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Abstract

It is well known that optimal transport suffers from the curse of dimensionality:
when the prescribed marginals are approximated by i.i.d. samples, the convergence of
the empirical optimal transport problem to the population counterpart slows exponen-
tially with increasing dimension. Entropically regularized optimal transport (EOT) has
become the standard bearer in many statistical applications as it avoids this curse. In-
deed, EOT has parametric sample complexity, as has been shown in a series of works
based on the smoothness of the EOT potentials or the strong concavity of the dual EOT
problem. However, EOT produces full-support approximations to the (sparse) OT prob-
lem, leading to overspreading in applications, and is computationally unstable for small
regularization parameters.

The most popular alternative is quadratically regularized optimal transport (QOT),
which penalizes couplings by L2 norm instead of relative entropy. QOT produces sparse
approximations of OT and is computationally stable. However, its potentials are not
smooth (do not belong to a Donsker class) and its dual problem is not strongly concave,
hence QOT is often assumed to suffer from the curse of dimensionality. In this paper,
we show that QOT nevertheless has parametric sample complexity. More precisely, we
establish central limit theorems for its dual potentials, optimal couplings, and optimal
costs. Our analysis is based on novel arguments that focus on the regularity of the
support of the optimal QOT coupling. Specifically, we establish a Lipschitz property
of its sections and leverage VC theory to bound its statistical complexity. Our analysis
also leads to gradient estimates of independent interest, including C1,1 regularity of the
population potentials.
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1 Introduction

The optimal transport (OT) problem between compactly supported probability measures P,Q
on Rd is

OT(P,Q) := min
π∈Π(P,Q)

∫
1

2
∥x− y∥2 dπ(x, y), (OT)

where Π(P,Q) denotes the set of couplings between P and Q; i.e., probability measures
on Rd × Rd with marginals (P,Q). A well-known limitation for its application in high-
dimensional statistics and data science is the curse of dimensionality suffered by (OT) when
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the marginals are approximated by samples; see [5] for a recent survey. Regularized optimal
transport (ROT) introduces a divergence penalty to (OT),

ROTε(P,Q) := min
π∈Π(P,Q)

∫
1

2
∥x− y∥2 dπ(x, y) + ε

∫
φ

(
dπ

d(P ⊗Q)

)
d(P ⊗Q), (ROT)

where dπ/d(P ⊗Q) is the Radon–Nikodym density of π w.r.t. the product measure P ⊗Q,
ε > 0 is the regularization parameter and φ is a convex function. A standard choice is
the logarithmic entropy φ(x) = x log x, leading to the entropic optimal transport (EOT)
problem. EOT admits efficient computation via Sinkhorn’s algorithm [7] and avoids the curse
of dimensionality: when (P,Q) are approximated by the empirical measures corresponding
to i.i.d. samples, the empirical optimal costs, couplings, and dual potentials all converge to
their population counterparts at the parametric rate n−1/2 [14, 25, 9]. In addition, central
limit theorems for all three quantities have been established [15, 20, 19, 9]; see also the
recent surveys [1, 8]. On the flip side, using logarithmic entropy entails that the optimal
coupling of (ROT) has full support (equal to the support of P ⊗Q), a phenomenon known as
overspreading since the true optimal coupling for (OT) is sparse (given by Brenier’s map) as
soon as one marginal is absolutely continuous. Overspreading can lead to blurring in image
processing [3] or bias in manifold learning [33], for example.

Starting with [26, 3, 12], quadratic regularization has emerged as the most popular al-
ternative to logarithmic entropy. Indeed, the choice φ(x) = 1

2x
2 gives rise to the squared

L2 norm (or χ2 divergence) as penalty and leads to the quadratically regularized optimal
transport (QOT) problem

QOTε(P,Q) := min
π∈Π(P,Q)

∫
1

2
∥x− y∥2 dπ(x, y) + ε

2

∥∥∥∥ dπ

d(P ⊗Q)

∥∥∥∥2
L2(P⊗Q)

. (QOT)

The optimal cost QOTε(P,Q) approximates OT(P,Q) at rate ε2/(d+2) as ε→ 0 (see [11, 13])
and, in contrast to EOT, the support of the optimal coupling converges to the support of
the unregularized optimal transport. This sparsity for small ε has been observed empirically
since the initial works (e.g., [3, 12, 24]) and established theoretically more recently in [27,
32, 21]. A separate advantage is that EOT tends to be computationally unstable for small
regularization parameters due to the occurrence of exponentially large/small values, as noted
for instance in [23]. Such values do not occur for QOT. While QOT has long been effective in
computational practice, we also mention the recent theoretical guarantee [17] that gradient
descent for the dual problem of QOT converges exponentially fast.

Denoting (x)+ = max{x, 0}, the dual problem of (QOT) reads

sup
(f,g)∈C(Rd)×C(Rd)

∫
f(x) dP (x) +

∫
g(y) dQ(y)

− 1

2ε

∫ (
f(x) + g(y)− ∥x− y∥2

2

)2

+

d(P ⊗Q)(x, y). (1)

Its optimizers (fε, gε) are called the QOT potentials and describe the density of the optimal
coupling πε of (QOT) via

dπε(x, y) =
1

ε

(
fε(x) + gε(y)−

∥x− y∥2

2

)
+

d(P ⊗Q)(x, y). (2)

2



We observe that the objective function in the dual problem (1) is not strongly (or even
strictly) concave. Moreover, the regularity of (fε, gε) does not generally surpass that of
the unregularized OT potentials (e.g., [16]). For general divergences φ, the dual has a form
similar to (1) but with 1

2(·)
2
+ replaced by the conjugate ψ(s) = supt≥0{st−φ(t)} of φ. For the

particular choice of logarithmic entropy, the dual objective is strongly concave and moreover
the potentials inherit the smoothness of the transport cost 1

2∥x− y∥2. This is crucial for the
aforementioned works on sample complexity and central limit theorems for EOT, which can
be divided into two approaches: the first is based on empirical process theory and requires
uniform regularity of the empirical dual potentials, the second exploits the strong concavity
of the dual EOT problem (see [1, 8, 18] for more detailed reviews). Analyzing more general
ROT—where the dual is not strongly concave and the potentials are not smooth—through
the same approaches, one obtains results as in [2] which are consistent with ROT suffering
from the curse of dimensionality. By contrast, and maybe surprisingly, the recent work [18]
establishes central limit theorems for a class of ROT problems that are not smooth or strongly
concave. Its main condition on the divergence is that the conjugate ψ(s) = supt≥0{st−φ(t)}
be C2. This condition fails for QOT, arguably the most interesting example for ROT, where
ψ is C1,1 but not C2. For QOT, the (weak) second derivative is an indicator function rather
than a continuous function, and this difference derails the core arguments in [18].

The present work establishes central limit theorems for the dual potentials, optimal costs,
and couplings of QOT (Theorems 3.1 to 3.3). While their assertions are analogous to the ones
in [18], the derivations are substantially different. In [18], it is assumed that the conjugate
ψ is C2, and this allows for soft arguments—the marginal measures are very general and the
transport cost is any C1 function. For QOT, this assumption fails and finer structures are
needed. We focus on quadratic transport cost 1

2∥x−y∥
2 and marginals with convex supports

and bounded Lebesgue densities; these structures are crucial for our regularity results, which
are also some of our main technical contributions.

One of those is a Lipschitz regularity property of the sections Sx of the support of the
optimal population coupling. Representing Sx as the zero-sublevel set of a convex function,
we consider more generally the β-sublevel sets which correspond to a thickening or shrinking
of Sx, and establish a Lipschitz estimate w.r.t. β (see Proposition 4.1). Both the result and the
broader approach are novel to the best of our knowledge. The result is crucial in several steps
of the analysis, such as establishing the Fréchet differentiability of the first-order condition
for the population potentials (Lemma 5.1). Another consequence is the C1,1-regularity of
the QOT potentials (Corollary 4.2), which is of independent interest and links to Caffarelli’s
regularity theory for (OT).

Another key innovation is to employ Vapnik–Chervonenkis (VC) theory. Specifically, we
use VC theory to bound the statistical complexity of the sections Sx of the support of the
optimal coupling (and more generally its thickenings or shrinkings). We package this bound
into an abstract tool, Proposition 4.4, which is used several times throughout the proof of
the central limit theorems; see also Section 3.1 for an overview of the proof methodology. At
a high level, this VC-theoretic bound acts as a substitute for the missing regularity of ψ. To
the best of our knowledge, VC theory has not been used previously in the sample complexity
analysis of optimal transport or regularized optimal transport.

The remainder of the paper is organized as follows. Section 2 details the setting, no-
tation and assumptions, and summarizes background facts about QOT for later reference.
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Section 3 states our three central limit theorems—Theorems 3.1 to 3.3 for the dual poten-
tials, the optimal costs, and the optimal couplings—followed by an overview of the proof
methodology. In Section 4 we provide regularity results for the potentials and the optimal
supports. These results are some of our main technical contributions; they are of independent
interest in addition to being key ingredients for proving the central limit theorems. After
these preparations, Section 5 proves the central limit theorem for the potentials, Theorem 3.1.
Section 6 proves the remaining central limit theorems for the optimal costs and couplings
(Theorems 3.2 and 3.3), which follow from Theorem 3.1 and some additional work. Finally,
Appendix A details omitted proofs and references for the background facts in Section 2.

