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Abstract

We study how to unwind stochastic order flow with minimal transaction costs. Stochastic
order flow arises, e.g., in the central risk book (CRB), a centralized trading desk that aggregates
order flows within a financial institution. The desk can warehouse in-flow orders, ideally netting
them against subsequent opposite orders (internalization), or route them to the market (exter-
nalization) and incur costs related to price impact and bid-ask spread. We model and solve
this problem for a general class of in-flow processes, enabling us to study in detail how in-flow
characteristics affect optimal strategy and core trading metrics. Our model allows for an ana-
lytic solution in semi-closed form and is readily implementable numerically. Compared with a
standard execution problem where the order size is known upfront, the unwind strategy exhibits
an additive adjustment for projected future in-flows. Its sign depends on the autocorrelation
of orders; only truth-telling (martingale) flow is unwound myopically. In addition to analytic
results, we present extensive simulations for different use cases and regimes, and introduce new
metrics of practical interest.
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1 Introduction

This paper aims to model and solve the unwind problem for stochastic order flow; that is, an optimal
execution-type problem where instead of a fixed position known at the initial time, the trading desk
receives a dynamic flow of orders to be unwound.

Our work is motivated by the emergence of central risk books (CRBs) in most investment banks
and several large trading firms over the last few years. The CRB is a trading desk aiming to minimize
transaction costs by aggregating internal order flows. In an ideal situation, all other units within
the organization (and possibly the asset class) interact exclusively with the CRB, instead of trading
directly in the market. In [15, p. 2], CRBs are defined as “the places that (in theory) centralize
the execution of trades for the whole bank.” As the total volume resulting from such centralization
is very large,1 transaction costs are of paramount importance. Orders across different business
lines and strategies can have idiosyncratic directions and timing, leading to a stochastic order flow
(in-flow orders from the desk’s perspective). For instance, an options desk’s delta hedging orders
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percentage of the total trading volume in US equities, currently about $500 billion daily [23].
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are likely independent of prime brokerage clients’ block trades. The CRB nets opposite in-flows
against one another, a process named internalization. Remaining orders can either be routed to
the market (out-flow orders), a process named externalization, or warehoused, meaning that the
CRB temporarily keeps the position on its book. Out-flow orders incur transaction costs including
transient and permanent price impact. The most favorable scenario for a warehoused order is to be
netted against an opposite order later on, thus avoiding transaction costs. Even disregarding that
possibility, warehousing can be beneficial to reduce costs; for instance, immediately externalizing a
sizable block order would often lead to an unnecessarily large price impact.

Our model is also relevant to market makers. Similarly to banks, market makers face orders
from clients ranging from retail traders to institutional funds, resulting in stochastic in-flow.2 The
distinction between in-flow and out-flow is most evident in foreign exchange (FX), where clients
send orders directly to dealers, and dealers unwind their remaining inventory on a central venue
(e.g., EBS), also called the lit market. The Bank of England’s Fair and Effective Markets Review [7,
p. 11] stressed the importance of internalization in this context: “Market participants have indicated
that dealers with large enough market share now internalise up to 90% of their client orders.”3 The
market maker must decide which orders to warehouse and which to unwind, an aspect emphasized
recently by [22]. Also recently, [10] suggested market makers leverage the same mechanisms as CRBs
to unwind sizable inventory considering price impact. The present paper does not discuss how the
market maker should set quotes, usually considered the core problem in the literature on market
making (see [21] and the references therein). Our model is relevant to market makers specifically
in the regime where the inventory gets too large to revert passively through limit orders. Then,
market makers use dedicated algorithms to reduce the inventory aggressively. As the inventory
simultaneously varies due to in-flow orders, this constitutes an unwind problem for a stochastic
flow.

To the best of our knowledge, this is the first study to focus on the unwind problem for stochastic
order flow. Compared with the extensive work on optimal execution, two essential differences arise.
First, the final volume to be executed is unknown at the initial time. Instead, the in-flow of orders
is a stochastic process and the unwind strategy must take into account projected future orders.
Second, there are opportunities for orders to net, which introduces internalization benefits not
directly modeled in the standard setting. Compared with the literature on market making, our
in-flow is uncontrolled. Instead of studying quotes, we focus on minimizing the transaction costs of
unwinding a potentially large inventory subject to stochastic shocks.

The study closest to ours, in terms of methodology and focus on transient price impact, is the
concurrent work [41] on pre-hedging. In their model, a dealer learns about a potential trade through
a client’s request for quote. The probability of winning the trade depends on the dealer’s quote,
and there is uncertainty about the timing of the potential transaction. The authors determine
the optimal pre-hedge strategy: the dealer starts to build inventory ahead of the potential trade,
taking into account transaction costs and the expected size of the trade. Clearly, the potential trade
plays a role similar to our stochastic in-flow. On the other hand, as there is only a single trade,
internalization does not occur in their model. At the opposite extreme, [16] consider internalization
in a queueing model. The dealer can skew their prices to encourage inventory-reducing customer

2Some market makers also use the name CRB. For instance, CEO D. Cifu of global market maker Virtu emphasized
internalization opportunities at a Goldman Sachs Financial Services Conference [25]: “we’re the only firm in the world
that has a central risk book of retail order flow, prop flow, and now institutional agency customers. [ . . . ] So there’s
a real opportunity to be a real internalizer between the buy side and the retail side.”

3The report further highlighted that interdealer trading as a share of overall FX market turnover declined by one
third since the late 1990s, and attributed this to the growth of internalization [7, p. 59]. For reference, the Bank for
International Settlements [11] estimated that interdealer trading in FX accounted for 1 trillion USD daily.
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flow, but there is no option to externalize. While this model is quite different from ours, [16] gives
insightful comments and data sources about internalization in the FX market. The more recent
work [8, 9] combines internalization and externalization. Here a dealer sets quotes to attract flow
and simultaneously hedges in a separate liquidity pool. The authors highlight the optimal behavior:
pure internalization when inventory is small, aggressive externalization when inventory is large. The
liquidity pool in this model bears instantaneous (and permanent impact) cost, but not the transient
impact cost that is the main driving force in our study. A related equilibrium model is formulated
in [6]. This model features clients (liquidity takers) and dealers who absorb their demands. Dealers
trade competitively in the interdealer market and also in an open market subject to instantaneous
transaction costs (but no impact cost). The study solves for the equilibrium price and highlights the
endogenous price impact incurred by the clients. An early contribution with stochastic inventory
shocks is [19] which considers optimal execution with market and limit orders. Limit orders are
executed at random times, leading to stochastic shocks in the inventory. Another paper close to
ours in terms of application is [22], where a foreign exchange market maker streams bespoke quotes
to an informed and a noise trader, and also trades in the lit market. The market maker learns the
signal of the informed trader from his trades and uses it to decide on quotes and externalization of
her order flow, and on speculative trades. In particular, the model derives an unwind strategy for
a specific stochastic order flow that is endogenous to the equilibrium.

By contrast, our approach is to model the stochastic order flow exogenously in a reduced but
general form. That will allow us to analyze the trading metrics of the corresponding optimal strategy
from an input–output perspective and tackle some of the key trading questions. We do not model
incentives the desk can provide their clients to induce orders or the information the desk can glean
from the clients’ orders. In particular, the desk we model does not engage in speculative trades
considering client information.

This paper is organized as follows. In the remainder of the Introduction, Section 1.1 summarizes a
selection of the high-level results, while Section 1.2 reviews background and modeling considerations
around transaction costs and order flow. Section 2 details the mathematical model, then analytically
derives the solution and some of its qualitative properties, with most proofs being reported in
Appendices B and C. Section 3 defines a number of trading metrics and presents simulation studies
on how they react to autocorrelation and volatility of the in-flow. Further numerical results are
reported in Appendix A: relation to classical optimal execution; sensitivities to the spread cost
parameter, the martingale driving the in-flow process, and the initial impact state; and finally
an empirical study on autocorrelation of orders on the public trading tape. Appendix B gathers
the proofs based on the dynamic programming approach while Appendix C proceeds through the
stochastic maximum principle.

1.1 Synopsis

We propose and solve a flexible model for unwinding an exogenously given order flow, rich enough
to serve as a practical order-scheduling algorithm. In particular, it allows for order flows with
momentum or reversal, time-varying volatility and block trades. Moreover, it takes into account
impact and spread costs with possibly time-varying liquidity parameters.

We model price impact by a generalized Obizhaeva–Wang model while instantaneous (spread)
costs during limit order book (LOB) trading are modeled in reduced form by a quadratic penalty
on trading speed. The desk thus trades continuously during the day, but also places block orders in
the opening and closing auctions which only carry impact cost. The desk’s inventory must be flat
after the close. See also Section 1.2 for further modeling background and terminology.

