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Abstract

Guyon and Lekeufack recently proposed a path-dependent volatility model and doc-
umented its excellent performance in fitting market data and capturing stylized facts.
The instantaneous volatility is modeled as a linear combination of two processes, one is
an integral of weighted past price returns and the other is the square-root of an integral
of weighted past squared volatility. Each of the weightings is built using two exponen-
tial kernels reflecting long and short memory. Mathematically, the model is a coupled
system of four stochastic differential equations. Our main result is the wellposedness of
this system: the model has a unique strong (non-explosive) solution for all parameter
values. We also study the positivity of the resulting volatility process and the martingale
property of the associated exponential price process.
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1 Introduction

Path-dependent volatility models (PDV) are stochastic models for security prices where the
instantaneous volatility is a function of the price path. Starting with [5, 2, 11, 1, 3], such
models emphasize that prices have a feedback on volatility (e.g., the leverage effect) rather
than the volatility being an exogenous factor driving the price. In their recent paper [4],
Guyon and Lekeufack empirically study the volatility of the S&P 500 index (and other in-
dexes) and conclude that the majority of the variation can be explained by past index returns.
Indeed, the relevant statistics are 1. weighted sum of past daily returns and 2. square-root
of weighted sum of past daily squared returns (i.e., squared volatility). More specifically,
long and short memory are both found to be important, hence the authors recommend using
two decay kernels with different time scales. This leads to four processes feeding into the
volatility: weighted sum of past returns at two timescales (indexed as (1,0) and (1,1) below)
and weighted sum of past squared returns at two (different) timescales (indexed as (2,0) and
(2,1) below).

For practical purposes, [4] finds that exponential kernels provide a tractable model with
good fit. This leads the authors to propose a Markovian model with nine parameters, called
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the Markovian 4-factor PDV model. They convincingly argue that this model captures the
important stylized facts of volatility, produces realistic price and volatility paths, and can
jointly fit S&P 500 and VIX smiles. Specifically, the volatility process of the 4-factor PDV
model is given as

σt = β0 + β1R1,t + β2
√

R2,t .

Here R1,t is the convex combination (1−θ1)R1,0,t+θ1R1,1,t of the past returns weighted with
different decay rates λ1,j ; i.e., R1,j,t is an Ornstein–Uhlenbeck process dR1,j,t = λ1,jσtdWt −
λ1,jR1,j,tdt for j ∈ {0, 1}. Moreover, R2,t is a convex combination (1− θ2)R2,0,t + θ2R2,1,t of
the past squared volatility weighted with different decay rates λ2,j ; i.e., R2,j,t is an exponential
moving average dR2,j,t = λ2,j

(
σ2
t −R2,j,t

)
dt for j ∈ {0, 1}.

Altogether, this leads to a coupled SDE system for the four processes (Ri,j,t), stated
as (4-PDV) below. Due to the square and square-root terms in the dynamics, its wellposed-
ness is not obvious. Most importantly, it is not clear if the system explodes in finite time (the
numerical simulations in [4] truncate the volatility at a fixed upper bound). The purpose of
this paper is to provide existence and uniqueness for (4-PDV). Our results extend to other
models where the relationship between (R1,t, R2,t) and σt has a more general form satisfying
certain regularity and growth properties (see Remarks 2.5, 3.3 and 4.4).

The main results are summarized in the subsequent section. There, we first discuss a
simpler model which uses only one timescale for each process Ri,t, corresponding to the
special case θi ∈ {0, 1}. While [4] details that this 2-factor model does not provide a good
fit in practice, the authors find it useful to gain intuition about the more complicated 4-
factor model. Following their didactic lead, we first prove our results for the 2-factor model
in Section 2. In this case, the equations are simpler and the algebraic expressions clearly
motivate our strategy of proof. Guided by those insights, the 4-factor model can be treated
using a similar strategy (detailed in Section 3), though the expressions are more convoluted.
Section 4 concludes by studying the martingale property of the exponential local martingale
(price) process associated with the volatility models, a problem posed to us by an anonymous
referee.

1.1 Main Results

The 2-factor model of [4] is specified by an SDE driven by a standard Brownian motion W ,

σt = β0 + β1R1,t + β2
√

R2,t

dR1,t = λ1σtdWt − λ1R1,tdt (2-PDV)

dR2,t =
(
λ2σ

2
t − λ2R2,t

)
dt

with parameters

β0, β2, λ1, λ2 ≥ 0 and β1 ≤ 0

and initial values R1,0 ∈ R and R2,0 ∈ (0,∞). The above is an autonomous SDE for the
processes (R1,t, R2,t), with σt merely acting as an abbreviation. On the other hand, if σt is
given, the equations for R1,t and R2,t in (2-PDV) are straightforward: R1,t is an Ornstein–
Uhlenbeck process driven by the log-returns σtdWt,

R1,t = R1,0e
−λ1t + λ1

∫ t

0
e−λ2(t−s)σsdWs,

2



and R2,t is an exponential moving average of σ2
t ,

R2,t = R2,0e
−λ2t + λ2

∫ t

0
σ2
se

−λ2(t−s)ds > 0. (1)

In particular, the expression
√

R2,t in (2-PDV) is well-defined.

Theorem 1.1. The 2-factor model (2-PDV) has a unique strong solution.

The proof is detailed in Section 2. There, we first observe that strong existence and
uniqueness readily hold up to a possible explosion time, and then proceed to show the ab-
sence of explosions in finite time. Theorem 1.1 extends to certain more general models
(Remark 2.5). Table 1 reports the parameters used in [4]. In Theorem 2.6, we provide the
condition λ2 < 2λ1 ensuring σt > 0; that condition is satisfied by the values in Table 1.