2 Setup and Background

This section details our setup and summarizes (mostly) known background material for later
reference. Proofs are deferred to Appendix A.

Given X ⊂ Rd, we set ∥X∥∞ := supx∈X ∥x∥. We write C(X ) for the space of continuous
real-valued functions on X and Ck,α(X ) for the functions with k continuous derivatives whose
k-th derivatives are Hölder continuous of order α, 0 < α ≤ 1. A random sequence Un in a
separable Banach space B converges weakly to U if E[f(Un)] → E[f(U)] for every bounded
and continuous function f : B → R; in that case, we write Un

B
⇝ U . When B = R, we also

write w−→ instead of R
⇝.

2.1 Population setting

Throughout, we impose the following conditions on the given (population) marginal measures.

Assumption 2.1. The probability measures P,Q have compact, convex supports X ,Y in Rd
and admit bounded densities w.r.t. the Lebesgue measure Ld.

Given (f, g) ∈ C(X )×C(Y), we denote by f ⊕ g the function (x, y) 7→ f(x)+ g(y). As we
will often be interested only in f⊕g rather than f and g individually, it is useful to define the
equivalence relation (f, g) ∼⊕ (f ′, g′) iff f ⊕ g = f ′ ⊕ g′, which is equivalent to the existence
of a ∈ R with f = f ′ + a and g = g′ − a. We define the quotient spaces

B⊕ = (C(X )× C(Y))/ ∼⊕, B0,1
⊕ = (C0,1(X )× C0,1(Y))/ ∼⊕ (3)

and denote by ∥ · ∥⊕ and ∥ · ∥⊕,1 the quotient norms on B⊕ and B0,1
⊕ , respectively.

Lemma 2.2 (Population potentials). Let P and Q satisfy Assumption 2.1.

(i) There exists a unique pair (fε, gε) ∈ B⊕, called the population potentials, solving the
dual problem (1).

(ii) The functions (φε, ψε) ∈ B⊕ defined by

φε(x) =
∥x∥2

2
− fε(x), ψε(y) =

∥y∥2

2
− gε(y) (4)
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are called the (transformed) potentials. They are uniquely characterized by the first-
order optimality condition{

ε =
∫
(⟨x, y⟩ − φε(x)− ψε(y))+ dQ(y) for all x ∈ X ,

ε =
∫
(⟨x, y⟩ − φε(x)− ψε(y))+ dP (x) for all y ∈ Y.

(5)

Moreover, φε and ψε are convex and continuously differentiable, with gradients

∇φε(x) =
∫
Sx
ydQ(y)

Q(Sx)
and ∇ψε(y) =

∫
Ty xdP (x)

P (Ty)
, where (6)

Sx = {y ∈ Y : φε(x) + ψε(y) ≤ ⟨x, y⟩}, Ty = {x ∈ X : φε(x) + ψε(y) ≤ ⟨x, y⟩}. (7)

In particular, φε and ψε are Lipschitz with constants ∥Y∥∞ and ∥X∥∞, respectively.

(iii) The sets Sx and Ty are convex, have nonempty interior, boundaries given by

∂Sx = {y ∈ Y : φε(x)+ψε(y) = ⟨x, y⟩}, ∂Ty = {x ∈ X : φε(x)+ψε(y) = ⟨x, y⟩} (8)

and there exists δ > 0 such that

δ ≤ Q(Sx) and δ ≤ P (Ty) for all x ∈ X , y ∈ Y. (9)

(iv) The primal problem (QOT) has a unique solution πε ∈ Π(P,Q). It is related to the
potentials by

dπε
d(P ⊗Q)

(x, y) =
1

ε

(
fε(x) + gε(y)−

∥x− y∥2

2

)
+

=
1

ε
(⟨x, y⟩ − φε(x)− ψε(y))+

(10)
and its support is sptπε = {(x, y) ∈ X ×Y : φε(x)+ψε(y) ≤ ⟨x, y⟩}, so that Sx and Ty
can be interpreted as the sections of the support.

We mention that the continuous differentiability of the population potentials will be
improved to C1,1-regularity in Corollary 4.2. We will find it convenient to use both (fε, gε)
and (φε, ψε), and refer to either as potentials. The former pair helps to make the main
results more comparable to the related literature whereas the proofs use the latter, in order
to benefit from its convexity properties.

2.2 Empirical setting

Next, we turn to the empirical setting. Let X1, . . . , Xn
iid∼ P and Y1, . . . , Yn

iid∼ Q be inde-
pendent samples, and denote by Pn and Qn the corresponding empirical measures. For a
fixed realization of the samples and hence of the empirical measures, we can again consider
the primal and dual problems (QOT) and (1), now with the empirical measures as marginals
instead of (P,Q). The primal problem again has a unique solution, denoted πn ∈ Π(Pn, Qn).
Again, there exists a pair (fn, gn) solving the dual and describing the primal optimizer via the
analogue of (10) with (Pn, Qn) instead of (P,Q). One difference is that, because the marginal

5



supports are now discrete and hence not connected, (fn, gn) are in general non-unique. An-
other difference is that (fn, gn) are a priori only defined on those discrete supports. We may,
however, extend them continuously to the population supports X and Y (or even all of Rd),
in such a way that the extension solves the first-order condition on those sets. Conversely,
any such solution defines valid potentials. Passing again to transformed potentials (φn, ψn),
the latter satisfy convexity and Lipschitz properties that will be useful below.

Lemma 2.3 (Empirical potentials). Given a realization of the empirical marginals (Pn, Qn),
there exists a pair (fn, gn) ∈ B⊕, called empirical potentials, solving the dual problem (1)
for (Pn, Qn) and such that (φn, ψn) ∈ B⊕ defined by

φn(x) =
∥x∥2

2
− fn(x), ψn(y) =

∥y∥2

2
− gn(y) (11)

satisfy {
ε =

∫
(⟨x, y⟩ − φn(x)− ψn(y))+ dQn(y) for all x ∈ X ,

ε =
∫
(⟨x, y⟩ − φn(x)− ψn(y))+ dPn(x) for all y ∈ Y.

(12)

Moreover, φn : X → R is convex and Ld-a.e. differentiable with

∇φn(x) =
∫
Ŝx
ydQn(y)

Qn(Ŝx)
for Ld-a.e. x ∈ X , (13)

where Ŝx = {y ∈ Y : φn(x) + ψn(y) ≤ ⟨x, y⟩}. In particular, φn is Lipschitz with constant
∥Y∥∞. An analogous result holds for ψn.

In contrast to Corollary 4.2 for the population potentials, the regularity stated above
cannot be improved for the empirical potentials: as x 7→ Qn(Ŝx) is integer-valued, the gradi-
ent (13) is discontinuous and fails to exist at certain points (except in trivial cases).

The empirical potentials (fn, gn), or equivalently (φn, ψn), are random and possibly non-
unique. For the remainder of the paper, we choose and fix one pair; all subsequent statements
are valid as long as the selection is measurable and satisfies (12).

The last result of this section is the consistency of the empirical potentials towards the
population counterpart.

Lemma 2.4 (Consistency). We have limn→∞ ∥(φn, ψn)− (φε, ψε)∥⊕ = 0 a.s.

3 The central limit theorems

This section states our three central limit theorems for the dual potentials, optimal costs and
couplings. The theorem for the potentials is stated in the Banach space B⊕ defined in (3)
and the limit is described using the linear operator [L]⊕, defined as the composition of

L : B⊕ → C(X )× C(Y)(
f
g

)
7→
(
f
g

)
+

(
1

Q(S(·))

∫
S(·)

g(y)dQ(y)
1

P (T(·))
∫
T(·)

f(x)dP (x)

)
(14)
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and the quotient map [·]⊕ : C(X ) × C(Y) → B⊕. We write S(·) and T(·) for the set-valued
mappings x 7→ Sx and y 7→ Ty defined in (7); moreover, we use the shorthand

ξε(x, y) := fε(x) + gε(y)−
1

2
∥x− y∥2.

Theorem 3.1 (CLT for potentials). The operator [L]⊕ : B⊕ → B⊕ admits a bounded inverse
[L]−1

⊕ and we have
√
n

(
fn − fε
gn − gε

)
B⊕
⇝ −[L]−1

⊕

[( GQ

Q(S(·))
GP

P (T(·))

)]
⊕

,

where (GQ,GP ) ∈ C(X ) × C(Y) is the unique-in-law pair of independent, tight, centered
Gaussian processes with covariances

E[GQ(x)GQ(x
′)] = E

[
(ξε(x, Y )− E[ξε(x, Y )])(ξε(x

′, Y )− E[ξε(x′, Y )])
]
,

E[GP (y)GP (y
′)] = E

[
(ξε(X, y)− E[ξε(X, y)])(ξε(X, y′)− E[ξε(X, y′)])

]
for X ∼ P and Y ∼ Q.

The proof of Theorem 3.1 is given in Section 5. Next, we state the central limit theorem
for the optimal costs.

Theorem 3.2 (CLT for costs). We have
√
n
(
QOT(Pn, Qn)−QOT(P,Q)

) w−→ N(0, σ2),

where the variance σ2 is that of the random variable

fε(X) + gε(Y )− 1

2ε

(∫
(ξε(x, Y ))2+ dP (x) +

∫
(ξε(X, y))

2
+ dQ(y)

)
(15)

for (X,Y ) ∼ P ⊗Q.