It turns out that our model can be transformed into a linear-quadratic stochastic control problem,
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which is key to its tractability. The optimal intraday trading speed qt takes the form

qt = ftXt + gtYt + htZt

where the time-varying coefficients ft, gt, ht are explicitly determined through an ordinary differential
equation (ODE), and even provided in closed form for the case of constant liquidity parameters. The
coefficients describe the desk’s reaction to the current inventory Xt, the impact state Yt, and the
cumulative in-flow Zt. We will show analytically that ht = 0 when there is no in-flow after the initial
position, meaning that qt = ftXt + gtYt would be the solution in a deterministic optimal-execution
framework. The additional term htZt captures forecasted future in-flows. The sign of ht depends on
whether the in-flow exhibits momentum or reversal. For momentum, the adjustment leads to faster
unwinding as more same-sided orders are expected; this result supports the “overtrading” of orders
often seen in practice. The adjustment is zero if the in-flow is a martingale, thus justifying traders’
intuition that “truth-telling” flows can be executed myopically. The tractability of the model allows
us to rigorously study various other properties by analytic means (see Section 2). This is useful not
only to understand the general dependencies of the output, but also for a desk to recognize, e.g., if
its algorithm incurs excessive model risk by chasing an arbitrage implicit in its liquidity estimates.

Transaction costs such as impact costs are difficulty to study empirically because the unaffected
price (that would have prevailed without the transaction) cannot be observed. Instead, key met-
rics are inherently model-dependent. Having a consistent, computable model for general in-flows
opens the door to analyzing cost metrics side-by-side with model-independent quantities like the
internalization rate. The most essential trading question is how unwind strategy and cost metrics
depend on the characteristics of the in-flow; namely, autocorrelation and volatility. In our numerical
simulations, we observe that all core trading metrics strongly depend on these characteristics, in
line with the industry mantra, know your client. Some key insights are:

• Expected trading costs (per order notional) are minimized at a particular in-flow volatility.
Below that threshold, additional volatility increases the internalization rate, whereas above the
threshold, internalization plateaus and further volatility necessitates more aggressive trading,
driving up costs. As a take-away, a desk may benefit from incentivizing additional order flow
to increase internalization up to the threshold.

• Autocorrelation strongly affects all core trading metrics. Momentum requires more aggressive
trading, increasing both impact costs and spread costs. The ratio between those costs is
approximately stable. Reversion leads to more internalization and more warehousing until the
close; the closing trade represents a larger fraction of the total trading volume.

• Our misspecification analysis shows that it is preferable to err on the optimistic side when
estimating autocorrelation: overestimating momentum sharply increases costs by way of overly
aggressive trading and missed netting opportunities, whereas trading too slowly only incurs
a moderate additional cost by trading too much on the close. Misspecifying in-flow volatility
bears no transaction cost since the unwind strategy’s feedback form is independent of volatility;
only the calculation of expected costs is affected.

Section 3 and Appendix A present numerous further simulation studies, and also introduce new
metrics of interest to practitioners.

Numerical experiments highlight that our model encompasses a wide spectrum of regimes, with
scenarios resembling classical optimal execution and market making occurring as extreme cases. The
regime depends on the realization of the random in-flow trajectory. To illustrate this, Figure 1 shows
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Figure 1: Two realizations of the same model illustrating extreme regimes.

two particular realizations from the same (martingale) in-flow process and the model’s corresponding
optimal unwind strategy. One realization is closer to classical optimal execution: Most orders have
the same sign and the strategy unwinds aggressively to reduce the inventory. Internalization occurs
and leads to a smoothing between in and out-flow, but is not sufficient to control the inventory.
Transaction costs are dominated by price impact. Such scenarios are frequent when the initial
position is large compared to in-flow volatility, and when in-flow exhibits momentum. The other
realization resembles a favorable market-making scenario: orders approximately cancel, the unwind
strategy trades slowly most of the time, and the inventory never gets large. Spread costs are not
negligible compared to impact costs. Such scenarios are frequent when in-flow volatility is large
compared to the initial position, and when in-flow exhibits reversion. The relevance of models that
can capture all regimes was previously emphasized by [16, p. 37]:

“An important message is that the polarisation between internalisers and externalisers
is overly simplistic and that instead one needs to view liquidity providers across a con-
tinuum with passive internalisers at one end [ . . . ] and eventually externalisers at the
other end.”

1.2 Background

Next, we discuss our model’s main ingredients. The trading metrics for its analysis are discussed in
Section 3.1.

In-flow or order flow4 refers to the incoming orders from the desk’s clients. Practitioners propose
stochastic processes for in-flow based on internal historical data. Depending on the organization,
the clients, and the order options offered to them, the desk will observe different characteristics.
The in-flow is generally stochastic, potentially with jumps if block orders are allowed, and there is
a pronounced time-of-day effect: most orders arrive shortly after the open or before the close, as
reflected in market volumes. For examples of intraday trading patterns, see [21, 13]. In-flow may
exhibit momentum, for instance, if clients slice their orders to mask the total volume, or if they target
momentum strategies. See [49] for an in-depth empirical analysis of market flow autocorrelation.
Because splitting of meta orders is common in LOB trading, order flow on the public trading tape
exhibits momentum, a finding that we confirm empirically for all S&P 500 stocks (see Section A.4).
We emphasize that the situation might be quite different for a CRB with internal clients, say, which
ideally (though maybe not in practice) deliver “truth-telling” (martingale) flow by being upfront
about their volume. Less frequently, in-flow may exhibit mean reversion, for instance, if clients

4The term “order flow” is used differently in [20]. There, order flow represents the orders sent to the market by
other market participants and the focus is on how those orders impact prices available during execution.
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follow a mean-reversion strategy or if they tend to cancel orders mid-execution.5 Our model uses a
stochastic process

dZt = −θtZt dt+ σt dWt

with time-varying parameters to allow for a wide range of client scenarios. It exhibits momentum
(reversion) if θt < 0 (> 0). In practice, execution desks have ample historical data to determine
suitable parameters and want to ensure their in-flow model reflects their client base. Indeed, different
desks achieve different model parameters, with more sophisticated desks achieving milder order flow.
For instance, a CRB with strong relationships may attract clients with less momentum. Another
example is a low-latency market-maker: they could cancel limit orders and widen spreads when
predicting more toxic (momentum) flow, effectively achieving a milder in-flow compared to the
average market participant.

We use a Brownian motion driver σt dWt to keep the model readily understandable to a broader
audience but show in Section 2.4 that the results extend to a general martingale driver dMt with
minor modifications, thus covering in-flows with jumps, self-excitement, etc. In the numerical
experiments of Section 3, we use a driver of finite-variation so that trading metrics can be expressed
“per order notional.”

Unwind trades or out-flow are the market-facing trades of the desk. We denote by Qt the
cumulative unwind trades up to time t; this is the control variable in our model. An order scheduling
algorithm typically uses block trades at the open and closing auctions and trades continuously on
the limit order book during the day. The desk’s available actions may differ from the clients’ options
for submitting orders. For example, clients might submit block orders intraday, leading to jumps in
a CRB’s position that cannot be unwound immediately (at a reasonable cost). Another example of
a client-triggered block trade is when a market maker’s resting order in a dark pool gets filled by a
large mutual fund.

The desk’s outstanding position or inventory Xt = Qt−Zt is the difference between the unwind
trades and the in-flow. For simplicity, our model focuses on a single trading day and a desk that
does not hold overnight positions. Hence, we impose the liquidation constraint XT = 0 at the time
horizon T corresponding to the end of the closing auction.

Transaction costs come in two forms: price impact and bid-ask spread. For CRBs servicing
major financial institutions, trading costs are primarily driven by price impact, but spread costs are
not negligible. For example, Nasdaq’s The 2022 Intern’s Guide to Trading [40] gives numbers for
large-cap stocks of 30 basis points for price impact and 5 basis points for spread costs.

A price impact model generally consists of two elements. First, a push factor, also called Kyle’s
lambda, describes a market fill’s immediate effect on the midprice. Second, a decay kernel describes
how quickly this dislocation reverts in the absence of further fills. The interplay between push and
reversion dictates the optimal trading speed. Empirically, traders observe a time-of-day effect for
Kyle’s lambda: it is largest near the open and smallest near the close. See, e.g., [26] and [42]. See
[48] for estimates of price impact in auctions.

The observed execution price Pt is thought of as the sum Pt = St+Yt of an “unaffected” price St

(that would have prevailed without our trading) and a market impact process Yt. Our model uses
a generalized Obizhaeva–Wang (OW) model [45] with time-dependent coefficients,

dYt = −βtYt dt+ λt dQt.

5The latter can occur if an execution desk allows for reductions of order size during execution but not for increases,
as clients may then deliberately overstate the initial order and leverage the free option to reduce the order’s size.
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Thus a trade of size δQt immediately dislocates the price by λtδQt, and the dislocation decays
exponentially at rate βt. This applies to block trades as well as to continuous trading. To the
best of our knowledge, the generalized Obizhaeva–Wang model was first introduced in [27]. We use
time-dependent but deterministic coefficients (in practice, these curves are typically fixed at the
beginning of the day, based on data from previous trading sessions). A stochastic resilience βt was
considered in [33]. Both βt and λt are stochastic in the formulation of [2] which in addition allows
for a stochastic terminal condition. In principle, this allows to model stochastic in-flows, though the
paper does not elaborate on that application. Other price impact models consider non-exponential
kernels, as empirically studied in [14] and solved by [1], or non-linear price impact, as introduced
by [14, 3] and studied by [30, 42, 35].