β0 β1 β2 λ1 λ2

0.08 -0.08 0.5 62 40

Table 1: Example parameters for the 2-factor model from [4, Table 7]

Next, we move on to the 4-factor model of [4]. It is specified by the SDE

σt = β0 + β1R1,t + β2
√

R2,t

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t (4-PDV)
dR1,j,t = λ1,jσtdWt − λ1,jR1,j,tdt, j ∈ {0, 1}
dR2,j,t = λ2,j

(
σ2
t −R2,j,t

)
dt, j ∈ {0, 1}

with parameters

β0, β2, λ1,j , λ2,j ≥ 0, β1 ≤ 0, θ1, θ2 ∈ [0, 1]

and initial values R1,j,0 ∈ R and R2,j,0 > 0, j ∈ {0, 1}. The above is an autonomous SDE
for the four processes (R1,j,t, R2,j,t)j∈{0,1}. We note that (4-PDV) generalizes the 2-factor
model (2-PDV); the latter is recovered when θ1, θ2 ∈ {0, 1}. Whereas for θ1, θ2 ∈ (0, 1), the
difference with (2-PDV) is that R1,t, R2,t are proper convex combinations of processes with
different time scales. Once again, R1,j,t and R2,j,t have straightforward expressions once σt
is given, and R2,j,t > 0 as in (1). Our main result reads as follows.

Theorem 1.2. The 4-factor model (4-PDV) has a unique strong solution.

The proof is stated in Section 3. Again, strong existence and uniqueness readily hold up
to a possible explosion time, and we prove absence of explosions in finite time. Theorem 1.2
extends to certain more general models (Remark 3.3). The parameters used in [4] are re-
produced in Table 2. While in the 2-factor model, σt remains strictly positive for a certain
parameter range (Theorem 2.6), that property can fail in the 4-factor model (Proposition 3.4).
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β0 β1 β2 λ1,0 λ1,1 λ2,0 λ2,1 θ1 θ2
0.04 -0.13 0.65 55 10 20 3 0.25 0.5

Table 2: Example parameters for the 4-factor model from [4, Table 8]

Finally, we study the martingale property of the resulting price process (Xt)t≥0, a problem
posed by an anonymous referee. We provide a positive result for the 2-factor model; the
problem remains open for the 4-factor model. For the sake of generality, we allow processes
(σt)t≥0 that can become negative (even if those may be undesirable in practice), but stop
them at some level for technical reasons; that gives rise to the volatility process (νt)t≥0 in
the theorem below. If the process (σt)t≥0 is nonnegative, as is guaranteed for the parameters
mentioned in Theorem 2.6, then clearly νt = σt.

Theorem 1.3. Let (σt)t≥0 be given by (2-PDV) and νt := σt∧τ where τ = inf {t ≥ 0 : σt < −C}
for some C ≥ 0. The exponential local martingale (Xt)t≥0 given by

dXt = νtXtdWt, X0 = x0 > 0

is a true martingale.

The proof is reported in Section 4. Following an idea in [10] and [7], we characterize the
martingale property of (Xt)t≥0 as the non-explosiveness of (νt)t≥0 under a changed measure,
and then prove the latter by an estimate for the associated stochastic differential equation.
This line of argument may extend to the 4-factor model, but the present argument for non-
explosiveness in the 2-factor case does not apply in the 4-factor case (see Remark 4.5).

2 Analysis of the 2-Factor Model (2-PDV)

We first show, using fairly standard arguments, that (2-PDV) has a unique strong solution
up to a possible explosion time. Then, we prove the absence of explosions. In Section 2.2,
we study the positivity of σt.

2.1 Wellposedness and Absence of Explosions

To detail the aforementioned arguments, we introduce a more concise notation for (2-PDV):
writing Rt := (R1,t, R2,t), we can rewrite (2-PDV) as

dRt = b(Rt)dt+ ν(Rt)dWt, R0 = (R1,0, R2,0)

ν(x, y) =

(
λ1(β0 + β1x+ β2

√
y)

0

)
b(x, y) =

(
−λ1x

λ2

(
β2
0 + β2

1x
2 + (β2

2 − 1)y + 2β0β1x+ 2β0β2
√
y + 2β1β2x

√
y
)) .

As the coefficients ν(x, y) and b(x, y) are continuous in their domains and the initial condition
is deterministic, the general existence result of [6, Theorem IV.2.3] (applied with √

y := 0 for
y < 0) shows the following.
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Lemma 2.1. The SDE (2-PDV) has a weak solution up to a possible explosion time.

Next, we establish pathwise uniqueness. The usual local Lipschitz condition (e.g., [6,
Theorem IV.3.1]) fails because of the term √

y in the coefficients. However, as this failure
only occurs at the boundary of the relevant domain, a modification of the usual proof applies.

Lemma 2.2. The SDE (2-PDV) satisfies pathwise uniqueness.

Proof. Following the proof of [6, Theorem IV.3.1], we consider two solutions (R,W ) and
(R′,W ) of (2-PDV) on the same probability space (Ω,F ,P) with Brownian motion W , and
with the same initial values R0 = R′

0 = (R1,0, R2,0).
Given N, ε > 0, there exists Kε,N > 0 such that∥∥ν(x, y)− ν(x′, y′)

∥∥2 + ∥∥b(x, y)− b(x′, y′)
∥∥2 ≤ Kε,N

∥∥(x, y)− (x′, y′)
∥∥2

for all (x, y), (x′, y′) ∈ R2 with ∥(x, y)∥, ∥(x′, y′)∥ ≤ N and y, y′ ≥ ε. Define

SN := inf {t ≥ 0 : ∥Rt∥ ≥ N} , Tε := inf {t ≥ 0 : |R2,t| ≤ ε}

and similarly S′
N , T ′

ε for R′ instead of R. Set Sε,N := SN ∧ S′
N ∧ Tε ∧ T ′

ε and note that

Rt∧Sε,N
−R′

t∧Sε,N
=

∫ t∧Sε,N

0

(
ν(Rs)− ν(R′

s)
)
dWs +

∫ t∧Sε,N

0

(
b(Rs)− b(R′

s)
)
ds.