The proof is given in Section 6. Finally, we state the central limit theorem for the optimal
couplings; the proof is also reported in Section 6. To describe the limiting variance in a more
compact form, we use the notation ⊕(f, g) := f ⊕ g.

Theorem 3.3 (CLT for couplings). For any bounded measurable function η : X × Y → R,

√
n

(∫
ηd(πn − πε)

)
w−→ N

(
0,
σ2(η)

ε2

)
with σ2(η) = Var(VX + VY ) where, for Z ∈ {X,Y },

VZ := E

[∫
U(x, y,X, Y )η̄(x, y)(ξε(x, y))+d(P ⊗Q)(x, y)− η̄(X,Y )(ξε(X,Y ))+

∣∣∣∣∣Z
]

for (X,Y ) ∼ P ⊗Q and η̄ := η −
∫
ξε≥0 ηd(P ⊗Q) and

U(·, ·, X, Y ) := ⊕

[L]−1
⊕

 (ξε(·,Y ))+
Q(S(·))

(ξε(X,·))+
P (T(·))


⊕

 .
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3.1 Proof methodology

The key result is Theorem 3.1 on the potentials; Theorems 3.2 and 3.3 on the costs and
couplings are derived from it. We follow the scheme of Z-estimation (see [30, Chapter 3.3]),
as in [18], based on the fact that the population and empirical potentials are solutions to
certain equations. Specifically, the first-order conditions (5) and (12), which we represent
with nonlinear operators Φ and Φn on B⊕ as(

ε
ε

)
= Φ

(
φε
ψε

)
,

(
ε
ε

)
= Φn

(
φn
ψn

)
.

Following the Z-estimation methodology, we need to establish:

(i) Φn(φε, ψε)− Φ(φε, ψε) satisfies a central limit theorem in B⊕,

(ii) Φ is Fréchet differentiable at (φε, ψε) with invertible derivative,

(iii) ∥(φn, ψn)− (φε, ψε)∥⊕ → 0 in probability,

(iv) the following expansion holds,∥∥∥∥Φn( φε
ψε

)
− Φ

(
φε
ψε

)
−
(
Φn

(
φn
ψn

)
− Φ

(
φn
ψn

))∥∥∥∥
⊕

= oP

(∥∥∥∥( φn − φε
ψn − ψε

)∥∥∥∥
⊕
+ n−

1
2

)
.

Item (i) follows easily from the fact that

Φn

(
φε
ψε

)
− Φ

(
φε
ψε

)
=

(
1
n

∑n
i=1 (⟨·, Yi⟩ − φε(·)− ψε(Yi))+ −

∫
(⟨·, y⟩ − φε(·)− ψε(y))+ dQ(y)

1
n

∑n
i=1 (⟨Xi, ·⟩ − φε(Xi)− ψε(·))+ −

∫
(⟨x, ·⟩ − φε(x)− ψε(·))+ dP (x)

)
is an average of an i.i.d. sequence of uniformly Lipschitz random functions. For (ii), the
Fréchet differentiability (shown in Lemma 5.1) hinges on a novel Lipschitz regularity property
of the sections Sx of the optimal support, formalized in Proposition 4.1. More specifically,
recognizing that Sx is the zero-sublevel set of a convex function, we consider the β-sublevel
sets which correspond to a thickening or shrinking of Sx, and establish a Lipschitz estimate
w.r.t. β. This property is one of the key technical innovations of the paper. The invertibility
of the derivative is shown in Lemma 5.2 via the Fredholm alternative, completing (ii). The
consistency (iii) of the potentials was already stated in Lemma 2.4; it follows by a standard
Arzelà–Ascoli argument. The main task is to establish (iv). This property follows from two
estimates that we state in Lemma 5.3 and Lemma 4.6, respectively:∥∥∥∥Φn( φε

ψε

)
− Φ

(
φε
ψε

)
−
(
Φn

(
φn
ψn

)
− Φ

(
φn
ψn

))∥∥∥∥
⊕

= oP

(
∥∇φn −∇φε∥∞ + ∥∇ψn −∇ψε∥∞ + n−

1
2

)
8



and
∥∇φn −∇φε∥∞ + ∥∇ψn −∇ψε∥∞ = OP

(
∥(φn, ψn)− (φε, ψε)∥⊕ + n−

1
2

)
.

In addition to the aforementioned Lipschitz regularity property of the sections of the optimal
support (Proposition 4.1), both estimates rely on another key innovation of this paper, namely
to utilize VC theory to bound the complexity of Sx (and its generalizations by thickening); this
gives rise to the term OP(n

− 1
2 ). As similar VC arguments are used several times throughout

the proof of the central limit theorems, we formulate a slightly more general estimate as an
abstract tool (Proposition 4.4), with the benefit of streamlining the later proofs. To the best
of our knowledge, VC theory has not been used previously in the sample complexity analysis
of optimal transport or regularized optimal transport.

4 Regularity estimates

This section provides several estimates which are key to the proof of the central limit theo-
rems, but also of independent interest.

4.1 Regularity of the population support and potentials

The first result studies the section Sx of the optimal support; it can be seen as the zero-
sublevel set of a function involving the population potentials φε, ψε of Lemma 2.2. The
proposition asserts a Lipschitz regularity with respect to the level β which acts as a parameter
to define a thickening (or shrinking) of Sx.

Proposition 4.1. Define the set-valued mapping

R ∋ β 7→ Sx(β) := {y ∈ Y : φε(x) + ψε(y) ≤ ⟨x, y⟩+ β}. (16)

There exist L, β0 > 0 such that

sup
∥g∥∞≤1

sup
x∈X

∣∣∣∣∣
∫
Sx(α)

g(y)dQ(y)−
∫
Sx(β)

g(y)dQ(y)

∣∣∣∣∣ ≤ L|α− β| for all α, β ∈ (−β0, β0),

where the outer supremum is taken over measurable functions g : Y → R.

Before proving the proposition, we use it to show C1,1-regularity of the population poten-
tials. While this will not be the only application of Proposition 4.1, it is a good illustration
of how this abstract result can be used.

Corollary 4.2. The population potential φε belongs to C1,1(X ); that is, its gradient

x 7→ ∇φε(x) =
∫
Sx
ydQ(y)

Q(Sx)
(17)

is Lipschitz continuous. Similarly, the mass x 7→ Q(Sx) is Lipschitz continuous. The analogue
holds for ψε and y 7→ P (Ty).
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Proof. Recall that φε is ℓ-Lipschitz (with ℓ = ∥Y∥∞) and note that this implies

Sx(−ℓ∥x− z∥) ⊂ Sz ⊂ Sx(ℓ∥x− z∥) for all x, z ∈ X .

Let L, β0 > 0 be as in Proposition 4.1. Then Proposition 4.1 with α = 0, β = ∓ℓ∥x− z∥ and
g ≡ 1 implies for all x, z with ℓ∥x− z∥ ≤ β0 that

Q(Sx)− Lℓ∥x− z∥ ≤ Q(Sx(−ℓ∥x− z∥)) ≤ Q(Sz) ≤ Q(Sx(ℓ∥x− z∥)) ≤ Q(Sx) + Lℓ∥x− z∥.

That is, x 7→ Q(Sx) is Lipschitz with constant Lℓ. Similarly, Proposition 4.1 yields that

x 7→
∫
Sx

yidQ(y)

is Lipschitz with constant Lℓ∥Y∥∞, where yi denotes the i-th component of y ∈ Y. Recalling
the uniform lower bound (9) for the denominator in (17), it follows that ∇φε is Lipschitz,
which was the claim.

Remark 4.3. Corollary 4.2 links to the regularity theory for unregularized optimal transport,
where the gradient of the potential is the optimal transport map. The standard Caffarelli–
Urbas conditions [4, 28] for Lipschitz continuity of the transport map require in particular
that the marginal densities be (bounded and) bounded away from zero and the supports be
convex with Lipschitz boundaries. The condition that densities be bounded away from zero
is essential, as illustrated by Wang’s counterexamples [31].

In Corollary 4.2, the regularization parameter ε is positive and fixed. In light of the
aforementioned results, one cannot expect the constant L to be uniform in ε, as the estimate
would then extend to the unregularized limit. Obtaining such a uniform estimate (under
stronger conditions) is an interesting open problem. It is equivalent to a uniform bound for
the Hessian of φε and closely related to establishing the sharp rate ε

1
d+2 for the diameter

of Sx as ε→ 0 (which was shown in [16] for the case d = 1).

Proof of Proposition 4.1. Fix x0 ∈ X . Recall from Lemma 2.2 that Sx0 is convex, that
intSx0 ̸= ∅, and the representation (8). Changing the coordinate system, we can assume
without loss of generality that

0 ∈ intSx0 = {y ∈ Y : φε(x0) + ψε(y)− ⟨x0, y⟩ < 0}.

As φε and ψε are Lipschitz, this representation yields that there exists δ0 > 0 such that
0 ∈ intSx(δ) for all (x, δ) ∈ X × R with |δ|+ ∥x− x0∥ ≤ δ0.