We do not model permanent impact (i.e., impact without decay). Because initial and terminal
inventory are fixed, permanent impact only adds a constant to the cost and does not affect the
optimal strategy (see [27, Proposition 3.3] for a detailed proof).

For costs related to the bid-ask spread, we use a straightforward model as in [5]: intraday trading
incurs a quadratic instantaneous cost 1

2εtq
2
t on the trading speed qt = Q̇t. While this forces intraday

trading to be continuous, no such cost is charged for the auctions. We abuse the term “spread costs”
in that this reduced-form cost stands in not just for the spread costs of market orders, but also for
adverse selection incurred by limit orders and any other instantaneous costs that do not change the
price in a persistent way.

If the desk nets orders of opposite sign instead of routing them to the market, it saves the
associated spread costs entirely. We emphasize that the situation is different for impact costs, as
this is often overlooked: Suppose a buy order pushes up the price. It incurs an impact cost, but a
sell order immediately following it benefits from the increased price, so that the sum of the costs is
approximately zero. In general, the cost saving due to netting is related to the impact decay that
would have occurred between the trades.

To focus our study on the core internalization and externalization trade-off, and to provide
results that are agnostic to the proprietary signals the desk has access to, we model the unaffected
price S as a martingale. For considerations around toxic flows and proprietary trading, see for
instance [22, 38].

2 Analytic Results: Optimal Strategy and Cost

This section contains our theoretical results. Section 2.1 details the mathematical formulation of
the problem. Section 2.2 provides the optimal unwind strategy and its expected cost, for the case
of in-flow driven by Brownian motion and possibly time-varying liquidity parameters. Section 2.3
presents the high-level steps of its derivation and further details; the technical proofs are reported
in Appendix B. Section 2.4 generalizes the results to in-flows driven by a more general martingale
(possibly with jumps, non-Markovian, etc.). On the other hand, Section 2.5 specializes to constant
liquidity parameters and a provides a closed-form solution for that case. The latter result is derived
by a different approach than the rest (maximum principle instead of dynamic programming); the
proof is reported in Appendix C.

2.1 Problem Formulation

We fix the time horizon T > 0 and bounded, measurable functions β, λ, ε : [0, T ] → (0,∞), θ :
[0, T ] → R and σ : [0, T ] → [0,∞), where ε, λ are also bounded away from zero. Moreover, λ is
differentiable and its derivative λ̇ is bounded. For convenience, we denote γt := log λt. We also
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introduce an additional value λ0− ∈ (0,∞) representing the opening auction’s liquidity parameter.
We assume throughout that

λ0− ≤ λ0 and 2βt + γ̇t > 0, (2.1)

which is trivially satisfied if the liquidity parameters are constant in time. We will see in Section 2.3
that these are no-arbitrage conditions, excluding profitable roundtrip trades and ensuring that our
problem is convex. See [32] for estimates of price impact based on TAQ data and a comparison
across continuous trading, closing auction, and opening auction.

Remark 2.1 (Price manipulation). Fast increases in liquidity can give rise to arbitrage, or price
manipulation, as first noted by [36]: if one order pumps the price and a subsequent order of opposite
sign has less price impact, a profitable roundtrip arises, unless the price has sufficiently reverted
between the trades. We will see in Section 2.3 that (2.1) exclude such profitable (or free) roundtrips.
For one of our comparative statics below (Proposition 2.3), we will require a strengthening of the
second part of (2.1), namely that βt+ γ̇t > 0. This is related to additionally excluding “transaction-
triggered price manipulation,” first studied by [4, 31]. See Remark 2.9 for further details, and
Remark 2.10 for practical aspects. Note that the price impact parameter for the closing auction is
λT = limt→T λt. A trader may be interested in specifying a smaller value for Kyle’s lambda in the
auction compared to LOB trading before the close. However, this would immediately give rise to
price manipulation strategies. That may, of course, be an artifact of our simplified model for the
auction—an area left for further investigation. (One could specify a value larger than λT , but this
is not relevant in practice; see [32].)

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space satisfying the usual conditions, endowed
with a Brownian motion W = (Wt)t∈[0,T ] and a càdlàg martingale S = (St)t∈[0,T ]. The process S is
required to satisfy a minor integrability condition (see Footnote 11).

We define the in-flow process Z by Z0 = z ∈ R and

dZt = −θtZt dt+ σt dWt, t ∈ [0, T ]. (2.2)

This process represents the aggregated order flow the desk faces. The sign convention follows
the client’s perspective; e.g., a positive increment corresponds to a buy order, causing a negative
increment in the desk’s outstanding position. The initial value z represents the orders present at
the beginning of our problem.

Next, consider a càdlàg semimartingale (Qt)t∈[0,T ] with Q0− = 0, representing the desk’s cu-
mulative unwind trades (out-flow). Here and below, certain processes are defined at time t = 0−
to allow for a jump at the initial time, in this case, a block trade ∆Q0 = Q0 − Q0− = Q0 in the
opening auction. Given Q, its price impact process Y is defined by Y0− = y and

dYt = −βtYt dt+ λt− dQt, t ∈ [0, T ]. (2.3)

Here and below, our convention is that integrals such as
∫ t
0 λs− dQs are taken over the closed interval

[0, t], as for instance in [47]. In particular, a jump ∆Q0 in the integrator leads to a jump of the
integral at t = 0. In our model, Q will typically have block trades at the initial and terminal times,
so that (2.3) gives rise to jumps in the impact process,

∆Y0 = Y0 − y = λ0−Q0 and ∆YT = YT − YT− = λT (QT −QT−). (2.4)

Thus, y represents the impact state when our problem begins (e.g., impact from the previous day’s
trading) and λ0−Q0 is the change in impact state due to the block trade in the opening auction.

8



In our model, the trading speed bears a quadratic cost on (0, T ). Hence unwind strategies (Qt)
trade in an absolutely continuous fashion on (0, T ), in addition to the block trades at t = 0 and
t = T :

Qt := J0 +Qc
t + JT1t=T , Qc

t :=

∫ t

0
qs ds. (2.5)

Specifically, we define an admissible strategy as a triplet (J0, q, JT ). Here J0 ∈ R and JT ∈
L2(FT ). Moreover, (qt)t∈[0,T ] is a progressively measurable process such that E[

∫ T
0 q2t dt] < ∞ and

such that the local martingale
∫ t
0 Q

c
s dSs is a true martingale. Finally,

J0 +

∫ T

0
qs ds+ JT = ZT . (2.6)

Thus J0 and JT are the sizes of the block trades ∆Q0 and ∆QT , and q is the speed of absolutely
continuous trading during regular hours. Finally, (2.6) is the liquidation constraint QT = ZT .
Occasionally it will be convenient to switch between seeing the strategy as a triplet (J0, q, JT ) or a
process Q. We then write Q ≡ (J0, q, JT ) to indicate that the relationship (2.5) holds.

Let A denote the set of admissible strategies. Given Q ≡ (J0, q, JT ) ∈ A, the execution price is

Pt :=

{
St +

1
2(Yt− + Yt), t ∈ {0, T},

St + Yt +
1
2εtqt, t ∈ (0, T ).

(2.7)

The returns from trading at the execution price Pt can be broken down into three parts.

(i) The frictionless wealth

S0J0 +

∫ T

0
Stqt dt+ STJT

reflects returns from the unaffected price (not caused by the unwind strategy).

(ii) The impact cost
1

2
(Y0− + Y0) J0 +

∫ T

0
Ytqt dt+

1

2
(YT− + YT ) JT (2.8)

reflects returns caused by the the price impact of the unwind strategy.

(iii) The spread cost (or more precisely, instantaneous cost)

1

2

∫ T

0
εtq

2
t dt. (2.9)

As described in Section 1.2, t ∈ {0, T} corresponds to the opening and closing auctions. There is no
spread cost, but there is price impact. The first part of (2.7) (and the jump terms in (2.8)) reflect
that the Obizhaeva–Wang model prices a block trade at the average price over the volume of the
block. For t ∈ (0, T ), we also have the instantaneous cost, and as trading is necessarily continuous,
we can write Yt instead of 1

2(Yt− + Yt) in the second part of (2.7) (and in the integral of (2.8)).
The expected execution cost of a given unwind strategy is

C(J0, q, JT ) := E
[∫ T

0
Pt dQt

]
= E

[
P0J0 +

∫ T

0
Ptqt dt+ PTJT

]
. (2.10)

The desk’s aim is to minimize this cost,

inf
(J0,q,JT )∈A

C(J0, q, JT ). (2.11)
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2.2 Optimal Strategy

The next result provides a semi-closed form solution for the optimal strategy and optimal cost
of (2.11); i.e., explicit up to solving an ordinary differential equation (ODE). The ODE does not
depend on the realization of the in-flow path, so that it can pre-computed in an implementation.
For the case of constant liquidity parameters β, λ, ε, Section 2.5 will even provide a fully explicit
solution; on the other hand, Section 2.4 will cover more general in-flow processes. We emphasize
that the implementation of the below formulas is straightforward (even if some look lengthy).

