)

λi ⟨x∗,vi − x∗⟩ .

On the other hand, the fact that x∗ is the projection of the origin onto M yields∑
i:vi∈exp(M)

λi ⟨x∗,vi − x∗⟩ ≥ 0.

1A nonempty face F of the polytope P can be defined as a subset F ⊂ P such that there exists an affine hyperplane
H = {x ∈ Rd : ⟨x,a⟩ = m} with H ∩ P = F and P ⊂ {x ∈ Rd : ⟨x,a⟩ ≤ m}. See [12].
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Together,〈ηc
2
,x− x∗

〉
≥ −

∑
i:vi∈exp(P)\exp(M)

λi ⟨x∗,vi − x∗⟩ ≥ −
∑

i:vi∈exp(P)

λi ⟨x∗,vi − x∗⟩ = −⟨x∗,x− x∗⟩ .

As x ∈ P was arbitrary, Lemma 2.1 now shows that x∗ = xη. This completes the proof of Lemma 2.4
and (2).

Finally, note that x attains the maximum in (2) if and only if ⟨c∗,x − x∗⟩ = 0. Moreover,
⟨c∗,x− x∗⟩ ≥ 0 for all x ∈ P by Lemma 2.1. Hence the set of maximizers of (2) over exp(P) \M
equals the set of minimizers of ⟨c∗, ·⟩ over exp(P).

Step 4. We prove the remaining claim in (a), namely that xη ∈ M(P, c∗) for all η ∈ [ηn−1, η
∗].

By Lemma 2.1, 〈
−ηc

2
− xη,x− xη

〉
≤ 0 for all x ∈ P, η ∈ [ηn−1, η

∗].

As xη ∈ ri([xηn−1 ,x∗]) for η ∈ (ηn−1, η
∗), Lemma 2.1 moreover yields〈

−ηc

2
− xη,xη′

− xη
〉
= 0 for all η′ ∈ [ηn−1, η

∗], η ∈ (ηn−1, η
∗),

and by continuity, the previous display also holds for η ∈ [ηn−1, η
∗]. In summary, we have〈

−η∗c

2
− x∗,x− x∗

〉
≤ 0 for all x ∈ P (12)

and 〈
−η∗c

2
− x∗,xηn−1 − x∗

〉
= 0.

Therefore, xηn−1 ∈ M(P, c∗). On the other hand, (12) also states that xη∗
= x∗ ∈ M(P, c∗), and

then convexity implies the claim.
Step 5. It remains to prove (b). Let η ∈ (ηn−1, η

∗). Then Lemma 2.4 implies that xη =
λxηn−1 + (1− λ)x∗ for some λ ∈ (0, 1) and thus

⟨c,xη⟩ = ⟨c,x∗⟩+ λ⟨c,xηn−1 − x∗⟩.

Lemma 2.2 then yields

λ =
⟨c,xη − x∗⟩

⟨c,xηn−1 − x∗⟩
≤ ∥x∗∥2 − ∥xη∥2 − ∥x∗ − xη∥2

η⟨c,xηn−1 − x∗⟩
.

Using
∥xη∥2 = ∥x∗∥2 + λ2∥x∗ − xηn−1∥2 + 2λ⟨x∗,xηn−1 − x∗⟩

and ∥xη − x∗∥2 = λ2∥x∗ − xηn−1∥2, it follows that

λ ≤ 2λ⟨x∗,x∗ − xηn−1⟩ − 2λ2∥x∗ − xηn−1∥2

η⟨c,xηn−1 − x∗⟩
.

and hence

λ ≤ 2⟨x∗,x∗ − xηn−1⟩ − η⟨c,xηn−1 − x∗⟩
2∥x∗ − xηn−1∥2

. (13)
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By the last part of (a) we have

η∗ =
2 ⟨x∗,x∗ − xηn−1⟩
⟨c,xηn−1 − x∗⟩

.

Inserting this in (13) yields

λ ≤ (η∗ − η)⟨c,xηn−1 − x∗⟩
2∥x∗ − xηn−1∥2

and now it follows that

E(η) = λ⟨c,xηn−1 − x∗⟩ ≤ (η∗ − η)⟨c,xηn−1 − x∗⟩2

2∥x∗ − xηn−1∥2

as claimed.

Proof of Proposition 2.7. Recall that xη is the projection of −ηc/2 onto P whereas x0 is the pro-
jection of the origin onto P. As the projection operator onto a convex set is non-expanding (i.e.,
Lipschitz continuous with constant one), this implies ∥xη − x0∥ ≤ ∥ − ηc/2∥ = 1

2∥c∥η.

Proof of Proposition 3.1. Theorem 2.5(a) directly yields (6). Whereas for (7), a direct application
of Theorem 2.5(b) only yields

lim sup
η→η∗

∫
c(x, y)dγη(x, y)−

∫
c(x, y)dγ∗(x, y)

η∗ − η
≤ 1

2

∫
c(x, y)2d(µ⊗ ν)(x, y).