Consider such (x, δ) and let g : Rd → R be bounded and measurable with ∥g∥∞ ≤ 1. By
the co-area formula,∫

Sx(δ)
g(y)dQ(y) =

∫
Sd−1

∫ t(x,v,δ)

0
g(rv)q(rv)drdHd−1(v),

where t(x, v, δ) is the unique number t > 0 such that tv ∈ ∂Sx(δ), q denotes the Lebesgue
density of Q (which is bounded by Assumption 2.1) and Hd−1 denotes (d − 1)-dimensional
Hausdorff measure on Sd−1. Next, we show that t(x, v, δ) is locally Lipschitz. By [10,
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Theorem 5.4], there exists a convex Lipschitz function hQ such that Y = {y : hQ(y) ≤ 0}
and ∂Y = {y : hQ(y) = 0}. We then introduce the function

γ(t, x, v, δ) := max {φε(x) + ψε(tv)− t⟨v, x⟩+ δ, hQ(tv)} .

Note that t 7→ γ(t, x, v, δ) is convex, that 0 ∈ intSx(δ) translates to γ(0, x, v, δ) < 0, and

γ(t(x, v, δ), x, v, δ) = 0.

We can see this equation as an implicit definition of t(x, v, δ). Indeed, fix v0 ∈ Sd−1 and
note that γ(t(x0, v0, 0), x0, v0, 0) = 0 and γ(0, x0, v0, 0) < 0 imply that t(x0, v0, 0) cannot be
a minimum of t 7→ γ(t, x0, v0, 0). As a consequence, zero is not in the subdifferential,

0 ̸∈ ∂1γ(t(x0, v0, 0), x0, v0, 0)

= {t ∈ R : γ(t(x0, v0, 0), x0, v0, 0) ≤ γ(s, x0, v0, 0) + t · (t(x0, v0, 0)− s), ∀ s ∈ R}.

As γ(t, x, v, δ) is jointly Lipschitz in a neighborhood of (t(x0, v0, 0), x0, v0, 0), Clarke’s implicit
function theorem (more precisely, the corollary on [6, p. 256]) then yields a neighborhood of
(x0, v0, 0) where the function t(x, v, δ) is Lipschitz with some constant ℓ. By a compactness
argument, the constant ℓ can be taken uniformly in the variable v ∈ Sd−1. As a consequence,
there exists δ0 such that |t(x, v, δ) − t(x, v, β)| ≤ ℓ|δ − β| for all x, δ, β with ∥x − x0∥ < δ0
and δ, β ∈ (−δ0, δ0) and all v ∈ Sd−1. Since g and q are bounded, it follows for all such x, δ, β
that ∣∣∣∣∣

∫
Sx(δ)

g(y)dQ(y)−
∫
Sx(β)

g(y)dQ(y)

∣∣∣∣∣ ≤ ℓ∥g∥∞∥q∥∞|β − δ|. (18)

Here ℓ and δ0 depend on x0, and (18) holds only for x in a ball around x0. However, the
compact set X is covered by finitely many such balls, hence (18) holds uniformly in x ∈ X
after possibly changing ℓ and δ0.

4.2 VC bounds for statistical complexity of the optimal support

The next proposition encapsulates a tool that will be used in several of the most important
steps towards the central limit theorems. It uses VC theory to bound the statistical complex-
ity of the sublevel sets Sx(·) from (16) to guarantee that a given class of functions satisfies a
Donsker-type property.

Proposition 4.4. Let g : Y → R be bounded measurable and let Λ be any index set. For
each λ ∈ Λ and x ∈ X , consider two measurable random functions Vn,λ,x,Wn,λ,x : Y → R
such that

1Sx(αn) ≤ Vn,λ,x,Wn,λ,x ≤ 1Sx(βn) Q-a.s. for all n ∈ N

for some real-valued random variables αn, βn with αn → 0 and βn → 0 in probability P. Then

sup
λ∈Λ, x∈X

∣∣∣∣∫ Vn,λ,x(y)g(y)dQ(y)−
∫
Wn,λ,x(y)g(y)dQn(y)

∣∣∣∣ = OP

(
n−

1
2 + |αn − βn|

)
.
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Proof. Decomposing g = (g)+−(g)+ and using the triangle inequality, we may assume w.l.o.g.
that g ≥ 0. Set

Dn,λ,x :=

∫
Vn,λ,x(y)g(y)dQ(y)−

∫
Wn,λ,x(y)g(y)dQn(y).

As g ≥ 0, the assumed inequalities yield

Dn,λ,x ≤
∫
Sx(βn)

g(y)dQ(y)−
∫
Sx(αn)

g(y)dQn(y)

and hence

Dn,λ,x ≤

∣∣∣∣∣
∫
Sx(βn)

g(y)dQ(y)−
∫
Sx(αn)

g(y)dQ(y)

∣∣∣∣∣+
∣∣∣∣∣
∫
Sx(αn)

g(y)d(Q−Qn)(y)

∣∣∣∣∣ . (19)

Let L, β0 > 0 be the constants from Proposition 4.1. Then by Proposition 4.1, the first term
on the right-hand side of (19) is bounded by ∥g∥∞L|αn − βn| on the event {|αn|, |βn| ≤ β0}
which satisfies P(|αn|, |βn| ≤ β0) → 1 as n→ ∞.

We can thus focus on the last term of (19); our goal is to show that it is of order OP(n
− 1

2 ).
Note that ∣∣∣∣∣

∫
Sx(αn)

g(y)d(Q−Qn)(y)

∣∣∣∣∣ ≤ sup
δ∈R

∣∣∣∣∣
∫
Sx(δ)

g(y)d(Q−Qn)(y)

∣∣∣∣∣ .
We use VC theory (see [30, Section 2.6]) to bound the right-hand side. Define the VC
dimension (or index) of a collection C of subsets of a set X as in [30, Section 2.6.1], namely

V(C) := inf

{
n ∈ N : max

y1,...,yn∈X
∆n(C, y1, . . . , yn) < 2n

}
where

∆n(C, y1, . . . , yn) := # {C ∩ {y1, . . . , yn} : C ∈ C} .

Recall also that the VC dimension of a class F of functions f : X → R is defined as the VC
dimension of the collection of all its subgraphs {(y, t) ∈ X × R : t < f(y)}.

Consider the collection
C := {Sx(δ) : δ ∈ R, x ∈ X}

of subsets of Y. To verify that V(C) <∞, we consider the following linear space of functions
on Y,

G :=
{
y 7→ β1ψ(y)− ⟨x, y⟩+ β2 : (x, β1, β2) ∈ Rd+2

}
and note that G has algebraic dimension d + 2. By [30, Lemma 2.6.15], it follows that
V(G) ≤ d + 4 < ∞. Given a function class of finite VC dimension, the class of its zero-
sublevel sets has finite VC dimension by [30, Lemmas 2.6.17 and 2.6.18]. Noting

C ⊂ {g ∈ G : g ≤ 0},

it follows that V(C) <∞. Using [30, Lemma 2.6.18], this implies that the function class

F := {g1C : C ∈ C}

12



has finite VC dimension. Hence, [30, Theorem 2.6.8] yields that F is Q-Donsker. (The
condition of [30, Theorem 2.6.8] holds due to the uniform boundedness of the functions in F ,
as observed in the proof of that theorem in [30].) We conclude by [30, Corollary 2.3.12] that

sup
x∈X , δ∈R

∣∣∣∣∣
∫
Sx(δ)

g(y)d(Q−Qn)(y)

∣∣∣∣∣ = OP

(
n−

1
2

)
.

So far, we have shown that supλ,xDn,λ,x ≤ OP(n
− 1

2 + |αn − βn|). Analogously, we obtain a
lower bound of the same order by exchanging the roles of αn and βn in the above argument,
completing the proof.

Next, we record a version of Proposition 4.4 on the product space X ×Y instead of Y; it
will be used in the proof of the central limit theorem for the optimal couplings (Theorem 3.3).
The proof is analogous to the one of Proposition 4.4 and hence omitted.

Proposition 4.5. Define

M(β) := {(x, y) ∈ X × Y : φε(x) + ψε(y) ≤ ⟨x, y⟩+ β} for β ∈ R. (20)

Let g : X × Y → R be bounded measurable and let Λ be any index set. For each λ ∈ Λ,
consider two measurable random functions Vn,λ,Wn,λ : X × Y → R such that

1M(αn) ≤ Vn,λ,Wn,λ ≤ 1Mx(βn) P ⊗Q-a.s. for all n ∈ N

for some real-valued random variables αn, βn with αn → 0 and βn → 0 in probability P. Then

sup
λ∈Λ

∣∣∣∣∫ Vn,λ(x, y)g(x, y)d(P ⊗Q)(x, y)−
∫
Wn,λ(x, y)g(x, y)d(Pn ⊗Qn)(x, y)

∣∣∣∣
= OP

(
n−

1
2 + |αn − βn|

)
.

4.3 Statistical gradient estimate

Our first application of Proposition 4.4 is a gradient estimate of statistical nature: we bound
the difference ∇φn −∇φε of the empirical and population gradients by the difference of the
potentials themselves and an error term of order OP(n

− 1
2 ). This estimate will be instrumental

for our subsequent arguments towards the CLT of Theorem 3.1, specifically for Lemma 5.3.