Theorem 2.2. The problem (2.11) has a unique solution. The optimal strategy (J0, q, JT ) ∈ A is

qt = ftXt + gtY
c
t + htZt, t ∈ [0, T ], (2.12)

J0 = r−1(g0− + η0−)y + r−1(−f0− + h0−)z,

JT = ZT − J0 −
∫ T

0
qt dt,

where η0− = −ε−1
0 (1− λ0−/λ0) ≤ 0 and r = −f0− − λ0− (g0− + η0−) > 0 are constants and

ft = −ε−1
t (At + λtBt),

gt = −ε−1
t (Bt + λtCt), (2.13)

ht = −ε−1
t (Dt + λtEt)

for t ∈ {0−} ∪ [0, T ]. Here, At, Bt, . . . are deterministic functions given by the Riccati ODE sys-
tem (2.20) below, and ε0− := ε0, A0− := A0, B0− := B0, . . . . Finally, the state processes in (2.12)
are 

dXt = qt dt− dZt, X0 = J0 − z

dY c
t = (−βtY

c
t + λtqt) dt, Y c

0 = y + λ0−J0

dZt = −θtZt dt+ σt dWt, Z0 = z.

(2.14)

The optimal expected cost (2.11) is

C(J0, q, JT ) = v(0, J0 − z, y + λ0−J0, z) +
1

2

{(
λ−1
0− − λ−1

0

)
(y + λ0−J0)

2 − λ−1
0−y

2 + E[STZT ]
}

where v is the quadratic polynomial (2.18) with coefficients A0, B0, . . . .

The key formula (2.12) states that the optimal trading speed qt is a linear combination of the
auxiliary state processes (Xt, Y

c
t , Zt) with time-varying coefficients (ft, gt, ht) determined through

the Riccati ODE. The coefficients are discussed in more detail in the next proposition. The processes
(Xt, Y

c
t ) in (2.14) are the inventory and impact state, but only up to the close. More precisely, they

are equal to (Qt−Zt, Yt) on [0, T ) but are continuous at t = T , so that (XT , Y
c
T ) = (QT−−ZT−, YT−)

corresponds to the values immediately before the closing auction. Moreover, the jumps from the
opening auction have been absorbed into the initial positions (X0, Y

c
0 ). As before, Z is the in-flow.

The optimal trading speed qt in (2.12) is given by the feedback function ftx + gty + htz; thus
ft reflects the reaction to outstanding position, gt to impact state, and ht to in-flow. The next
proposition summarizes their key properties. (See Remark 2.9 for a discussion of the less important
regime βt + γ̇t ≤ 0 related to transaction-triggered price manipulation.)

Proposition 2.3. (i) Let βt+ γ̇t > 0. We have ft < 0 for all t < T : a larger outstanding position
causes faster selling.
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(ii) We have gt < 0 for all t < T : higher impact state causes slower selling.

(iii) We have h ≡ 0 if θ ≡ 0 (martingale in-flow). Let βt + γ̇t > 0. Then h is monotone decreasing
wrt. θ; in particular, h ≥ 0 if θ ≤ 0 (in-flow with momentum) and h ≤ 0 if θ ≥ 0 (in-flow
with reversion).

(iv) The functions f and g depend on the liquidity parameters (ε, β, λ), but not on the on the
characteristics (θ, σ) of the in-flow. The function h additionally depends on θ. The volatility
σ does not affect the strategy (in feedback form) but increases the execution cost C(J0, q, JT ).

The feedback function quantifies some of our intuition on internalizing or externalizing orders.
As seen in (i) and (ii), ft promotes externalization when the inventory becomes sizable and gt
promotes internalization when the impact state is high (in absolute value). In view of (iii) and (iv),
the contribution of order flow predictions becomes clear: in comparison with a standard optimal
execution problem where the total order is given at t = 0, the unwind speed is adjusted to the
random in-flow Z by adding the term htZt. If the in-flow has no drift (θ ≡ 0), then no adjustment
is necessary. Traders say in that case that the order flow is truth-telling ; it does not predict future
orders. Of course, the realization of qt still depends on the realization of Zt, but the optimal strategy
is myopic in the sense that it does not anticipate future changes of the in-flow (because these changes
have mean zero). By contrast, the strategy does adjust for projected future changes when there
is momentum, as expected if clients are splitting meta orders, or when there is reversion (see also
Section 1.2). The coefficient ht promotes internalization if order flow is reverting, whereas in the
more common case of momentum flow, ht leads to additional externalization as one predicts more
same-sided orders.

2.3 Reduction to Linear-Quadratic Control

To solve our problem, we first derive the optimal strategy and cost after an exogenously given block
trade of arbitrary size J0 in the opening auction. In particular, for J0 = 0, we solve the problem in
a market without opening auction (or, the problem started at a time after the opening auction). In
a second step, we will then optimize the result of this problem over J0 ∈ R (see Proposition 2.12)
to solve the full problem (2.11).

To derive the optimal continuous strategy, we recast our problem: the liquidation constraint
can be reformulated to say that the block trade JT in the closing auction must match whatever is
the outstanding position immediately before that auction. We can thus focus on the continuous
trading on (0, T ) and let JT be determined via the constraint (2.6). This effectively replaces the
state constraint with a terminal cost: after the continuous trading, the desk is charged the cost of
the block trade determined via the constraint. A priori, this terminal cost is intractable, but the
next result shows that it can be transformed into a rather convenient form. More precisely, our
problem is expressed as a tractable control problem of linear-quadratic (LQ) type.

Proposition 2.4. Let (J0, q, JT ) ∈ A. The execution cost (2.10) can be stated as

C(J0, q, JT ) =
1

2
E
{∫ T

0

[
2βt + γ̇t

λt
(Y c

t )
2 + εtq

2
t

]
dt+

1

λT
(λTXT − Y c

T )
2

+

(
1

λ0−
− 1

λ0

)
(Y c

0 )
2 − y2

λ0−
+ STZT

}
, (2.15)

where (Xt, Y
c
t , Zt)t∈[0,T ] are defined by (2.14).
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The proof is stated in Appendix B. We note that the cost (2.15) no longer contains JT . As J0 is
considered fixed at the moment, the last three terms in the cost (2.15) are independent of q and can
thus be neglected for the purpose of finding the optimal continuous strategy q. (When λ0 = λ0−,
those terms are independent of J0 as well, but that is not crucial.) On a more technical note, we
observe that the no-arbitrage conditions (2.1) are necessary to make (2.15) (strictly) convex. In
particular, we have the following.

Corollary 2.5 (No free roundtrips). Suppose that there is no in-flow (Z ≡ 0) and that the initial
impact state is y = 0. If (J0, q, JT ) ∈ A satisfies C(J0, q, JT ) = 0, then J0 = JT = 0 and q = 0
dt-a.e.

Proof. Recall that 2βt + γ̇t > 0 by (2.1). If J0 ̸= 0, then Y c
0 = y + λ0−J0 ̸= 0. As t 7→ Y c

t is
continuous, (2.15) shows that C(J0, q, JT ) > 0. Similarly, if q ̸= 0, then C(J0, q, JT ) > 0 as ε > 0.
Finally, if J0 = 0 and q = 0, the liquidation constraint implies JT = 0.

In summary, we have transformed our problem into a more standard LQ control problem with
control q. The next result solves this problem using dynamic programming. As usual in the dynamic
programming approach, we consider the problem from arbitrary initial states (x, y, z) and initial
time t. Moreover we ignore the terms (λ−1

0− − λ−1
0 )(Y c

0 )
2 − λ−1

0−y
2 + STZT in the cost (2.15) as their

expectation is the same for any admissible choice of q.

Proposition 2.6. Fix t ∈ [0, T ) and let Q be the set of progressively measurable processes q with
E[
∫ T
t q2s ds]. For q ∈ Q and x, y, z ∈ R, define the state processes (Xs, Y

c
s , Zs)s∈[t,T ] by

dXs = qs ds− dZs, Xt = x

dY c
s = (−βsY

c
s + λsqs) ds, Y c

t = y

dZs = −θsZs ds+ σs dWs, Zt = z

(2.16)

and the value function v(t, x, y, z) by

inf
q∈Q

1

2
E
{∫ T

t

[
2βs + γ̇s

λs
(Y c

s )
2 + εsq

2
s

]
ds+

1

λT
(λTXT − Y c

T )
2

}
. (2.17)

Then

v(t, x, y, z) =
1

2
Atx

2 +Btxy +
1

2
Cty

2 +Dtxz + Etyz +
1

2
Ftz

2 +Kt, (2.18)

where At, Bt, . . . ,Kt are deterministic functions defined in Proposition 2.7 below. Moreover, the
unique optimal control for (2.17) is given by the feedback function

q∗(s, x, y, z) = fsx+ gsy + hsz, (2.19)

where

fs := −ε−1
s (As + λsBs),

gs := −ε−1
s (Bs + λsCs),

hs := −ε−1
s (Ds + λsEs).