Fix T ∈ (0,∞). For t ≤ T , Itô’s isometry and Hölder’s inequality yield

E
(
∥Rt∧Sε,N

−R′
t∧Sε,N

∥2
)

≤ 2E

(∥∥∥∥∫ t∧Sε,N

0

(
ν(Rs)− ν(R′

s)
)
dWs

∥∥∥∥2
)

+ 2E

(∥∥∥∥∫ t∧Sε,N

0

(
b(Rs)− b(R′

s)
)
ds

∥∥∥∥2
)

≤ 2E
(∫ t

0

∥∥∥ν(Rs∧Sε,N
)− ν(R′

s∧Sε,N
)
∥∥∥2 ds)+ 2TE

(∫ t

0

∥∥∥b(Rs∧Sε,N
)− b(R′

s∧Sε,N
)
∥∥∥2 ds)

≤ 2(1 + T )Kε,NE
(∫ t

0

∥∥∥Rs∧Sε,N
−R′

s∧Sε,N

∥∥∥2 ds) ,

and then Grönwall’s inequality shows

E
(
∥Rt∧Sε,N

−R′
t∧Sε,N

∥2
)
= 0.

As T > 0 was arbitrary, this holds for all t ≥ 0.
Next, we let ε → 0. In view of the positivity (1), we have Tε, T

′
ε → ∞ and conclude that

Rt∧SN∧S′
N
= R′

t∧SN∧S′
N

∀t ≥ 0.

Together with the continuity of the paths, it follows that SN = S′
N , and since this holds for

all N > 0, we have shown that R = R′ up to a possible (common) time of explosion.

As weak existence together with pathwise uniqueness implies strong existence [6, Theo-
rem IV.1.1], the results so far establish the strong wellposedness of (2-PDV) up to explosion.
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Corollary 2.3. The SDE (2-PDV) satisfies strong existence and uniqueness up to a possible
explosion time.

Turning to the main contribution of this section, we now show the absence of explosions.

Lemma 2.4. A solution (R1,t, R2,t) of (2-PDV) cannot explode in finite time. Moreover,
supt≤T E(R2

1,t +R2,t) < ∞ for any T ∈ [0,∞).

Proof. Fix M > 0 and define the stopping times

T 1
M := inf

{
t ≥ 0 : R2

1,t ≥ M2
}

T 2
M := inf

{
t ≥ 0 : R2,t ≥ M2

}
TM := T 1

M ∧ T 2
M .

Fix also t ≥ 0, and note that

M2P(TM ≤ t) = E(M21TM≤t) ≤ E(max(R2
1,TM∧t, R2,TM∧t)) ≤ E(R2

1,TM∧t +R2,TM∧t).

In the main part of the proof below, we show that

E(R2
1,TM∧t +R2,TM∧t) ≤ c(t) (2)

with c(t) < ∞ independent of M . It will then follow that limM→∞ P(TM ≤ t) = 0, showing
that R1 and R2 have bounded paths on any compact time interval and hence completing the
proof.

To show (2), we first apply Itô’s formula to obtain

R2
1,t∧TM

= R2
1,0 +

∫ t∧TM

0
2λ1σsR1,sdWs +

∫ t∧TM

0
(λ2

1σ
2
s − 2λ1R

2
1,s)ds.

As σsR1,s is uniformly bounded up to the stopping time t ∧ TM , it follows that

E(R2
1,TM∧t) = R2

1,0 + E
(∫ t∧TM

0
(λ2

1σ
2
s − 2λ1R

2
1,s)ds

)
and thus, by Fubini’s theorem,

E(R2
1,TM∧t) = R2

1,0 +

∫ t

0
E
(
(λ2

1σ
2
s − 2λ1R

2
1,s)1s≤t∧TM

)
ds. (3)

Next, we insert the definition of σ2
s to get

E(R2
1,TM∧t) = R2

1,0 +

∫ t

0
E
({

λ2
1(β0 + β2

√
R2,s)

2

+ 2λ2
1β1R1,s(β0 + β2

√
R2,s) + (λ2

1β
2
1 − 2λ1)R

2
1,s

}
1s≤t∧TM

)
ds.

Using the elementary inequalities

2ab ≤ a2 + b2 and (a+ b)2 ≤ 2a2 + 2b2
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we deduce

E(R2
1,TM∧t) ≤ R2

1,0 +

∫ t

0
E
({

2λ2
1β

2
0 + 2λ2

1β
2
2R2,s + λ2

1β
2
0 + λ2

1β
2
1R

2
1,s

+ λ2
1β

2
1R

2
1,s + λ2

1β
2
2R2,s + (λ2

1β
2
1 − 2λ1)R

2
1,s

}
1s≤t∧TM

)
ds

and therefore

E(R2
1,TM∧t) ≤ R2

1,0 +

∫ t

0
E
((
3λ2

1β
2
0 + 3λ2

1β
2
2R2,s + (3λ2

1β
2
1 − 2λ1)R

2
1,s

)
1s≤t∧TM

)
ds

≤ R2
1,0 + 3λ2

1β
2
0t+max

{
3λ2

1β
2
2 , (3λ

2
1β

2
1 − 2λ1)

}∫ t

0
E
(
R2

1,s∧TM
+R2,s∧TM

)
ds

=: c1,1 + c1,2t+ c1,3

∫ t

0
E
(
R2

1,s∧TM
+R2,s∧TM

)
ds (4)

where the constants c1,1, c1,2, c1,3 > 0 are independent of M and t.
Our next goal is a similar bound for R2 instead of R2

1. From the SDE for R2,

E(R2,TM∧t)

= R2,0 + λ2E
(∫ t∧TM

0

(
σ2
s −R2,s

)
ds

)
= R2,0 + λ2

∫ t

0
E
(
(σ2

s −R2,s)1s≤t∧TM

)
ds

= R2,0 + λ2

∫ t

0
E
({

(β0 + β1R1,s)
2 + 2 (β0 + β1R1,s)β2

√
R2,s + (β2

2 − 1)R2,s

}
1s≤t∧TM

)
ds.