Lemma 4.6. We have

∥∇φn −∇φε∥∞ = OP

(
n−

1
2 + ∥(φn, ψn)− (φε, ψε)∥⊕

)
.

As a consequence, the norm ∥ · ∥⊕,1 on B0,1
⊕ = (C0,1(X )× C0,1(Y))/ ∼⊕ satisfies

∥(φn, ψn)− (φε, ψε)∥⊕,1 = OP

(
n−

1
2 + ∥(φn, ψn)− (φε, ψε)∥⊕

)
.
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Proof. Recall (6) and (13), and in particular the random sets Ŝx = Ŝx,n. Decompose

∇φε(x)−∇φn(x) =
∫
Sx
ydQ(y)

Q(Sx)
−
∫
Ŝx
ydQn(y)

Qn(Ŝx)

=

∫
Sx
ydQ(y)−

∫
Ŝx
ydQn(y)

Q(Sx)︸ ︷︷ ︸
An(x)

+

∫
Ŝx
ydQn(y)

Qn(Ŝx)Q(Sx)

(
Qn(Ŝx)−Q(Sx)

)
︸ ︷︷ ︸

Bn(x)

. (21)

We first focus on An(x). In view of the uniform bound (9), it is enough to estimate the
real-valued function

x 7→ Dn(x) :=

∫
Sx

yidQ(y)−
∫
Ŝx

yidQn(y), (22)

where yi is the i-th component of y. Recalling the definition of Sx(·) from (16), we check

Sx(−∥(φn, ψn)− (φε, ψε)∥⊕) ⊂ Ŝx ⊂ Sx(∥(φn, ψn)− (φε, ψε)∥⊕).

Moreover, we trivially have Sx(−∥(φn, ψn)− (φε, ψε)∥⊕) ⊂ Sx ⊂ Sx(∥(φn, ψn)− (φε, ψε)∥⊕).
We can thus apply Proposition 4.4 with

g(y) = yi, Λ = ∅, Vn,λ,x = 1Sx , Wn,λ,x = 1Ŝx
, βn = −αn = ∥(φn, ψn)− (φε, ψε)∥⊕

to conclude that supx |An(x)| = OP(n
− 1

2 + ∥(φn, ψn)− (φε, ψε)∥⊕).
It remains to bound the second term, Bn(x), of (21). Noting the inequality

|Bn(x)| ≤ ∥Y∥∞
|Qn(Ŝx)−Q(Sx)|

Q(Sx)

and recalling from (9) the uniform lower bound for the denominator, it suffices to estimate
Qn(Ŝx) − Q(Sx). We apply Proposition 4.4 (with the same data as above except that now
g(y) ≡ 1) to get supx |Qn(Ŝx)−Q(Sx)| = OP(n

− 1
2 + ∥(φn, ψn)− (φε, ψε)∥⊕).

5 Proof of the CLT for potentials

This section is devoted to the proof of Theorem 3.1. As outlined in Section 3.1, we follow
the procedure for Z-estimation problems in empirical process theory. Define the nonlinear
operator

B⊕ ∋
(
f
g

)
7→ Φ

(
f
g

)
=

( ∫
(⟨·, y⟩ − f(·)− g(y))+ dQ(y)∫
(⟨x, ·⟩ − f(x)− g(·))+ dP (x)

)
∈ C(X )× C(Y)

and its empirical version

B⊕ ∋
(
f
g

)
7→ Φn

(
f
g

)
=

( ∫
(⟨·, y⟩ − f(·)− g(y))+ dQn(y)∫
(⟨x, ·⟩ − f(x)− g(·))+ dPn(x)

)
∈ C(X )× C(Y).
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We denote by [Φ]⊕ the composition of Φ with the quotient map [·]⊕ of ∼⊕, and similarly
for [Φn]⊕. Below, we first show that Φ is differentiable at the population potentials, with
invertible derivative. Then, we show that

√
n

(
Φn

(
φε
ψε

)
− Φ

(
φε
ψε

))
converges to a tight Gaussian element of C(X )× C(Y). Finally, we show that the remainder

[Φn − Φ]

(
φε − φn
ψε − ψn

)
= oP

(
n−

1
2 +

∥∥∥∥( φε − φn
ψε − ψn

)∥∥∥∥
⊕

)

tends to zero in probability.

5.1 Differentiability and invertibility of the optimality conditions

Our first result establishes the Fréchet differentiability of Φ at the point (φε, ψε). We recall
that Φ is Fréchet differentiable at (f∗, g∗) with derivative DΦ(f∗,g∗) if

lim
∥(f,g)∥⊕→0

∥∥Φ(f∗ + f, g∗ + g)− Φ(f∗, g∗)−DΦ(f∗,g∗)(f, g)
∥∥
C(X )×C(Y)

∥(f, g)∥⊕
= 0.

Lemma 5.1. The function Φ : B⊕ → C(X ) × C(Y) is Fréchet differentiable at (φε, ψε) with
derivative

DΦ(φε,ψε)

(
f
g

)
=

(
DΦ1(f, g)
DΦ2(f, g)

)
,

where
DΦ1(f, g)(x) = −f(x)Q(Sx)−

∫
Sx

g(y)dQ(y) for x ∈ X ,

DΦ2(f, g)(y) = −g(y)P (Ty)−
∫
Ty
f(x)dP (x) for y ∈ Y.

Proof. Given (h1, h2) ∈ B⊕, set

A(h1, h2)(x) :=

∫
(⟨x, y⟩ − (φε + h1)(x)− (ψε + h2)(y))+ dQ(y)

−
∫

(⟨x, y⟩ − φε(x)− ψε(y))+ dQ(y).

With the expression for DΦ1 stated in the lemma, our goal is to show that

lim
∥(h1,h2)∥⊕→0

∥A(h1, h2)−DΦ1(h1, h2)∥∞
∥(h1, h2)∥⊕

= 0. (23)

For any a, b ∈ R, applying the fundamental theorem of calculus to the absolutely continuous
function ϕ(t) = ((1− t)b+ ta)+ yields

(a)+ − (b)+ = ϕ(1)− ϕ(0) = (a− b)L1(t ∈ [0, 1] : (1− t)b+ ta ≥ 0). (24)
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Set
Jx = {(t, y) ∈ [0, 1]× Y : ⟨x, y⟩ − φε(x)− ψε(y)− th1(x)− th2(y) ≥ 0},

then the above yields

A(h1, h2)(x) = −h1(x)(L1 ⊗Q)(Jx)−
∫
Jx

h2(y)d(L1 ⊗Q)(t, y).

Inserting this expression into (23), we see that a sufficient condition for (23) is

sup
∥g∥∞≤1

∥∥∥∥∥
∫
J(·)

g(y)d(L1 ⊗Q)(t, y)−
∫
S(·)

g(y)dQ(y)

∥∥∥∥∥
∞

→ 0 as ∥(h1, h2)∥⊕ → 0. (25)

Fix x ∈ X and g ∈ C(Y) with ∥g∥∞ ≤ 1. Decomposing g = (g)+ − (g)− and using the
triangle inequality, we may assume without loss of generality that g ≥ 0. Recall the notation
Sx(β) = {y : φε(x) + ψε(y) ≤ ⟨x, y⟩+ β} from (16). We observe that

Jx ⊂ {(t, y) ∈ [0, 1]× Y : ⟨x, y⟩ − φε(x)− ψε(y) ≥ −∥(h1, h2)∥⊕}
= [0, 1]× Sx(∥(h1, h2)∥⊕)

and similarly [0, 1]× Sx(−∥(h1, h2)∥⊕) ⊂ Jx. As g ≥ 0, it follows that∫
Sx(−∥(h1,h2)∥⊕)

g(y)dQ(y) ≤
∫
Jx

g(y)d(L1 ⊗Q)(t, y) ≤
∫
Sx(∥(h1,h2)∥⊕)

g(y)dQ(y).

By Proposition 4.1, the upper and lower bounds both converge to
∫
Sx
g(y)dQ(y), uniformly

in x and g, as ∥(h1, h2)∥⊕ → 0. This completes the proof of (25) and hence of the lemma.

Lemma 5.1 implies that∥∥∥∥Φ( φε
ψε

)
− Φ

(
φn
ψn

)
−DΦ(φε,ψε)

(
φε − φn
ψε − ψn

)∥∥∥∥
C(X )×C(Y)

= oP

(∥∥∥∥( φε − φn
ψε − ψn

)∥∥∥∥
⊕

)
.

Using also the uniform bounds (9), it follows that∥∥∥∥Φ̃( φε
ψε

)
− Φ̃

(
φn
ψn

)
+ L

(
φε − φn
ψε − ψn

)∥∥∥∥
C(X )×C(Y)

= oP

(∥∥∥∥( φε − φn
ψε − ψn

)∥∥∥∥
⊕

)
, (26)

where

Φ̃

(
f
g

)
:=

(
1

Q(S(·))

∫
(⟨·, y⟩ − f(·)− g(y))+ dQ(y)

1
P (T(·))

∫
(⟨x, ·⟩ − f(x)− g(·))+ dP (x)

)
and L := I + A with I denoting the identity operator and

A
(
f
g

)
:=

(
A1(g)
A2(f)

)
=

(
1

Q(S(·))

∫
S(·)

g(y)dQ(y)
1

P (T(·))
∫
T(·)

f(x)dP (x)

)
.