The proof is stated in Appendix B. The following functions where used in (2.18).
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Proposition 2.7. The following Riccati ODE system has a unique solution on [0, T ]:

Ȧt = ε−1
t (At + λtBt)

2, AT = λT

Ḃt = ε−1
t (At + λtBt)(Bt + λtCt) + βtBt, BT = −1

Ċt = ε−1
t (Bt + λtCt)

2 + 2βtCt − λ−1
t (2βt + γ̇t), CT = λ−1

T

Ḋt = ε−1
t (At + λtBt)(Dt + λtEt)− θt(At −Dt), DT = 0

Ėt = ε−1
t (Bt + λtCt)(Dt + λtEt)− θt(Bt − Et) + βtEt, ET = 0

Ḟt = ε−1
t (Dt + λtEt)

2 − 2θt(Dt − Ft), FT = 0

K̇t = −σ2
t (At − 2Dt + Ft)/2, KT = 0.

(2.20)

Again, the proof is stated in Appendix B. Some observations regarding (2.20) are in order:

(i) A,B,C form an autonomous system depending on the market impact parameters εt, βt, λt

but not on the characteristics of the in-flow Z.

(ii) D,E, F also depend on the mean reversion θt. If the in-flow is a martingale (θ ≡ 0), then
D,E, F ≡ 0.

(iii) K also depends on the volatility of Z. If the in-flow is deterministic (σ ≡ 0), then K ≡ 0.

The following analytic result on At, Bt, . . . ,Kt implies the properties of the optimal unwind
speed reported in Proposition 2.3 by way of the formulas for ft, gt, ht in (2.13).

Proposition 2.8. Let At, Bt, . . . ,Kt be the functions defined in (2.20).

(i) The matrix [
At Bt

Bt Ct

]
is nonnegative definite, 0 ≤ Ct ≤ λ−1

t , and Bt + λtCt > 0 for t ∈ [0, T ).

(ii) Let βt + γ̇t > 0. Then

At + λtBt > max(Dt + λtEt, 0) and Bt < min(Et, 0), t ∈ [0, T ).

(iii) Let βt + γ̇t > 0. Let θ̃ : [0, T ] → R be measurable and bounded, and define D̃, Ẽ like D,E but
with θ̃ instead of θ. If θt ≥ θ̃t for t ∈ [0, T ], then

Dt + λtEt ≥ D̃t + λtẼt and Et ≤ Ẽt, t ∈ [0, T ].

In particular, θt ≥ 0, t ∈ [0, T ] implies Dt + λtEt ≥ 0 and Et ≤ 0.

The proof is stated in Appendix B. The work [33] on stochastic resilience (i.e., stochastic βt)
features a backward stochastic differential system with singular terminal condition that plays a
similar role as our (much simpler) ODE system (2.20). We have benefited from several ideas in [33]
for proving Proposition 2.8.
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Remark 2.9 (Transaction-triggered price manipulation). Under the condition βt + γ̇t > 0, Propo-
sition 2.8 yields in particular that ft < 0 for t ∈ [0, T ), which is the result reported in Proposi-
tion 2.3 (i). Then, a larger positive outstanding position leads to faster selling and a larger negative
position leads to faster buying. If βt + γ̇t < 0, the proof of Proposition 2.8 shows that ft > 0 for
t ∈ [t0, T ), for some t0 < T . Thus, the opposite behavior occurs: given a large positive outstanding
position, the optimal strategy will initially add to the position, only to unwind later. This corre-
sponds to the transaction-triggered price manipulation discussed in detail in [28, Theorem 8.4 and
Corollary 8.5]. While the weaker condition 2β + γ̇ ≥ 0 from (2.1) rules out profitable round trips
from zero initial position, it does not rule out profitable round trips from non-zero initial position.

If this seems unintuitive, considering the boundary case where βt + γ̇t = 0 for t ∈ [0, T ] may
be helpful. In this regime, the benefit of trading earlier to exploit the reversion βt of the impact
process exactly offsets the benefit of trading later to exploit the increase in liquidity (decay of λt)
over time. Specifically, the proof of Proposition 2.8 shows that ft = ht = 0, whereas gt < 0 for
t ∈ [0, T ). Thus, the optimal trading speed (2.19) only depends on the current impact state, not
on the current outstanding position. If the impact state at t is zero, no trading occurs over [t, T );
if the impact state at t is positive (negative), the optimal policy sells (buys) over [t, T ), to exploit
the reversion of the impact process. In either case, the remaining outstanding position is unwound
in the closing auction.

Remark 2.10 (Practical use of no-price manipulation conditions). Due to our framework’s inherent
tractability, practitioners can directly apply no-price manipulation conditions on live data. Indeed,
the condition only involves the liquidity curves β, λ, which the trading team typically builds from
volume predictions or order book data. For instance, see [26] and [42], which fit parametric models
of λ as functions of order book depth and market volumes, respectively.

Intuitively, the condition states that “liquidity cannot increase faster than impact reverts with-
out triggering price manipulation opportunities.” If a given liquidity forecast breaches a no-price
manipulation condition, traders can take two actions:

(i) Switch to a simpler externalization strategy, e.g., VWAP or a constant parameter OW model.
This avoids having the algorithm engage in odd trading patterns due to potential liquidity
mirages.

(ii) Investigate the liquidity surge that triggered the breach: Is there a data or model problem, or
is the sudden liquidity caused by abnormal market behavior, e.g., order spoofing?

In that sense, no-price manipulation conditions are to trading algorithms as no-arbitrage condi-
tions are to option pricing models. Models trade under the assumption they don’t exist, but traders
monitor the market for unexplained behavior.

Next, we return to the derivation of the optimal strategy and cost. We can now deduce the
optimal expected cost when the block trade in the opening auction is prescribed to be of size
j0 ∈ R, by evaluating the auxiliary value function (2.18) at the corresponding initial conditions and
adding back the constant terms of (2.15). This yields the following.

Corollary 2.11. Given j0 ∈ R, the optimal execution cost is

inf
(J0,q,JT )∈A

J0=j0

C(J0, q, JT ) = v(0, j0 − z, y + λ0−j0, z)

+
1

2

{(
λ−1
0− − λ−1

0

)
(y + λ0−j0)

2 − λ−1
0−y

2 + E[STZT ]
}
. (2.21)
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The optimal trading speed in feedback form is given by (2.19), with the state processes started at
time 0 with the initial condition (x, y, z) = (j0 − z, y + λ0−j0, z).

Finally, we determine the optimal size J0 for the block trade in the opening auction.

Proposition 2.12. The optimal initial block trade is

J0 = r−1(g0− + η0−)y + r−1(−f0− + h0−)z, (2.22)

where η0− := −ε−1
0 (1− λ0−/λ0) ≤ 0,

g0− + η0− < 0 and r := −f0− − λ0− (g0− + η0−) > 0.

If βt + γ̇t > 0 for t ∈ [0, T ], then −f0− + h0− > 0.

The proof is stated in Appendix B. We see that the coefficients of y and z in (2.22) resemble
the ones of the trading speed q and have similar comparative statics (cf. Proposition 2.3). That
the coefficient of z contains f and not only h, is merely a consequence of our notation: the initial
in-flow z also represents an outstanding position of x := −z at the beginning of the auction, and
now −f0−z = f0−x is analogous to the formula of q.

2.4 In-Flows with Jumps

In this section we generalize our results to more general in-flow processes

dZs = −θsZs ds+ dMs, Z0 = z, (2.23)

where Mt is a general martingale instead of
∫ t
0 σs dWs. Specifically, allowing a process with jumps is

important as a CRB’s in-flow may contain large block orders, and market makers may receive large
block trades from dark pools. Self-exciting (hence non-Markovian) dynamics are also relevant. The
main take-away is that the formula for the optimal strategy remains unchanged (similarly as, e.g.,
in [29]), whereas the expression of the optimal expected cost involves an integral of the quadratic
variation of M . This generalizes our previous observations in Proposition 2.3, where the optimal
strategy was independent of σ while the cost was an integral against σ2

s ds (as seen in the formula
for K in (2.20)).

Let M be a càdlàg, square-integrable martingale with M0 = 0. We consider a variant of the
control problem in Proposition 2.6, now only for the initial time t = 0 (since M was not assumed to
be Markovian). To state its solution, we define the deterministic functions At, . . . , Et as in (2.20),
whereas Kt is generalized to the stochastic process

Kt := E
[ ∫ T

t

1

2
(As − 2Ds + Fs) d[M,M ]s

∣∣∣∣Ft

]
. (2.24)

At a technical level, we also need to amend the definition of an admissible strategy and impose a
mild integrability condition (see the proof).

Proposition 2.13. Define the state processes X,Y c as in (2.16) while Z is generalized to (2.23).
Moreover, define A, . . . , E as in Proposition 2.7 whereas K is generalized to (2.24).

(i) The problem (2.17) admits a unique optimal strategy q∗, given by the same feedback function
as in (2.19).

(ii) The value of (2.17) is given by

V0 :=
1

2
A0x

2 +B0xy +
1

2
C0y

2 +D0xz + E0yz +
1

2
F0z

2 +K0.