Similarly as above, we obtain

E(R2,TM∧t) ≤ R2,0 + λ2

∫ t

0
E
({

2β2
0 + 2β2

1R
2
1,s + β2

0 + β2
2R2,s

+ β2
1R

2
1,s + β2

2R2,s + (β2
2 − 1)R2,s

}
1s≤t∧TM

)
ds.

We conclude that

E(R2,TM∧t) ≤ R2,0 + λ2

∫ t

0
E
((
3β2

0 + 3β2
1R

2
1,s + (3β2

2 − 1)R2,s

)
1s≤t∧TM

)
ds

≤ R2,0 + 3λ2β
2
0t+max{3β2

1 , 3β
2
2 − 1}

∫ t

0
E
(
R2

1,s∧TM
+R2,s∧TM

)
ds

=: c2,1 + c2,2t+ c2,3

∫ t

0
E
(
R2

1,s∧TM
+R2,s∧TM

)
ds, (5)

where again the constants do not depend on M and t.
Writing ci = c1,i + c2,i, combining (4) and (5) yields

E(R2
1,TM∧t +R2,TM∧t) ≤ c1 + c2t+ c3

∫ t

0
E
(
R2

1,s∧TM
+R2,s∧TM

)
ds,
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and now Grönwall’s inequality shows

E(R2
1,TM∧t +R2,TM∧t) ≤ (c1 + c2t) e

c3t.

This establishes (2) and hence completes the proof.

Remark 2.5. The results in this section generalize to volatility models having the same
dynamics as (2-PDV) for (R1,t, R2,t) but a more general functional σt = f(R1,t, R2,t) where

(i) f : R× R+ → R is continuous, and Lipschitz on compact subsets of R× (0,∞),

(ii) there are K1,K2 ∈ R such that

f(x, y)2 ≤ K1(x
2 + y) +K2. (6)

Indeed, continuity and local Lipschitz continuity imply analogues of Lemma 2.1 and Lemma 2.2.
Inequality (6) implies that bounding (2) is enough to bound the expectation of σ2

t . Moreover,
it implies that

λ2
1f(x, y)

2 − 2λ1x
2 ≤ K1,1(x

2 + y) +K1,2

for some K1,1,K1,2 ∈ R, so that a bound analogous to (4) holds, as well as

f(x, y)2 − y ≤ K1(x
2 + y) +K2,

so that a bound analogous to (5) holds.

2.2 Positivity of σt

In this section we show that σt > 0 under certain conditions. More precisely, we exhibit a
lower bound σt ≥ Yt > 0 which also shows, e.g., that 1/σt has finite moments of all orders.
This strengthens the result in [4, Section 4.1.5] where it is observed that σt ≥ 0 since the
drift of σt would be positive whenever σt reaches 0.

Theorem 2.6. Consider the solution (R1,t, R2,t) of (2-PDV) up to a possible time τ of
explosion. If the initial values (R1,0, R2,0) are such that σ0 = β0 + β1R1,0 + β2

√
R2,0 > 0,

and if moreover λ2 < 2λ1, then σt > 0 for all t < τ . More precisely, we have σt ≥ Yt, where
Yt is the stochastic exponential (10).

Proof. By Itô’s formula, σt satisfies the SDE

dσt =

(
−β1λ1R1,t +

λ2β2
2

σ2
t −R2,t√

R2,t

)
dt+ β1λ1σtdWt . (7)

Using the assumption that λ2 < 2λ1, we can bound the drift of σt from below:

−β1λ1R1,t +
λ2β2
2

σ2
t −R2,t√

R2,t

= −λ1(σt − β0 − β2
√

R2,t)−
λ2β2
2

√
R2,t +

λ2β2
2

σ2
t√
R2,t

≥ −λ1σt + β0λ1 + β2

(
λ1 −

λ2

2

)√
R2,t +

λ2β2
2

σ2
t√
R2,t

≥ −λ1σt (8)

8



because all the other terms are nonnegative. Inspired by (8), we define a process Y via

dYt = −λ1Ytdt+ β1λ1YtdWt , Y0 = σ0. (9)

Note that Y is simply the stochastic exponential

Yt = σ0 exp

(
β1λ1Wt − λ1t−

1

2
β2
1λ

2
1t

)
(10)

and, in particular, Yt > 0 for all t ≥ 0.
The SDEs (7) and (9) have the same initial condition σ0, the same volatility function

v(x) = β1λ1x and their drift functions are ordered according to (8). Moreover, both drift
and volatility functions are continuous on the relevant domains, the drift function of Y is
Lipschitz, and ∫ ε

0
v(x)−2dx = ∞

for every ε > 0. In view of these conditions, the comparison result for SDEs1 [8, Theo-
rem 5.2.18] yields that σt ≥ Yt for all t < τ .

3 Analysis of the 4-Factor Model (4-PDV)

In Section 3.1 we prove our main result on the wellposedness of the 4-factor model and the
absence of explosions. In Section 3.2 we show that σt need not remain positive under the
stated conditions.

3.1 Wellposedness and Absence of Explosions

The general wellposedness of (4-PDV) is shown using the same arguments as in the 2-factor
model; we therefore omit the proof.

Proposition 3.1. The SDE (4-PDV) satisfies strong existence and uniqueness up to a pos-
sible explosion time.

The next result contains our main contribution.

Lemma 3.2. A solution (R1,j,t, R2,j,t)j∈{0,1} of (4-PDV) cannot explode in finite time. More-
over, supt≤T E(R2

1,0,t +R2
1,1,t +R2,0,t +R2,1,t) < ∞ for any T ∈ [0,∞).

Proof. We follow the guidance provided by the 2-factor model. Fix M > 0 and define

T 1,0
M := inf

{
t ≥ 0 : R2

1,0,t ≥ M2
}

T 1,1
M := inf

{
t ≥ 0 : R2

1,1,t ≥ M2
}

T 2,0
M := inf {t ≥ 0 : R2,0,t ≥ M2

}
T 2,1
M := inf

{
t ≥ 0 : R2,1,t ≥ M2

}
TM := T 1,0

M ∧ T 1,1
M ∧ T 2,0

M ∧ T 2,1
M .