In the preceding displays, it is tacitly understood that the left-hand side takes two arguments
(x′, y′); on the right-hand side, x′ is inserted into S(·) and f(·), whereas y′ is inserted into
T(·) and g(·).

We denote by [L]⊕ the composition of L with the quotient map [·]⊕.
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Lemma 5.2. The operator [L]⊕ : B⊕ → B⊕ is a bounded bijection.

Proof. As B⊕ is a Banach space, it suffices to show that the bounded linear operator [L]⊕ is
invertible. Indeed, the operator A is compact by [17, Lemma 4.2]. Hence, by the Fredholm
alternative, [L]⊕ = [I + A]⊕ is invertible if and only if L(f, g) ∼⊕ 0 implies (f, g) ∼⊕ 0. In
view of the definition of L, the latter is in turn equivalent to A(f, g) ∼⊕ −(f, g) implying
(f, g) ∼⊕ 0, and that holds by [17, Lemma 4.3].

Taking equivalence classes in (26), we have∥∥∥∥[Φ̃]⊕( φε
ψε

)
− [Φ̃]⊕

(
φn
ψn

)
+ [L]⊕

(
φε − φn
ψε − ψn

)∥∥∥∥
⊕
= oP

(∥∥∥∥( φε − φn
ψε − ψn

)∥∥∥∥
⊕

)
.

Setting also

Φ̃n

(
f
g

)
:=

(
1

Q(S(·))

∫
(⟨·, y⟩ − f(·)− g(y))+ dQn(y)

1
P (T(·))

∫
(⟨x, ·⟩ − f(x)− g(·))+ dPn(x)

)
,

the first-order conditions (5) and (12) imply

[Φ̃]⊕

(
φε
ψε

)
=

(
ε

Q(S(·))
ε

P (T(·))

)
= [Φ̃n]⊕

(
φn
ψn

)
and we conclude that∥∥∥∥[Φ̃n]⊕( φn

ψn

)
− [Φ̃]⊕

(
φn
ψn

)
+ [L]⊕

(
φε − φn
ψε − ψn

)∥∥∥∥
⊕
= oP

(∥∥∥∥( φε − φn
ψε − ψn

)∥∥∥∥
⊕

)
. (27)

5.2 The remainder term

Defining the “remainder” term

∆n := [Φ̃n]⊕

(
φn
ψn

)
− [Φ̃]⊕

(
φn
ψn

)
−
(
[Φ̃n]⊕

(
φε
ψε

)
− [Φ̃]⊕

(
φε
ψε

))
,

we have from (27) that∥∥∥∥[Φ̃n]⊕( φε
ψε

)
− [Φ̃]⊕

(
φε
ψε

)
+ [L]⊕

(
φε − φn
ψε − ψn

)∥∥∥∥
⊕

= OP (∥∆n∥⊕) + oP

(∥∥∥∥( φε − φn
ψε − ψn

)∥∥∥∥
⊕

)
.

As [L]⊕ is continuously invertible by Lemma 5.2, this implies∥∥∥∥[L]−1
⊕

(
[Φ̃n]⊕

(
φε
ψε

)
− [Φ̃]⊕

(
φε
ψε

))
+

(
φε − φn
ψε − ψn

)∥∥∥∥
⊕

= OP (∥∆n∥⊕) + oP

(∥∥∥∥( φε − φn
ψε − ψn

)∥∥∥∥
⊕

)
. (28)

The key step of the proof is the following estimate for ∥∆n∥⊕, which will be obtained on
the strength of Proposition 4.4.
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Lemma 5.3. We have

∥∆n∥⊕ = oP

(
∥(φn, ψn)− (φε, ψε)∥⊕ + n−

1
2

)
.

Proof. We use the shorthands

ξε(x, y) = ⟨x, y⟩ − φε(x)− ψε(y), ξn(x, y) = ⟨x, y⟩ − φn(x)− ψn(y). (29)

Expanding the definition of ∆n, using the continuity of the quotient map, and the uniform
bound (9), we need to show that∥∥∥∥∫ (ξn(·, y))+ − (ξε(·, y))+d(Qn −Q)(y)

∥∥∥∥
∞

≤ oP

(
∥(φn, ψn)− (φε, ψε)∥⊕ + n−

1
2

)
,

∥∥∥∥∫ (ξn(x, ·))+ − (ξε(x, ·))+d(Pn − P )(x)

∥∥∥∥
∞

≤ oP

(
∥(φn, ψn)− (φε, ψε)∥⊕ + n−

1
2

)
.

We prove the first statement, the second is analogous. Thanks to Lemma 4.6, it suffices to
show ∥∥∥∥∫ (ξn(·, y))+ − (ξε(·, y))+d(Qn −Q)(y)

∥∥∥∥
∞

≤ oP (∥(φn, ψn)− (φε, ψε)∥⊕,1) . (30)

Using the fundamental theorem of calculus as in (24) yields

δn(x, y) := (ξn(x, y))+ − (ξε(x, y))+

= (ξn(x, y)− ξε(x, y)) · L1(λ ∈ [0, 1] : λξn(x, y) + (1− λ)ξε(x, y) ≥ 0).

Hence, for every x ∈ X ,∫
δn(x, y)d(Qn −Q)(y)

=

∫
(ξn(x, y)− ξε(x, y)) · L1(λ ∈ [0, 1] : λξn(x, y) + (1− λ)ξε(x, y) ≥ 0)d(Qn −Q)(y).

Defining the interpolated sections Sλ,x = {y : λξn(x, y) + (1 − λ)ξε(x, y) ≥ 0} (which are
random and depend on n, a fact suppressed in the notation), we can bound this as∣∣∣∣∫ δn(x, y)d(Qn −Q)(y)

∣∣∣∣ ≤ ∥ξn − ξε∥0,1 sup
λ∈[0,1]

∣∣∣∣∣
∫
Sλ,x

ξn(x, y)− ξε(x, y)

∥ξn − ξε∥0,1
d(Qn −Q)(y)

∣∣∣∣∣
≤ ∥ξn − ξε∥0,1 sup

∥g∥0,1≤1, λ∈[0,1], x∈X

∣∣∣∣∣
∫
Sλ,x

g(y)d(Qn −Q)(y)

∣∣∣∣∣ .
Comparing with (30) and noting that ∥ξn− ξε∥0,1 ≤ ∥(φn, ψn)− (φε, ψε)∥⊕,1, it then suffices
to prove

sup
∥g∥0,1≤1, λ∈[0,1], x∈X

∣∣∣∣∣
∫
Sλ,x

g(y)d(Qn −Q)(y)

∣∣∣∣∣ = oP (1) . (31)
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Step 1. To that end, we first show that for any fixed bounded and measurable g : Y → R,

sup
λ∈[0,1], x∈X

∣∣∣∣∣
∫
Sλ,x

g(y)d(Qn −Q)(y)

∣∣∣∣∣ = oP (1) . (32)

Note that ξn(x, y) ∧ ξε(x, y) ≥ 0 implies y ∈ Sλ,x for all λ ∈ [0, 1]. Moreover, if y ∈ Sλ,x for
some λ ∈ [0, 1], we must have ξn(x, y) ∨ ξε(x, y) ≥ 0. Recalling Sx(·) from (16), this yields

Sx(−∥(φn, ψn)− (φε, ψε)∥⊕) ⊂ Sλ,x ⊂ Sx(∥(φn, ψn)− (φε, ψε)∥⊕)

for all λ ∈ [0, 1]. We can now apply Proposition 4.4 with

Λ = [0, 1], Vn,λ,x =Wn,λ,x = 1Sλ,x
, βn = −αn = ∥(φn, ψn)− (φε, ψε)∥⊕

to obtain

sup
λ∈[0,1], x∈X

∣∣∣∣∣
∫
Sλ,x

g(y)d(Qn −Q)(y)

∣∣∣∣∣ = OP

(
n−

1
2 + ∥(φn, ψn)− (φε, ψε)∥⊕

)
= oP (1) ,

where the last equality is due to Lemma 2.4. This completes the proof of (32).
Step 2. It remains to infer the uniform convergence (31) from (32). This follows easily from
the compactness of B∥·∥0,1 := {∥g∥0,1 ≤ 1} in C(Y). Indeed, fix α > 0. By the Arzelà–Ascoli
theorem, there exist g1, . . . , gNα ∈ B∥·∥0,1 such that

sup
g∈B∥·∥0,1

inf
k=1,...,Nα

∥g − gk∥∞ ≤ α

4
.