The proof is sketched in Appendix B.
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2.5 Closed-form Solution for Constant Liquidity

In this section we assume that the liquidity parameters β, λ, ε ∈ (0,∞) are constant (and in partic-
ular λ0− = λ). The coefficients θt, σt of the in-flow can still be time-dependent. In that setting, we
can obtain the optimal strategy in closed form. This solution is based on a different approach, the
stochastic maximum principle, which avoids the Riccati system (2.20). On an abstract level, the
dynamic programming approach implies the conclusion of the stochastic maximum principle in our
context. However, the stochastic maximum principle focuses on the optimal strategy along the op-
timal state trajectory, and sometimes leads to a closed-form solution even if dynamic programming
does not.

Theorem 2.14. Let β, λ, ε ∈ (0,∞) be constant and define also

ε̃ :=
εβ

2λ
, κ := β

√
1 + ε̃−1 > β.

Then the functions ft, gt, ht of Theorem 2.2 are given by

ft = f̃t(e
κ(T−t) − 1)/dt, (2.25)

gt = g̃t(e
κ(T−t) − 1)/dt, (2.26)

ht = ft(1− e−
∫ T
t θu du) (2.27)

for all t ∈ [0, T ], where

f̃t : = −[β−1 − (κ+ β)−1]e−κ(T−t) − [β−1 + (κ− β)−1],

g̃t : = λ−1f̃t − λ−1(1 + e−κ(T−t))(T − t) + 2λ−1κ−1(1− e−κ(T−t)),

dt : = eκ(T−t)
{
(κ− β)−1[(κ− β)−1 + β−1 − κ−1] + β−1κ−1

}
+ e−κ(T−t)

{
(κ+ β)−1[−(κ+ β)−1 + β−1 + κ−1] + β−1κ−1

}
+ (T − t)eκ(T−t)(κ− β)−1 + (T − t)e−κ(T−t)(κ+ β)−1 + 4ε̃β−1κ−1.

Moreover, f0− = f0, g0− = g0, h0− = h0.

The proof is reported in Appendix C. By specifying the functions ft, gt, ht, Theorem 2.14 gives
the optimal strategy q in feedback form (as well as the optimal block trade). This may seem
surprising, as the maximum principle generally only yields the control in open-loop form, along the
optimal trajectory. Indeed, to derive Theorem 2.14, the maximum principle is carried out from an
arbitrary initial state (t, x, y, z) and then the feedback function is recovered by identifying the initial
value of the open-loop control.

We note that this approach does not immediately yield a closed-form expression for the cost
C(J0, q, JT ) or the functions At, Bt, . . . in Theorem 2.2. That would require an integration that we
cannot carry out in closed form.

3 Numerical Results

In this section, we study key features of our model and its optimal strategy by simulation. In addi-
tion, we introduce new metrics of interest to practitioners. Section 3.1 describes the methodology,
model parameters, and trading metrics. The most essential trading question is how unwind strategy
and cost metrics depend on the characteristics of the in-flow; namely, autocorrelation and volatility.
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Sections 3.2 and 3.3 answer this question and show that different parameters give rise to different
trading regimes ranging from optimal execution to market making. Our model covers the full range
of scenarios. A crucial insight from the study is that practitioners must carefully model their in-flow
to obtain useful results. Therefore, the mantra “know your client” is a recurring theme. Section 3.4
proposes a metric capturing how monotone a given in-flow path is. Monotonicity, in turn, correlates
strongly with internalization and trading cost under the optimal trading strategy.

Several further experiments are reported in Appendix A. Section A.1 links our model to classical
(deterministic) models of optimal execution and illustrates that the Obizhaeva–Wang model is
recovered for small spread cost parameter ε → 0. Section A.1 also studies the sensitivity with
respect to ε, both in the deterministic and stochastic case. Section A.2 analyzes the sensitivity
with respect to the martingale driver of the in-flow as the martingale changes from a finite-variation
process with a small number of shocks to a continuous-time Brownian motion. Section A.3 studies
the effect of a non-zero initial impact state on the trading strategy. Lastly, Section A.4 presents an
empirical study on autocorrelation of orders on the public trading tape, confirming momentum for
all S&P 500 stocks.

3.1 Numerical Setup

We focus on constant parameters throughout our experiments. While time-varying parameters are
important in a practical implementation, constant parameters allow for more interpretable results
and a straightforward way of varying parameter values in our experiments.

The theoretical results of the preceding section enable an efficient numerical implementation:
the feedback form of the optimal strategy (i.e., the coefficients ft, gt, ht and the block trade J0)
can be precomputed independently of the random inputs. As parameters are constant, we use
the closed-form formulas outlined in Section 2.5. (The ODEs for the time-varying case are also
straightforward to implement and fully precomputable). Given the optimal strategy, the simulation
of the state processes (X,Y, Z) is straightforward by discretization of their SDEs. As a result, large-
scale numerical experiments using many sample paths can be run without heavy-duty hardware.
The code is provided on GitHub.6

One difference with the main part of Section 2 is that we focus on an in-flow process of finite
variation. For practitioners, the most important metric in our context is the internalization rate,
defined in (3.1) below. Its formula includes a normalization by the total variation of the in-flow
process, or in other words, the cumulative size of all orders received. If the in-flow is modeled using a
Brownian motion driver as in Theorem 2.2, the total variation is infinite and the internalization rate
cannot be defined. Instead, our experiments use a discrete driver where the inventory is shocked
by a block trade approximately every 20 minutes. We recall from Section 2.4 that our model is
solvable for general martingale drivers. The shocks are taken to be i.i.d. Gaussian (any centered
distribution could be used). While the main purpose is to have a well-defined internalization rate,
this also adds realistic block orders to our simulation. Section A.2 discusses the robustness of our
results with respect to this discretization.

3.1.1 Inputs and Methodology

We use standard units to normalize our variables across securities. The time unit is days; we set
T = 1 so that the strategy trades daily over the interval [0, 1].7 Denote by [T ] the time unit. All
trading quantities are expressed in percent of Average Daily Volume (ADV%). For instance, a jump

6https://github.com/KevinThomasWebster/UnwindingStochasticOrderFlow/blob/main/simulation.ipynb
7In our plots, we nevertheless label time with the standard 9:30–16:00 hours.
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in the in-flow of 2% means that the desk received an order of size 2% ADV. In-flow volatility of 10%
indicates that the trading team expects 10% of the ADV to go through their desk over the course
of the day. We denote by [V ] the volume unit.

Next, we describe the trading inputs and their default values in our simulations.

Impact and spread parameters.

(i) Impact decay β = 8 has unit [T ]−1 and describes the speed at which impact reverts. The
corresponding half-life is approximately 40 minutes.

(ii) Kyle’s lambda λ = 0.2 has unit [V ]−1 and describes an individual fill’s impact.8

(iii) The spread cost parameter ε = 0.01 has unit [V ]−2[T ]−1 and describes in reduced form the
various instantaneous trading costs, such as the bid-ask spread and adverse selection.

These parameters were picked to match the overall statistics (spread and impact cost, volume
on close) from Nasdaq’s 2022 Intern’s Guide to Trading [40] and align with the empirical estimates
found in [24] and [42].

In-flow parameters. The in-flow process uses 20 equispaced i.i.d. Gaussian shocks (rather than
a Brownian motion). The volatility parameter σ controls the variance of those shocks. We express
σ in terms of daily quadratic variation to make it comparable to the Brownian motion case or a
different number of intraday shocks.

(i) The in-flow volatility σ = 0.1 has unit [V ][T ]−1/2 and describes in-flow shocks.

(ii) The in-flow’s autocorrelation (Ornstein–Uhlenbeck) parameter θ has unit [V ][T ]−1. We con-
sider three cases: the default martingale case θ = 0, the momentum case θ = −1, and the
reversal case θ = 1. Therefore, in the momentum case, if the desk stopped trading the out-
flow, their inventory would in expectation double over log(2) ≈ 0.69 days. Conversely, in
the reversal case, if the desk stopped trading the out-flow, their inventory would naturally
internalize by half over log(2) ≈ 0.69 days.

Initial conditions.

(i) The initial inventory x = −z = −0.1 has unit [V ].

(ii) The initial impact state y = 0 is unitless (but can be normalized in terms of stock volatility
in an empirical study).

Non-zero initial conditions matter in practice. While the market-making literature often assumes
zero initial position, the desk cannot assume that its portfolio is always trading in a steady state.
The optimal execution literature obviously uses non-zero initial inventory but often assumes zero
initial impact. In practice, impact from the previous day’s trading cannot be neglected and is similar
to an alpha signal: the strategy must take the reversal of prices into account (see also Section A.3).
Our model and the provided code allow for non-zero initial conditions.

8For empirical studies, Kyle’s lambda is often normalized for the stock’s volatility. For our numerical study, we
picked a stock with moderate volatility.
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3.1.2 Trading Metrics

Following industry practice, we normalize trading metrics by the total variation of the in-flow (i.e.,
the cumulative order notional). This corresponds to the client’s perspective as the metric can be
understood as “per order notional.”

In-flow, out-flow, inventory (ADV%). We plot the intraday time series of flows and invento-
ries. As explained in the beginning of Section 3.1, we choose an in-flow with finite variation for our
simulations.