To improve this bound, note that the optimizer of (QOT) does not change if the cost c(x, y) is
changed by an additive constant. Moreover, for any m ∈ R,∫

c(x, y)dγη(x, y)−
∫

c(x, y)dγ∗(x, y) =

∫
(c(x, y)−m)dγη(x, y)−

∫
(c(x, y)−m)dγ∗(x, y).

Applying Theorem 2.5 with the modified cost c(x, y)−m for the choice m :=
∫
c(x, y)d(µ⊗ν)(x, y)

yields (7).

Proof of Corollary 3.2. Assume without loss of generality that σ∗ is the identity, so that π∗ = Id
is the identity matrix. Let Pσ be the permutation matrix associated with a permutation σ :
{1, . . . , N} → {1, . . . , N}. We define N (σ) = {i ∈ {1, . . . , N} : σ(i) = i}. Then

⟨π∗, π∗ − Pσ⟩
⟨C,Pσ − π∗⟩

=
N − |N (σ)|∑

i/∈N (σ) c(Xi,Yσ(i))− c(Xi,Yi)
, (14)

where |N (σ)| denotes the cardinality of N (σ).
For the upper bound in (8), we recall that c(Xi,Yi) ≤ ϵM and c(Xi,Yσ(i)) ≥ κ for i /∈ N (σ),

so that (14) yields
⟨π∗, π∗ − Pσ⟩
⟨C,Pσ − π∗⟩

≤ 1

κ− ϵM

N − |N (σ)|
N − |N (σ)|

=
1

κ− ϵM
.
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Now Proposition 3.1 yields the claim. For the lower bound in (8), let i∗, j∗ ̸= σ∗(i∗) be such that
κ′ = c(Xi∗ ,Yj∗) + c(Xj∗ ,Yi∗) and let σ be the permutation such that σ(i) = i for all i /∈ {i∗, j∗},
σ(i∗) = j∗ and σ(j∗) = i∗. Then

⟨π∗, π∗ − Pσ⟩
⟨C,Pσ − π∗⟩

=
2

c(Xi∗ ,Yj∗) + c(Xj∗ ,Yi∗)− (c(Xi∗ ,Yi∗) + c(Xj∗ ,Yj∗))
≥ 2

κ′ − 2ϵm

and Proposition 3.1 again yields the claim. It remains to observe that κ′ = 2κ when the cost is
symmetric.

Proof for Example 3.2. Corollary 3.2 applies with σ∗ being the identity and κ = 1/N2. As a
consequence, the critical value η∗ is 2N3.

To prove (10), write πηn−1 =
∑k

i=1 λiPσi
with λi ∈ (0, 1] and

∑k
i=1 λi = 1. Recall from

Theorem 2.5(a) that 0 = ⟨c∗, πηn−1 − π∗⟩. With the optimality of π∗ = πη∗
for ⟨c∗, ·⟩, this implies

0 = ⟨c∗, Pσi − π∗⟩ =
〈
η∗C

2N
+ π∗, Pσi − π∗

〉
=
〈
N2C + π∗, Pσi − π∗〉 for all i = 1, . . . , k.

As ⟨N2C + π∗, π∗⟩ = ⟨N2C + Id, Id⟩ = N , it follows that
〈
N2C + Id, Pσi

〉
= N . Using that Pσi

has N entries equal to one and that the entries of N2C +Id are strictly larger than one outside the
three principal diagonals, this implies that |σi(j)− j| ≤ 1 for all j ∈ {1, . . . , N}. As a consequence,

πηn−1 =
∑k

i=1 λiPσi
vanishes outside the three principal diagonals; i.e., it is entry-wise smaller or

equal to the tridiagonal matrix

A =



1 1 0 0 · · · 0 0
1 1 1 0 · · · 0 0
0 1 1 1 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1
0 0 0 0 · · · 1 1


.

Let c̄ := A ⊙ c be the entry-wise product, meaning that entries of c outside the three principal
diagonals are set to zero. As πηn−1 − Id vanishes outside those diagonals, we have

⟨πηn−1 − Id, c⟩ = ⟨πηn−1 − Id, c̄⟩.

We can now use Theorem 2.5(b) and the Cauchy–Schwarz inequality to find

lim sup
η→η∗

⟨πη − Id, c⟩
(η∗ − η)

≤ ⟨πηn−1 − Id, c⟩2

2∥πηn−1 − Id∥2
=

⟨πηn−1 − Id, c̄⟩2

2∥πηn−1 − Id∥2
≤ ∥c̄∥2

2
=

1

2N2

2(N − 1)

N4
=

N − 1

N6

as claimed in (10).
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