1To be precise, the cited theorem is stated for SDEs where the drift and volatility functions depend only
on time and the solution process. Here, they are random as they depend on (R1,t, R2,t). The proof holds
without change.
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Fix also t > 0, then

M2P(TM ≤ t) = E(M21TM≤t)

≤ E
(
max

(
R2

1,0,t∧TM
, R2

1,1,t∧TM
, R2,0,t∧TM

, R2,1,t∧TM

))
≤ E

(
R2

1,0,t∧TM
+R2

1,1,t∧TM
+R2,0,t∧TM

+R2,1,t∧TM

)
= E(Ut∧TM

)

where

Ut := R2
1,0,t +R2

1,1,t +R2,0,t +R2,1,t .

We shall prove that
E(Ut∧TM

) ≤ C(t) (11)

for a continuous C(t) independent of M , and that will imply the claim.
To prove (11), we note as in (3) that

E
(
R2

1,j,t∧TM

)
= R2

1,j,0 +

∫ t

0
E
(
{λ2

1,jσ
2
s − 2λ1,jR

2
1,j,s}1s≤t∧TM

)
ds. (12)

We first focus on j = 0. Inserting the definition of σ2
s and then the one of R2

1,s, we have

λ2
1,0σ

2
s − 2λ1,0R

2
1,0,s

= λ2
1,0(β0 + β2

√
R2,s)

2 + 2λ2
1,0β1(β0 + β2

√
R2,s)R1,s + λ2

1,0β
2
1R

2
1,s − 2λ1,0R

2
1,0,s

≤ 3λ2
1,0β

2
0 + 3λ2

1,0β
2
2R2,s + 3λ2

1,0β
2
1R

2
1,s − 2λ1,0R

2
1,0,s

≤ 3λ2
1,0β

2
0 + 3λ2

1,0β
2
2(R2,0,s +R2,1,s) + 3λ2

1,0β
2
1(R

2
1,0,s +R2

1,1,s)− 2λ1,0R
2
1,0,s

= 3λ2
1,0β

2
0 + 3λ2

1,0β
2
2R2,0,s + 3λ2

1,0β
2
2R2,1,s + 3λ2

1,0β
2
1R

2
1,1,s + (3λ2

1,0β
2
1 − 2λ1,0)R

2
1,0,s

where we used the elementary convexity inequalities

R2
1,s = ((1− θ1)R1,0,s + θ1R1,1,s)

2 ≤ (1− θ1)R
2
1,0,s + θ1R

2
1,1,s ≤ R2

1,0,s +R2
1,1,s , (13)

R2,s = (1− θ2)R2,0,s + θ2R2,1,s ≤ R2,0,s +R2,1,s . (14)

Using this inequality in (12) yields

E
(
R2

1,0,t∧TM

)
≤ R2

1,0,0 +

∫ t

0
E
(
3λ2

1,0β
2
0 + 3λ2

1,0β
2
2R2,0,s∧TM

+ 3λ2
1,0β

2
2R2,1,s∧TM

+ 3λ2
1,0β

2
1R

2
1,1,s∧TM

+ (3λ2
1,0β

2
1 − 2λ1,0)R

2
1,0,s∧TM

)
ds

=: c1,0,0(t) + c1,0,1

∫ t

0
E(R2,0,s∧TM

)ds+ c1,0,1

∫ t

0
E(R2,1,s∧TM

)ds

+ c1,0,1

∫ t

0
E(R2

1,1,s∧TM
)ds+ c1,0,2

∫ t

0
E(R2

1,0,s∧TM
)ds

where c1,0,0(t) is affine in t.
Symmetrically, we have for j = 1 that

λ2
1,1σ

2
s − 2λ1,1R

2
1,1,s ≤ 3λ2

1,1β
2
0 + 3λ2

1,1β
2
2R2,0,s

+ 3λ2
1,1β

2
2R2,1,s + 3λ2

1,1β
2
1R

2
1,0,s + (3λ2

1,1β
2
1 − 2λ1,1)R

2
1,1,s
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and then

E
(
R2

1,1,t∧TM

)
≤ R2

1,1,0 +

∫ t

0
E
(
3λ2

1,1β
2
0 + 3λ2

1,1β
2
2R2,0,s∧TM

+ 3λ2
1,1β

2
2R2,1,s∧TM

+ 3λ2
1,1β

2
1R

2
1,0,s∧TM

+ (3λ2
1,1β

2
1 − 2λ1,1)R

2
1,1,s∧TM

)
ds

=: c1,1,0(t) + c1,1,1

∫ t

0
E(R2,0,s∧TM

)ds+ c1,1,1

∫ t

0
E(R2,1,s∧TM

)ds

+ c1,1,1

∫ t

0
E(R2

1,0,s∧TM
)ds+ c1,1,2

∫ t

0
E(R2

1,1,s∧TM
)ds.

Combining the results for j = 0 and j = 1 yields

E
(
R2

1,0,t∧TM
+ R2

1,1,t∧TM

)
≤ c1,0(t) + c1,1

∫ t

0
E(R2,0,s∧TM

+R2,1,s∧TM
)ds

+ c1,2

∫ t

0
E
(
R2

1,0,s∧TM
+R2

1,1,s∧TM

)
ds (15)

where the constants have the obvious definitions.
Next, we derive a similar bound for R2,j instead of R2

1,j . From the SDE for R2,j ,

E (R2,j,t∧TM
) = R2,j,0 + λ2,j

∫ t

0
E
(
(σ2

s −R2,j,s)1s≤t∧TM

)
ds. (16)

Focusing again on j = 0 first, we insert the definitions of σ2
s and R2,s and estimate

σ2
s −R2,0,s

= (β0 + β1R1,s)
2 + 2β2(β0 + β1R1,s)

√
R2,s + β2

2θ2R2,1,s + (β2
2(1− θ2)− 1)R2,0,s

≤ 2β2
0 + 2β2

1R
2
1,s + β2

0 + β2
2R2,s + β2

1R
2
1,s + β2

2R2,s + β2
2θ2R2,1,s + (β2

2(1− θ2)− 1)R2,0,s

≤ 3β2
0 + 3β2

1R
2
1,s + 3β2

2R2,1,s + (3β2
2 − 1)R2,0,s

≤ 3β2
0 + 3β2

1R
2
1,0,s + 3β2

1R
2
1,1,s + 3β2

2R2,1,s + (3β2
2 − 1)R2,0,s .