Internalization (%). The internalization rate is defined [12, p. 29] as

internalization = 1− total variation of out-flow
total variation of in-flow

; (3.1)

roughly speaking, it is the fraction of in-flow orders that were netted. From the client’s point of
view, high internalization indicates that many orders were netted instead of trading in the market
and thus that the desk was able to reduce trading costs. The internalization rate is upper bounded
by one, but this bound is achieved only if there is no out-flow (or if the in-flow has infinite total
variation). Zero internalization is achieved in particular if out-flows match in-flows, meaning that
the desk routes all orders to the market. For a given in-flow, the highest internalization rate is
obtained by a monotone out-flow (the desk only sells or only buys in the market), as that minimizes
the total variation given the liquidation constraint. In principle, internalization can be negative, but
it usually takes a value in [0, 1] because the desk chooses an out-flow smoother than their in-flow.

Practitioners consider internalization rate as a proxy for saved trading costs (but see our discus-
sion of Figure 5 below for a caveat). Compared to cost, internalization rate has the advantage of
being model-free, which may explain why it is the most important metric for clients and regulators
(cf. [12, Footnote 23]).

Internalization regret (%). We propose a novel metric called internalization regret which fo-
cuses on the desk’s perspective and measures how many trades were ex-post unnecessary. We define
internalization regret as9

internalization regret = 1− |terminal in-flow|
total variation of out-flow

; (3.2)

roughly speaking, it is one minus the ratio of minimally necessary over executed out-flow trades.
Note that we use the absolute terminal in-flow |ZT | rather than the total variation of the in-flow
process Z. Because the total variation of any out-flow satisfying the liquidation constraint is at least
|ZT |, internalization regret always takes values in [0, 1]. (We use the convention 0/0 := 1.) It has
value zero if and only if the out-flow is monotone (the desk only sells or only buys in the market),
indicating that the desk captured all possible internalization. In particular, zero regret is always
achieved by the naive strategy that warehouses all in-flow during the day and then externalizes
the inventory on the close. On the other hand, a high regret indicates that the desk traded in the
market where netting would (ex-post) have been possible.

In contrast to the internalization rate, the internalization regret is well-defined even if the in-flow
has infinite variation (see also Section A.2).

9A similar definition would be (total variation of out-flow)/|terminal in-flow|. That quantity is numerically ill-
behaved as the total in-flow may be close to or equal to zero.
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Impact, spread, total costs (bps). The absolute impact cost was defined in (2.8) in continuous
time; it is discretized as

yJ0 +
λ

2
J2
0 +

∑
t

Ytqt∆t+ YT−∆tJT +
λ

2
J2
T .

As we measure trading costs from the clients’ perspective in this section, we report the absolute
cost divided by the total variation of the in-flow. Similarly, the absolute spread (or instantaneous)
cost defined in (2.9) is discretized as 1

2

∑
t εq

2
t∆t and divided by the total variation of the in-flow.

Closing trade (ADV%, %). The closing trade is the block trade placed in the closing auction.
We express it in two units: either in “absolute” terms (ADV%) or as a proportion of the (total
variation of the) out-flow (%). The former is more relevant to the client, as it directly compares to
the in-flow. On the other hand, the latter captures how much the desk warehouses until the close
compared to its overall trading activity.

3.2 Sensitivity to In-Flow Auto-Correlation

We first study how the optimal out-flow reacts to the autocorrelation parameter (θ). The figures
show martingale, reversal, and momentum in-flow. Figure 2 shows a sample path of the trading
strategy’s intraday evolution. As expected, the in-flow exhibits larger variations with momentum
dynamics and lower variations with reversal dynamics. Therefore, the out-flow and impact state is
most aggressive for momentum and least aggressive for reversal in-flow. Figure 3 shows the average
path of the trading strategy. In expectation, the out-flow and impact time series are identical
to the deterministic optimal execution case when accounting for the expected future in-flow (cf.
Section A.1).

Parameter θ In-flow Out-flow Spread Cost Impact cost Closing trade Internalization
scans (ADV%) (ADV%) (bps) (bps) (% total) (%)

momentum -1 61 31 4.9 42.6 17 51
martingale 0 46 15 1.7 14.5 21 68
reversal 1 52 9 0.5 4.8 27 84

Table 1: Sensitivity to flow autocorrelation (θ) for an initial inventory (z) and daily flow volatility
(σ) of 10% ADV: average metrics.

Table 1 reports the average daily statistics. We observe that out-flows are significantly more
sensitive to θ than in-flows. Consequently, in-flow autocorrelation strongly affects all core trading
metrics:

(i) Higher autocorrelation leads to higher costs. The impact-to-spread ratio remains stable.
Therefore, higher out-flows drive the cost increase, which is proportionally shared by spread
and impact.

(ii) Lower autocorrelation leads to higher internalization. In particular, the trading strategy
warehouses more inventory with lower autocorrelation, which leads to a larger closing trade
as a proportion of out-flow.
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Figure 2: Sensitivity to flow autocorrelation (θ) for an initial inventory (z) and daily flow volatility
(σ) of 10% ADV: sample path.
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Figure 3: Sensitivity to flow autocorrelation (θ) for an initial inventory (z) and daily flow volatility
(σ) of 10% ADV: average path. The error bars illustrate one standard deviation around the average
path.
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Figure 4 shows the distribution of daily trading metrics across samples of the in-flow path. As
expected, distributions are wide, highlighting the need for stochastic control theory over deter-
ministic optimization techniques: the deterministic optimal execution problem only describes the
strategy’s average behavior.

Figure 4: Sensitivity to flow autocorrelation (θ) for an initial inventory (z) and daily flow volatility
(σ) of 10% ADV: metrics’ distribution.

As the first panel of Figure 4 illustrates, martingale in-flow has the smallest total variation. In-
deed, any drift must increase total variation, but momentum more so than reversal. This is relevant
as the in-flow’s total variation is used to normalize trading metrics. Nevertheless, internalization is
highest in the reversal case and lowest in the momentum case. This is explained by the total varia-
tion of the out-flow: reversal naturally leads to netting while momentum requires more trading. We
observe that the distribution of the internalization rate is significantly wider for momentum than
for reversal. The impact cost shows largely the same characteristics as the internalization.

The distribution of the internalization regret has an atom at zero, decays away from zero, and
becomes approximately uniform for large regret values. The mass at zero reflects monotone trading
paths (the desk only sells or only buys). The concentration is strongest in the momentum case, where
the probability of zero regret is about 23% and the probability of regret below 1% is about 46%,
compared with (11%, 26%) in the martingale case and (4%, 13%) for reversal. (Density plotted
outside [0,100] is an artifact of kernel density estimation.) Generally, increasing autocorrelation
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Figure 5: Total cost distribution conditional on internalization. Samples are taken across a wide
range of in-flow parameters.

lowers internalization and increases costs.
Figure 5 highlights an important rule of thumb: high internalization is a strong proxy for low

costs, regardless of the shape of the in-flow path. On the other hand, when internalization is low,
costs can take a wide range of values depending on the in-flow path, meaning that internalization
alone is not a suitable proxy for the cost.

3.3 Sensitivity to In-Flow Volatility

Figure 6 shows the sensitivity of key metrics to in-flow volatility (σ). We observe that the relation
between initial inventory and in-flow volatility is key. In the regime where the initial inventory
is significantly larger than the daily volatility of the in-flow, the trading strategy behaves like an
optimal execution strategy. Conversely, if the in-flow volatility dominates the initial inventory,
the trading strategy behaves like a steady-state market-making strategy. An important transition
occurs between those regimes:

(i) Before the critical value, increasing the in-flow volatility increases internalization and drives
down (per in-flow) costs.

(ii) After the critical value, internalization reaches a plateau. Therefore, in-flow volatility drives
up total trading, and costs increase.

As an important consequence, a desk with low in-flow volatility may benefit from attracting
additional in-flows, e.g., by onboarding new clients or posting more attractive prices, in order to
increase internalization and reduce costs, whereas a desk with high volatility may benefit from low-
ering it. We observe that the transition happens when volatility and initial position are comparable
in size, with the exact location depending on the in-flow autocorrelation. Table 2 quantifies the
optimal in-flow vol to attract for a given in-flow autocorrelation. The in-flow vol scales linearly with
the initial inventory, and, therefore, we quote the ratio.10

10The optimal in-flow volatility is insensitive to the martingale driver: there is no material difference between the
diffusion and jump cases. The fact that the location of the cost minimum depends only on the ratio σ/z can be seen
analytically by a scaling argument. If the initial impact state y is nonzero, y also needs to be scaled, so that the
location of the minimum depends on the two ratios σ : z : y.

24



Figure 6: Average metrics’ sensitivity to in-volatility (σ) for an initial inventory (z) of 3% ADV and
different autocorrelation values (θ).