We can then write∣∣∣∣∣
∫
Sλ,x

g(y)d(Qn −Q)(y)

∣∣∣∣∣
≤ inf

k

(∣∣∣∣∣
∫
Sλ,x

(g(y)− gk(y))d(Qn −Q)(y)

∣∣∣∣∣+
∣∣∣∣∣
∫
Sλ,x

gk(y)d(Qn −Q)(y)

∣∣∣∣∣
)

≤ α

2
+

Nα∑
k=1

∣∣∣∣∣
∫
Sλ,x

gk(y)d(Qn −Q)(y)

∣∣∣∣∣
and, using also (32), conclude that

P

(∣∣∣∣∣ sup
∥g∥0,1≤1, λ∈[0,1], x∈X

∫
Sλ,x

g(y)d(Qn −Q)(y)

∣∣∣∣∣ ≥ α

)

≤ P

(
Nα∑
k=1

∣∣∣∣∣ sup
λ∈[0,1], x∈X

∫
Sλ,x

gk(y)d(Qn −Q)(y)

∣∣∣∣∣ ≥ α

2

)
→ 0

as n→ ∞, completing the proof.
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5.3 End of the proof of Theorem 3.1

Returning to the proof of Theorem 3.1, note that combining (28) with Lemma 5.3 yields∥∥∥∥[L]−1
⊕

(
[Φ̃n]⊕

(
φε
ψε

)
− [Φ̃]⊕

(
φε
ψε

))
+

(
φε − φn
ψε − ψn

)∥∥∥∥
⊕

= oP

(∥∥∥∥( φε − φn
ψε − ψn

)∥∥∥∥
⊕
+ n−

1
2

)
. (33)

We can now complete the proof using standard arguments. For (X,Y ) ∼ P ⊗ Q, consider
the centered random processes

X ∋ x 7→ UQ(x) := (⟨x, Y ⟩ − φε(x)− ψε(Y ))+ −
∫

(⟨x, y⟩ − φε(x)− ψε(y))+ dQ(y),

Y ∋ y 7→ UP (y) := (⟨X, y⟩ − φε(X)− ψε(y))+ −
∫

(⟨x, y⟩ − φε(x)− ψε(y))+ dP (x),

As the potentials are Lipschitz by Lemma 2.2, these processes have Lipschitz sample paths.
Hence, by [22, Theorem 3.5], they satisfy the central limit theorem in C(X ) and C(Y), re-
spectively. As a consequence,

√
n

(
Φ̃n

(
φε
ψε

)
− Φ̃

(
φε
ψε

))
=

√
n

(
1

Q(S(·))

∫
(⟨·, y⟩ − φε(·)− ψε(y))+ d(Qn −Q)(y)

1
P (T(·))

∫
(⟨x, ·⟩ − φε(x)− ψε(·))+ d(Pn − P )(x)

)

converges weakly in C(X ) × C(Y) to (
GQ

Q(S(·))
, GP
P (T(·))

), where (GQ,GP ) ∈ C(X ) × C(Y) are
independent, Gaussian, centered, and tight, with covariances as stated in Theorem 3.1. By
the continuity and linearity of the quotient map [·]⊕, it follows that

√
n

(
[Φ̃n]⊕

(
φε
ψε

)
− [Φ̃]⊕

(
φε
ψε

))
B⊕
⇝

[( GQ

Q(S(·))
GP

P (T(·))

)]
⊕

. (34)

Combining (34) with (33) and the continuous mapping theorem, we conclude that

√
n

(
φε − φn
ψε − ψn

)
B⊕
⇝ −[L]−1

⊕

[( GQ

Q(S(·))
GP

P (T(·))

)]
⊕

,

which was the claim of Theorem 3.1.

6 Proofs of the CLTs for the optimal costs and couplings

On the strength of the central limit theorem for the potentials (Theorem 3.1) and the statis-
tical gradient estimate (Lemma 4.6), we can now easily derive the central limit theorem for
the optimal costs.

20



Proof of Theorem 3.2. The optimality of the population potentials (fε, gε) for the population
dual problem (1) yields

QOTε(Pn, Qn)−QOTε(P,Q)

≥
∫
fε(x)d(Pn − P )(x) +

∫
gε(y)d(Qn −Q)(y)

− 1

2ε

∫ (
fε(x) + gε(y)−

∥x− y∥2

2

)2

+

d(Pn ⊗Qn − P ⊗Q)(x, y)

(35)

whereas the optimality of the empirical potentials (fn, gn) for the empirical dual yields

QOTε(Pn, Qn)−QOTε(P,Q)

≤
∫
fn(x)d(Pn − P )(x) +

∫
gn(y)d(Qn −Q)(y)

− 1

2ε

∫ (
fn(x) + gn(y)−

∥x− y∥2

2

)2

+

d(Pn ⊗Qn − P ⊗Q)(x, y).

(36)

Note that the right-hand side of (35) gives the limit described in Theorem 3.2. Hence, it
suffices to show that the difference between the right-hand sides of (35) and (36) behaves as
oP(n

− 1
2 ); that is, ∫

(τε − τn)d(Pn ⊗Qn − P ⊗Q) = oP(n
− 1

2 ) (37)

for

τε(x, y) := fε(x) + gε(y)−
1

2ε

(
fε(x) + gε(y)−

∥x− y∥2

2

)2

+

,

τn(x, y) := fn(x) + gn(y)−
1

2ε

(
fn(x) + gn(y)−

∥x− y∥2

2

)2

+

.

To see this, we first write∣∣∣∣∫ (τε − τn)d(Pn ⊗Qn − P ⊗Q)

∣∣∣∣ ≤ ∥τε − τn∥0,1 sup
∥h∥0,1≤1

∫
hd(Pn ⊗Qn − P ⊗Q)

= oP (∥τε − τn∥0,1) , (38)

where the second estimate holds because the unit ball in C0,1(X ×Y) is a Glivenko–Cantelli
class. Noting that the function (·)2+/2 occurring in the definitions of τε and τn has Lipschitz-
continuous derivative (·)+, our gradient estimate in Lemma 4.6 yields

oP (∥τε − τn∥0,1) = oP

(
n−

1
2 + ∥(fn, gn)− (fε, gε)∥⊕

)
.

As we already know from Theorem 3.1 that ∥(fn, gn)− (fε, gε)∥⊕ = OP(n
− 1

2 ), this completes
the proof of (37).

Lastly, we prove the central limit theorem for the optimal couplings.
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Proof of Theorem 3.3. Note that
∫
ηd(πn − π) =

∫
η̄d(πn − π) and define

En :=

∫
η̄(x, y) (ξn(x, y))+ d(Pn ⊗Qn)(x, y)−

∫
η̄(x, y) (ξε(x, y))+ d(P ⊗Q)(x, y).

Recalling (10), we need to show
√
nEn/ε

w−→ N
(
0, σ2(η)/ε2

)
. To that end, we decompose

En = An +Bn + Cn

where

An :=

∫
η̄(x, y){(ξn(x, y))+ − (ξε(x, y))+}d(Pn ⊗Qn − P ⊗Q)(x, y),

Bn :=

∫
η̄(x, y){(ξn(x, y))+ − (ξε(x, y))+}d(P ⊗Q)(x, y),

Cn :=

∫
η̄(x, y)(ξε(x, y))+d(Pn ⊗Qn − P ⊗Q)(x, y).

Step 1. We first address the key part of the proof, which is to show

An = oP

(
n−

1
2

)
. (39)

Using the fundamental theorem of calculus as in (24) yields

(ξn(x, y))+ − (ξε(x, y))+ = (ξn(x, y)− ξε(x, y))Vn(x, y)

where Vn(x, y) := L1({λ ∈ [0, 1] : λξn(x, y) + (1− λ)ξε(x, y) ≥ 0}). We can therefore write

An = ∥ξn − ξε∥0,1
∫
η̄(x, y)

(ξn − ξε)(x, y)

∥ξn − ξε∥0,1
Vn(x, y)d(Pn ⊗Qn − P ⊗Q)(x, y)

≤ ∥ξn − ξε∥0,1 sup
∥h∥0,1≤1

∫
η̄(x, y)h(x, y)Vn(x, y)d(Pn ⊗Qn − P ⊗Q)(x, y).

An analogous lower bound holds with an infimum; we only discuss the supremum. Once
again, our gradient estimate in Lemma 4.6 and Theorem 3.1 yield

oP (∥ξn − ξε∥0,1) = oP

(
n−

1
2 + ∥(φn, ψn)− (φε, ψε)∥⊕

)
= OP

(
n−

1
2

)
.

Thus, it remains to show that

sup
∥h∥0,1≤1

∫
η̄(x, y)h(x, y)Vn(x, y)d(Pn ⊗Qn − P ⊗Q)(x, y) = oP (1) . (40)

We first show, for any bounded measurable h : X × Y → R, that∫
η̄(x, y)h(x, y)Vn(x, y)d(Pn ⊗Qn − P ⊗Q)(x, y) = oP (1) . (41)

Let δn = ∥ξn−ξε∥∞ and recall from (20) the notation M(·). On the set M(−δn) = {ξε ≥ δn},
we have both ξε ≥ 0 and ξn ≥ 0, so that Vn = 1. In view of 0 ≤ Vn ≤ 1, it follows
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that 1M(−δn) ≤ Vn. On the set {Vn > 0}, we have either ξε ≥ 0 or ξn ≥ 0, and hence
ξε+ ∥ξn− ξε∥∞ ≥ 0. Thus, {Vn > 0} ⊂ {ξε ≥ −δn} = M(δn), showing that Vn ≤ 1M(δn). In
summary,

1M(−δn) ≤ Vn ≤ M(δn).