Applying this in (16), we conclude that

E (R2,0,t∧TM
) ≤ R2,0,0 + λ2,0

∫ t

0
E
(
3β2

0 + 3β2
1R

2
1,0,s∧TM

+ 3β2
1R

2
1,1,s∧TM

+ 3β2
2R2,1,s∧TM

+ (3β2
2 − 1)R2,0,s∧TM

)
ds

=: c2,0,0(t) + c2,0,1

∫ t

0
E
(
R2

1,0,s∧TM

)
ds+ c2,0,1

∫ t

0
E
(
R2

1,1,s∧TM

)
ds

+ c2,0,1

∫ t

0
E (R2,1,s∧TM

) ds+ c2,0,2

∫ t

0
E (R2,0,s∧TM

) ds.

Symmetrically, we obtain for j = 1 that

σ2
s −R2,1,s ≤ 3β2

0 + 3β2
1R

2
1,0,s + 3β2

1R
2
1,1,s + 3β2

2R2,0,s + (3β2
2 − 1)R2,1,s
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and then

E (R2,1,t∧TM
) ≤ R2,1,0 + λ2,0

∫ t

0
E
(
3β2

0 + 3β2
1R

2
1,0,s

+ 3β2
1R

2
1,1,s + 3β2

2R2,0,s + (3β2
2 − 1)R2,1,s

)
ds

=: c2,1,0(t) + c2,1,1

∫ t

0
E
(
R2

1,0,s∧TM

)
ds+ c2,1,1

∫ t

0
E
(
R2

1,1,s∧TM

)
ds

+ c2,1,1

∫ t

0
E (R2,0,s∧TM

) ds+ c2,1,2

∫ t

0
E (R2,1,s∧TM

) ds.

Adding the two inequalities, we deduce

E (R2,0,t∧TM
+R2,1,t∧TM

)

≤ c2,0(t) + c2,1

∫ t

0
E(R2

1,0,s∧TM
+R2

1,1,s∧TM
)ds

+ c2,2

∫ t

0
E (R2,0,s∧TM

+R2,1,s∧TM
) ds. (17)

We can now add (15) and (17) to obtain

E(Ut∧TM
) ≤ c0(t) + c1

∫ t

0
E(Us∧TM

)ds

where c0(t) is affine and nondecreasing in t and c0(t), c1 do not depend on M . Grönwall’s
inequality then yields

E(Ut∧TM
) ≤ c0(t)e

c1t

which is the desired bound (11).

Remark 3.3. The results in this section generalize to volatility models having the same
dynamics as (4-PDV) for (R1,0,t, R1,1,t, R2,0,t, R2,1,t) but a more general functional

σt = f̃(R1,t, R2,t) = f(R1,0,t, R1,1,t, R2,0,t, R2,1,t),

where

(i) f : R2 × R2
+ → R is continuous, and Lipschitz on compact subsets of R2 × (0,∞)2,

(ii) there are K1,K2 ∈ R such that

f(x0, x1, y0, y1)
2 ≤ K1 +K2(x

2
0 + x21 + y0 + y1). (18)

These conditions for f are satisfied in particular if f̃ satisfies the conditions of Remark 3.3;
this can be seen using inequalities (13) and (14).

Indeed, continuity and local Lipschitz continuity imply the analogue of Proposition 3.1.
Inequality (18) implies that bounding (11) is enough to bound the expectation of σ2

t . More-
over, it implies that, for j ∈ {0, 1}, f satisfies

λ2
1,jf(x0, x1, y0, y1)

2 − 2λ1,jx
2
j ≤ K1,j,0 +K1,j,1(x

2
0 + x21 + y0 + y1) (19)

12



for some K1,j,0,K1,j,1 ∈ R, so that a bound analogous to (15) holds, as well as, for j ∈ {0, 1},

f(x0, x1, y0, y1)
2 − yj ≤ K1 +K2(x

2
0 + x21 + y0 + y1),

so that a bound analogous to (17) holds.

3.2 Failure of Positivity of σt in (4-PDV)

In [4] it is reported that for realistic parameter values, the volatility σt remained positive in
simulations of the 4-factor model. Nevertheless, existence of a reasonable sufficient condition
for σt > 0 (or even just σt ≥ 0) in (4-PDV) remains open. Below, we explain that a direct
generalization of Theorem 2.6 fails. Indeed, in the 4-factor model, σt follows the SDE

dσt =

(
−β1λ̄1R̄1,t +

λ̄2β2
2

σ2
t − R̄2,t√

R2,t

)
dt+ β1λ̄1σtdWt (20)

where

λ̄i := (1− θi)λi,0 + θiλi,1 , R̄i,t :=
(1− θi)λi,0Ri,0,t + θiλi,1Ri,1,t

λ̄i

as seen in [4]. The analogue of the condition in Theorem 2.6 is λ̄2 < 2λ̄1.

Proposition 3.4. Under (4-PDV), it may happen that σ0 > 0 but P(σt < 0) > 0 for some
t > 0, even if λ̄2 < 2λ̄1.

Proof. We choose initial conditions R1,0,0 < 0 and R1,1,0 > 0, and coefficients θ1, λ1,0, λ1,1,
such that R1,0 > 0 and R̄1,0 < 0. Next, choose β1 = −1 (say), and then β2 > 0 such that
β1R1,0 + β2

√
R2,0 = 0. Consider for the moment β0 := 0, then the preceding identity means

that σ0 = 0. Inspecting (20), we see that at t = 0, the volatility vanishes while the drift rate
is

−β1λ̄1R̄1,t −
λ̄2β2
2

R̄2,t√
R2,t

< 0.

By continuity of the paths, it follows that P(σt < 0) > 0 for all t > 0 sufficiently small.
Next, we modify the above by choosing β0 strictly positive, so that σ0 = β0 > 0. We

may see β0 as a parameter of the SDE determining σt. If the solution is continuous with
respect to β0, it follows that P(σt < 0) > 0 for β0 > 0 and t sufficiently small. Continuity is
a standard result for SDEs with Lipschitz coefficients (e.g., [9, Section 4.5]). To see that the
Lipschitz result is sufficient, note that for the present purpose of showing that P(σt < 0) > 0
for some small t > 0, we may truncate the non-Lipschitz coefficients in (4-PDV); that is, we
replace

√
R2,t by

√
R2,t ∨ δ and σ2

t by σ2
t ∧ δ−1 for a small constant δ > 0.

4 Martingale Property of the Price Process

In this section we study the martingale property of the price process (Xt)t≥0; cf. Theorem 1.3.
Following [10, Proof of Lemma 4.2] and [7, Section 5.3], the idea is to rephrase the martin-
gale property into non-explosiveness of another process, and establish the latter. Given a
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continuous adapted process (νt)t≥0, consider the exponential local martingale (Xt)t≥0 given
by

dXt = νtXtdWt, X0 = x0 > 0. (21)

For M > 0, we define the stopping time

TM := inf {t ≥ 0 : |νt| ≥ M} . (22)

Given also t ≥ 0, Novikov’s condition allows us to define a probability measure P̃M,t ≪ P by

dP̃M,t

dP
= exp

{∫ TM∧t

0
νsdWs −

1

2

∫ TM∧t

0
ν2sds

}
.

We have TM → ∞ a.s. given that (νt)t≥0 does not explode in finite time. The martingale
property of (Xt)t≥0 is characterized as follows.

Lemma 4.1. For the local martingale (Xt)t≥0 given by (21), the following are equivalent:

(i) (Xt)t≥0 is a martingale,

(ii) lim infM→∞ E(XTM
1TM<t) = 0 for all t > 0,

(iii) lim infM→∞ P̃M,t(TM < t) = 0 for all t > 0.

Proof. As (Xt)t≥0 is a nonnegative local martingale, it is a supermartingale by Fatou’s lemma,
hence a martingale if and only if x0 = E(Xt) for all t > 0. The bounded process (Xt∧TM

)t≥0

is a martingale, hence

x0 = E(Xt∧TM
) = E(Xt1TM≥t) + E(XTM

1TM<t).

Using monotone convergence for E(Xt1TM≥t), this yields

x0 = E(Xt) + lim inf
M→∞

E(XTM
1TM<t)

and now the equivalence of (i) and (ii) follows. For fixed M > 0 and t ≥ 0,

E(XTM
1TM<t) = E

(
x0 exp

{∫ TM

0
νsdWs −

1

2

∫ TM

0
ν2sds

}
1TM<t

)
= x0E

(
exp

{∫ TM∧t

0
νsdWs −

1

2

∫ TM∧t

0
ν2sds

}
1TM<t

)
= x0P̃M,t(TM < t), (23)

showing the equivalence of (ii) and (iii).

Proposition 4.2. Let (σt)t≥0 be given by (2-PDV). For a fixed constant C ≥ 0, define
the stopping time τ := inf {t ≥ 0 : σt < −C} and set νt := σt∧τ . Then the exponential local
martingale (Xt)t≥0 of (21) is a true martingale.
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Proof. Define the stopping time

SM := inf {t ≥ 0 : |σt| ≥ M} .

Fix t,M > 0. By Girsanov’s theorem,

W̃s = Ws −
∫ s

0
σrdr , 0 ≤ s < t ∧ SM

is a Brownian motion under P̃M,t up to time t ∧ SM . The system (2-PDV) for (R1,s, R2,s)
can be stated up to time t ∧ SM as

σs = β0 + β1R1,s + β2
√
R2,s

dR1,s = λ1σsdW̃s + λ1(σ
2
s −R1,s)ds

dR2,s =
(
λ2σ

2
s − λ2R2,s

)
ds.

By the same arguments as in Lemma 2.1 and Lemma 2.2, this system has a unique strong
solution up to time t∧SM under P̃M,t. The solution (σs) of (2-PDV) up to time t∧SM under
P̃M,t has the same distribution as the solution of (2-PDV˜) in Lemma 4.3 below under P.
For M > C, we also note that t ∧ SM ≥ t ∧ TM ∧ τ . By the assertion of Lemma 4.3, it
then follows that limM→∞ P̃M,t(TM < t) = 0 for any t ≥ 0, which by Lemma 4.1 shows that
(Xt)t≥0 is a martingale.

Lemma 4.3. The following SDE under P has a unique strong solution (σs)s≥0 up to a possible
time of explosion:

σs = β0 + β1R1,s + β2
√
R2,s

dR1,s = λ1σsdWs + λ1(σ
2
s −R1,s)ds (2-PDV˜)

dR2,s =
(
λ2σ

2
s − λ2R2,s

)
ds.

Given C ≥ 0, define τ = inf{t ≥ 0 : σs < −C}. Then the process (σs∧τ )s≥0 a.s. does not
explode in finite time.

Proof. Existence and uniqueness again follows as in Lemma 2.1 and Lemma 2.2. For M > C,
let

TM := inf{s ≥ 0 : |σs∧τ | ≥ M} = inf{s ≥ 0 : σs ≥ M},
SM := inf{s ≥ 0 : |σs| ≥ M}.