Recalling that δn = oP (1) by Theorem 3.1, we can thus apply Proposition 4.5 with

g = η̄h, Λ = ∅, Vn,λ =Wn,λ = Vn, βn = −αn = δn

to conclude that∫
η̄(x, y)h(x, y)Vn(x, y)d(Pn ⊗Qn − P ⊗Q)(x, y) = OP

(
n−

1
2 + δn

)
= oP (1) ,

which is (41). Finally, (40) follows from (41) and the compactness of {∥h∥0,1 ≤ 1}, exactly
as in Step 2 in the proof of Lemma 5.3. This completes the proof of (39).
Step 2. It remains to show that

√
n(Bn+Cn)/ε

w−→ N
(
0, σ2(η)/ε2

)
. The real-valued function

B⊕ ∋ (f, g) 7→
∫
η̄(x, y)

(
f(x) + g(x)− ∥x− y∥2

2

)
+

d(P ⊗Q)(x, y)

is Fréchet differentiable at the population potentials (fε, gε) with derivative

B⊕ ∋ (f, g) 7→
∫
ξε≥0

η̄(x, y)(f(x) + g(y))d(P ⊗Q)(x, y).

The proof of this fact uses the continuity of (fε, gε) and that (P ⊗ Q)(∂{ξε ≥ 0}) = 0 as
a consequence of Fubini’s theorem and Q(∂Sx) = 0; we omit the details as the argument is
similar to (but simpler than) the proof of Lemma 5.1. As a consequence,

Bn =

∫
ξε≥0

η̄(x, y) (ξn(x, y)− ξε(x, y)) d(P ⊗Q)(x, y) + oP (∥ξn − ξε∥∞) ,

and now Theorem 3.1 yields that Bn = B′
n + oP(n

− 1
2 ) for

B′
n =

1

n2

n∑
i,j=1

∫
ξε≥0

{
⊕

L−1

 (ξε(·,Yj))+−
∫
(ξε(·,y′))+dQ(y′)

Q(S(·))
(ξε(Xi,·))+−

∫
(ξε(x′,·))+dP (x′)

P (T(·))


⊕

 η̄

}
d(P ⊗Q),

where we recall that Xi, Yj denote the samples defining Pn and Qn. We note that both B′
n

and

Cn =
1

n2

n∑
i,j=1

η̄(Xi, Yj)(ξε(Xi, Yj))+ −
∫
η̄(ξε)+d(P ⊗Q)

are centered (w.r.t. P) and have finite variance. In summary,∫
η̄d(πn − π) = B′

n + Cn + oP(n
− 1

2 )

is a U -statistic with finite variance up oP(n
− 1

2 ) terms, so that the central limit theorem for
U -statistics (cf. [29, Theorem 12.6]) gives the desired result.
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A Omitted Proofs

This section collects the proofs for the statements in Section 2, which are either known or
follow easily from known results.

Proof of Lemma 2.2. Item (i), the first half of (ii), item (iv), and the first part of (v) up
to (10), can all be found in [27]. The convexity of φε and ψε and the formula (6) are shown
in [32] and [21] (or see the proof of Lemma 2.3 below).

For any x ∈ X , the set Sx = {y ∈ Y : φε(x) + ψε(y)− ⟨x, y⟩ ≤ 0} is convex as a sublevel
set of the convex function y 7→ φε(x) + ψε(y)− ⟨x, y⟩. Clearly

∂Sx ⊂ {y ∈ Y : φε(x) + ψε(y)− ⟨x, y⟩ = 0}.

For the reverse inclusion, it suffices to observe that a point y with φε(x) +ψε(y)− ⟨x, y⟩ = 0
cannot be a minimum of the convex function y 7→ φε(x) + ψε(y) − ⟨x, y⟩, as otherwise it
would follow that this function is nonnegative, contradicting (5).

As ∂Sx is the boundary of a convex set and Q≪ Ld, we have that Q(∂Sx) = 0 and hence
Q({y ∈ Y : φε(x) + ψε(y)− ⟨x, y⟩ = 0}) = 0. By the continuity of φε(x) + ψε(y)− ⟨x, y⟩, it
follows that 1Sxn

→ 1Sx Q-a.s. for xn → x. In particular, x 7→ Q(Sx) is continuous and, in
view of its formula (6), ∇φε is continuous.

As before, Q(Sx) > 0 by (5), and hence continuity of x 7→ Q(Sx) also implies the uniform
bound (9). (A different proof of (9) can be found in [2].) The expression for sptπε in (iv)
follows from (10) and the aforementioned fact that Q(∂Sx) = 0.

Proof of Lemma 2.3. The existence of the potentials and their continuous extension to Rd
satisfying (12) can again be found in [27]. We detail the proof of the convexity and differ-
entiability properties as [32] and [21] do not state them in the discrete setting; however, we
remark that the proof is similar.

We first verify that φn is convex. Recall from (12) that

ε =

∫
(⟨x, y⟩ − φn(x)− ψn(y))+ dQn(y) for all x ∈ X . (42)

For every x, x′ ∈ X and every λ ∈ (0, 1), convexity of (·)+ yields∫ (
⟨λx+ (1− λ)x′, y⟩ − λφn(x)− (1− λ)φn(x

′)− ψn(y)
)
+
dQn(y)

≤ λ

∫
(⟨x, y⟩ − φn(x)− ψn(y))+ dQn(y) + (1− λ)

∫ (
⟨x′, y⟩ − φn(x

′)− ψn(y)
)
+
dQn(y)

and the right-hand side equals ε by (42). On the other hand, (42) at the point λx+(1−λ)x′
states that

ε =

∫ (
⟨λx+ (1− λ)x′, y⟩ − φn(λx+ (1− λ)x′)− ψn(y)

)
+
dQn(y).

Together, we have∫ (
⟨λx+ (1− λ)x′, y⟩ − λφn(x)− (1− λ)φn(x

′)− ψn(y)
)
+
dQn(y)

≤
∫ (

⟨λx+ (1− λ)x′, y⟩ − φn(λx+ (1− λ)x′)− ψn(y)
)
+
dQn(y),
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and moreover the right-hand side equals ε > 0. It follows that the non-increasing function

t 7→
∫ (

⟨λx+ (1− λ)x′, y⟩ − t− ψn(y)
)
+
dQn(y)

is strictly decreasing for t in a neighborhood of φn(λx+ (1− λ)x′), so that we can conclude

φn(λx+ (1− λ)x′) ≤ λφn(x) + (1− λ)φn(x
′).

In other words, φn is convex.
Next, we observe that (42) and the inequality (a)+ − (b)+ ≤ I{a≥0}(a− b), applied with

a = (⟨x, y⟩ − φn(x)− ψn(y))+ and b = (⟨x′, y⟩ − φn(x
′)− ψn(y))+, imply that for x, x′ ∈ X ,

0 =

∫
(⟨x, y⟩ − φn(x)− ψn(y))+ dQn(y)−

∫ (
⟨x′, y⟩ − φn(x

′)− ψn(y)
)
+
dQn(y)

≤
∫
Ŝx

⟨x− x′, y⟩dQn(y)−Qn(Ŝx)(φn(x)− φn(x
′)).

Note that Qn(Ŝx) cannot vanish, by (42). Rearranging then gives

φn(x
′)− φn(x) ≥

〈
x′ − x,

∫
Ŝx

ydQn(y)

Qn(Ŝx)

〉
,

showing that
∫
Ŝx

ydQn(y)

Qn(Ŝx)
is a subgradient of φn at x. On the other hand, the convex function

φn is Ld-a.e. differentiable by Rademacher’s theorem. Together, we conclude (13). This
formula also shows that ∥∇φn(x)∥ ≤ ∥Y∥∞ a.e., and hence that φn is ∥Y∥∞-Lipschitz.

Proof of Lemma 2.4. Almost surely, Pn and Qn are probability measures supported in X
and Y which converge weakly to P and Q, respectively. We fix such a realization and show
that any potentials (φn, ψn) associated with Pn and Qn converge to (φε, ψε) in B⊕. As we
deal with equivalence classes, we may choose representatives of (φn, ψn) with φn(x0) = 0
for some fixed x0 ∈ X . We recall from Lemma 2.3 that (φn, ψn) are Lipschitz with a
constant depending only on X and Y. Observe that given any y ∈ Y, (12) implies that
⟨x, y⟩ − φn(x) − ψn(y) > 0 for some x ∈ X . Using φn(x0) = 0 and boundedness of the
supports, we deduce a uniform upper bound ψn(y) ≤ φn(x) − ⟨x, y⟩ ≤ C, which by the
Lipschitz continuity also implies a uniform lower bound. Moreover, ⟨x, y⟩−φn(x)−ψn(y) > 0
now yields another upper bound φn(x) ≤ C, which again also implies a lower bound. We
conclude that (φn, ψn) are uniformly bounded and equicontinuous, so that by the Arzelà–
Ascoli theorem, a subsequence {(φnk

, ψnk
)}k converges uniformly to a limit (φ∞, ψ∞). Note

that (x, y) 7→ ⟨x, y⟩ − φn(x)− ψn(y) is uniformly Lipschitz with some constant L and hence∣∣∣∣∫ (⟨x, y⟩ − φnk
(x)− ψnk

(y))+ d(Qnk
−Q)(y)

∣∣∣∣ ≤ L · sup
∥f∥0,1≤1

∫
fd(Qnk

−Q) → 0.

Using this observation and the empirical first-order condition (12), passing to the limit shows
that (φ∞, ψ∞) satisfies the population first-order condition (5). Thus (φ∞, ψ∞) are popula-
tion potentials and the claim follows by their uniqueness.
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