Note that τ ≤ TM implies TM = ∞. For fixed t ≥ 0, we can then write

MP(TM ≤ t) = E(σt∧TM
1TM≤t) = E(σt∧TM

1TM≤t1τ>TM
)

= E(σt∧SM
1TM≤t1τ>TM

) ≤ E((C + σt∧SM
)1TM≤t1τ>TM

)

≤ E(C + σt∧SM
) = C + E(σt∧SM

). (24)

Below, we show a bound E(σt∧SM
) ≤ K0 + K1t that is uniform in M . Then, (24) implies

that limM→∞ P(TM ≤ t) = 0, which is the claim.
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Choose β̂2 > 0 small enough such that β1λ1 + β̂2λ2 < 0, and then choose β̄2 > 0 such
that β2

√
x ≤ β̄2 + β̂2x for all x ≥ 0. The first equation in (2-PDV˜) then yields

E(σt∧SM
) ≤ β0 + β̄2 + E(β1R1,t∧SM

+ β̂2R2,t∧SM
) (25)

and we can focus on bounding the last expectation. Using the last two equations in (2-PDV˜),
we have

E(β1R1,t∧SM
+ β̂2R2,t∧SM

) = β1R1,0 + β̂2R2,0+E
(∫ ∞

0

{
(β1λ1 + β̂2λ2)σ

2
s

− λ1β1R1,s − λ2β̂2R2,s

}
1s≤t∧SM

ds
)
. (26)

Defining α := β1λ1 + β̂2λ2 < 0, the term under the integral is

ασ2
s − λ1β1R1,s − λ2β̂2R2,s = αβ2

0 + αβ2
2R2,s + αβ2

1R
2
1,s + 2αβ0β1R1,s

+ 2αβ0β2
√
R2,s + 2αβ1β2R1,s

√
R2,s − λ1β1R1,s − λ2β̂2R2,s

= C +B
√
R2,s +AR2,s

where

C = αβ2
0 + αβ2

1R
2
1,s + 2αβ0β1R1,s − λ1β1R1,s ,

B = 2αβ2(β0 + β1R1,s) , A = αβ2
2 − λ2β̂2

and A < 0 due to α < 0 and λ2β̂2 > 0. Thus, the term is bounded from above by

C − B2

4A
= αβ2

0 + αβ2
1R

2
1,s + 2αβ0β1R1,s − λ1β1R1,s −

4α2β2
2(β

2
0 + β2

2R
2
1,s + 2β0β1R1,s)

4(αβ2
2 − λ2β̂2)

= C ′ +B′R1,s +A′R2
1,s

with

C ′ = αβ2
0 +

α2β2
0β

2
2

λ2β̂2 − αβ2
2

, B′ = 2αβ0β1 − λ1β1 +
2α2β2

2β0β1

λ2β̂2 − αβ2
2

,

A′ = αβ2
1 +

α2β2
1β

2
2

λ2β̂2 − αβ2
2

.

Here again A′ < 0 due to α < 0 and λ2β̂2 > 0, so that the term is bounded from above by
the constant L := C ′ − B′2

4A′ . Using this bound in (26) yields

E(β1R1,t∧SM
+ β̂2R2,t∧SM

) ≤ β1R1,0 + β̂2R2,0 + E
(∫ ∞

0
L1s≤t∧SM

ds

)
≤ β1R1,0 + β̂2R2,0 + |L|t

and thus

E(σt∧SM
) ≤ β0 + β̄2 + β1R1,0 + β̂2R2,0 + |L|t =: K0 +K1t

as claimed.
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Remark 4.4. Proposition 4.2 and its proof generalize to volatility models having the same
dynamics as (2-PDV) for (R1,t, R2,t) but a more general functional σt = f(R1,t, R2,t), where f
satisfies the conditions of Remark 2.5 and in addition there exist constants L1, L2, L3, L ∈ R
such that

f(x, y) ≤ L0 + L1x+ L2y,

(L1λ1 + L2λ2)f(x, y)
2 − λ1L1x− λ2L2y ≤ L.

The constant L1 typically needs to be negative, as in (2-PDV) where L1 = β1 < 0.

Our final remark details why the above proof does not extend to the 4-factor model.

Remark 4.5. The general line of argument given above may extend to (4-PDV). Indeed,
the following SDE under P has a unique strong solution (σs)s≥0 up to a possible time of
explosion:

σt = β0 + β1R1,t + β2
√
R2,t

R1,t = (1− θ1)R1,0,t + θ1R1,1,t

R2,t = (1− θ2)R2,0,t + θ2R2,1,t (4-PDV˜)

dR1,j,t = λ1,jσtdWt + λ1,j(σ
2
t −R1,j,t)dt, j ∈ {0, 1}

dR2,j,t = λ2,j

(
σ2
t −R2,j,t

)
dt, j ∈ {0, 1}.

Given C ≥ 0, define τ = inf{t ≥ 0 : σs < −C}. If the process (σs∧τ )s≥0 a.s. does not explode
in finite time, then the assertion of Theorem 1.3 extends to (4-PDV). However, the proof for
non-explosiveness given in Lemma 4.3 does not extend directly to the present setting.

Indeed, the system (4-PDV˜) satisfies bounds analogous to (24) and (25). Applying the
same procedure as in the proof of Lemma 4.3, and recalling the notation used in (20),

E(β1R1,t∧SM
+ β̂2R2,t∧SM

) =β1R1,0 + β̂2R2,0 + E
(∫ ∞

0

{
(β1λ̄1 + β̂2λ̄2)σ

2
s

− λ1,1θ1β1R1,1,s − λ1,0(1− θ1)β1R1,0,s

− λ2,1θ2β̂2R2,1,s − λ2,0(1− θ2)β̂2R2,0,s

}
1s≤t∧SM

ds
)
.

The integrand is bounded from above by a quadratic form in (R1,0,s, R1,1,s,
√
R2,0,s,

√
R2,1,s);

however, the matrix defining the form is not negative definite. Hence, we cannot bound it
uniformly as we did in Lemma 4.3.
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