θ -1 -0.5 0 0.5 1

optimal σ/z (%) 99 79 55 35 17
Internalization (%) 55 65 72 77 82

Table 2: Optimal in-flow volatility, as a percentage of inventory, across various θ.
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3.4 Internalization and In-Flow Monotonicity

Opportunities for internalization depend on the in-flow path, which may trend in a single direction
or net out naturally. To capture this, we propose a measure of monotonicity of in-flow paths, namely
the terminal absolute value of in-flow normalized by the total variation of in-flow (|ZT |/∥Z∥TV ).
A value of 100% corresponds to an in-flow that is monotone; i.e., consist of only buy or only sell
orders. Figure 7 shows that this metric is closely related to internalization under the optimal out-
flow strategy. To produce Figure 7 (a), we sample 100’000 paths from our model and plot the
internalization rate and regret of the out-flow versus the normalized terminal in-flow. The more
“monotone” the in-flow, the lower the internalization rate and internalization regret. We emphasize
that some parts of the x-axis correspond to more sample paths than others. Indeed, the distribution
of |ZT |/∥Z∥TV depends on the in-flow volatility (σ), as shown in Figure 7 (b).

(a) Normalized terminal in-flow (|ZT |/∥Z∥TV ) is a strong predictor of internalization.

(b) In-flow volatility affects the distribution of the nor-
malized terminal in-flow (|ZT |/∥Z∥TV ).

Figure 7: (a) Monotonicity test: trading metrics as a function of the terminal in-flow state, as a
fraction of in-flow TV. The error bars illustrate one standard deviation around the average. (b) The
distribution of the proposed metric depends on in-flow volatility.

In practice, the shape of the in-flow path depends largely on the desk’s clients. The strong
relationship in Figure 7 demonstrates that the nature of the clients—and not only the desk’s unwind
strategy—is a key determinant for the internalization rate. Therefore, the trading team gains a
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lot from understanding their clients. Furthermore, our proposed monotonicity metric is a strong,
model-free client metric forecasting achievable internalization rates.

3.5 Misspecification Costs

This section quantifies the cost of not knowing your client, or more precisely, the cost of trading
with the wrong in-flow parameter θ. Thanks to the analytic structure provided by Theorem 2.2,
this misspecification cost can be computed in two steps: first, compute the strategy under a given
(misspecified) estimate θ̂, then, simulate the state processes under a ground-truth value θ∗. The
strategy becomes suboptimal unless θ̂ = θ∗.

Figure 8 studies three misspecification examples with the following key conclusions:

(i) Misspecification costs are highest for momentum and lowest for mean-reverting flow. Getting
θ wrong by 100% increases costs by less than a third for mean-reverting flow. By contrast,
misspecifying θ by 100% for momentum flow more than doubles costs.

(ii) Misspecification costs are asymmetric: for a given θ∗, one would rather over- than under-
estimate θ. This is in line with the misspecification behavior for impact cost in [35]: generally,
if a model parameter is uncertain, one prefers to err on the side which leads to more conser-
vative trading.

(iii) Both internalization and impact costs increase drastically when θ̂ moves away from θ∗. There-
fore, both channels drive the misspecification costs.

One concrete application of this misspecification study relates to estimates of in-flow autocor-
relation. All else being equal, given a statistical confidence interval over θ (or any other measure
of in-flow autocorrelation), it is best to deploy the most conservative trading strategy, that is, the
strategy that underestimates in-flow momentum.

There is no misspecification cost for σ since the feedback form of the optimal strategy does not
depend on σ (cf. Proposition 2.3 (iv)). Of course, the expected cost is nevertheless affected, hence
the quote given to the client may bear a misspecification error.

We do not conduct a misspecification study for the liquidity parameters; the existing results [44,
35, 43] apply to our setting.
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(a) θ∗ = 1. The actual in-flow is mean-reverting.

(b) θ∗ = 0. The actual in-flow is a martingale.

(c) θ∗ = −1. The actual in-flow has momentum.

Figure 8: Simulated cost per in-flow, internalization, and impact per out-flow across various θ∗, θ̂.
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A Further Numerical Results

A.1 Recovering Deterministic Results; Sensitivity to Spread Cost Parameter

This section serves two purposes. First, we show how our model links to the traditional optimal
execution literature where in-flow is deterministic. Second, we analyze the sensitivity of our model
to the spread cost parameter (ε). The setup is as described in Section 3.1.

The first experiment is best understood as a minimal extension of the traditional optimal exe-
cution literature. We consider the deterministic case with no in-flow apart from the initial order of
z = 10% ADV (i.e., σ = θ = 0) . Figure 9 reproduces the optimal trading strategy of Obizhaeva
and Wang in the limit as the spread cost parameter ε → 0. As discussed in [50], the optimal impact
state tracks a certain target value in the Obizhaeva–Wang model, with jumps at the start and
end of the day to hit that target. In our model with instantaneous cost during LOB trading, the
intraday impact state is smoothened, but the change in target is substantial only for high spread
cost parameter.

In the out-flow and inventory, we observe that the size of the block trades in the auctions
increases with the spread cost: as there is no spread cost during the auctions, trading a larger
volume during the auctions is a way evade high spread cost in LOB trading, partly at the expense
of higher impact costs. That also explains why the impact state initially overshoots the target value.

Figure 9: Sensitivity to ε of the optimal execution strategy for a 10% ADV order: path.

Table 3 quantifies some of these insights and highlights the importance of the impact-to-spread
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cost ratio. When impact costs outweigh spread costs, ε’s effect is second order and does not
meaningfully affect the impact state or trading speed. This is the typical regime for a desk dealing
with large orders. However, once spread costs become comparable to impact costs, the trading
regime changes. Overall costs increase dramatically and substantial part of the inventory is unwound
by block trades on open and close.

Parameter ε In-flow Spread Cost Impact cost Closing trade Impact to
scans (ADV%) (bps) (bps) (ADV%) spread ratio

(nearly) no spread 1e-4 10 0.0 21.1 1.0 668
low spread 1e-3 10 0.3 21.3 1.1 71

medium spread 1e-2 10 2.4 22.8 1.6 9
high spread 1e-1 10 7.5 36.9 3.2 5

Table 3: Sensitivity to ε of the optimal execution strategy for a 10% ADV order: metrics.

Next, we study the sensitivity of daily metrics to ε when the in-flow is random. Connecting to
Section 3.2, Figure 10 also shows the sensitivity with autocorrelation (θ). As expected, a higher
spread cost parameter ε leads to higher internalization, lower internalization regret, and larger
closing trades as it slows down the continuous trading. This holds for all values of θ, with the
ordering among reverting, martingale, and momentum flow being as expected. The main take-
away, however, is that internalization and impact cost are relatively insensitive to ε as long as
values are moderate. Internalization regret is only slightly more sensitive (note that ε is being
varied over two orders of magnitude in the figure).
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Figure 10: Average metrics’ sensitivity to spread costs (ε) for different flow autocorrelations (θ), for
an initial inventory (z) and daily in-flow volatility (σ) of 10% ADV.
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A.2 Itô Diffusion Limit for In-Flows

This section revisits the driving martingale of the in-flow process Z. As seen in Section 2.4, the
model is solvable for finite-variation (jump) processes, diffusions, and combinations thereof. The
feedback form of the optimal strategy does not depend on the driving martingale, but of course
the actual trade path depends on the realization of the state processes. Our preceding numerical
experiments use a finite-variation process so that trading metrics can be reported in a standard
fashion. Here, we study how the metrics behave in the diffusion limit; i.e., as the number of jumps
increases (while their size decreases such as the keep the expected quadratic variation constant).

Figure 11 shows the average metrics. The overarching conclusion is that the trading strategies
as well as trading metrics remain similar in the diffusive limit, with the obvious exception of those
metrics that explicitly depend on the total variation of in-flow. In particular, internalization regret
is fairly stable, while the internalization rate tends to 100% due to its definition (3.1).

As an ad-hoc adaptation, we propose to use the square-root of the quadratic variation to replace
the total variation for use in Brownian model, as it remains stable over the number of jumps.
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(a) Total variation, quadratic variation, and internalization change in the passage to the diffusion limit.

(b) However, trading metrics that do not rely on total variation of in-flow remain stable.

(c) The square root of the quadratic variation of in-flow proxies well for the in-flow activity in the transition
from jump process to Itô process.

Figure 11: Sensitivity of average trading metrics to the diffusive limit for in-flow.
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A.3 Sensitivity to the Initial Impact State

The optimal execution literature often assumes zero initial impact, and then shows that trade
paths are monotone. Clearly paths need not to be monotone when the in-flow is stochastic, as
the inventory can change sign. Beyond that, we emphasize in this section that the initial impact
state matters (even in deterministic execution). This is straightforward but sometimes overlooked:
The impact state forecasts reversal of the price, hence is equivalent to an alpha signal. Since the
strategy maximizes P&L, it balances this signal with the other costs of unwinding, which can lead
to trades that add to the inventory rather than reducing it. Analytically, the formulas for J0 and qt
in Theorem 2.2 clearly show that trades can have either sign depending on the level of the impact
state.

Trading based on past days’ impact is far from an unwanted behavior in practice. Indeed,
one challenge in trading systems is to correctly consider past days’ trading in today’s execution.
For instance, [37, 34, 50] tackle the issue from a transaction cost analysis (TCA) perspective.
Unfortunately, the common solution of ignoring past days’ trades leads to biases and sub-optimal
trading. [13] coins this problem “issuer bias” and highlights it as one of the four most common
TCA and execution challenges among practitioners. While our solution is not unique in solving
“issuer bias”, it considers past days’ trading with no additional effort within a consistent, tractable
framework.

Figure 12 shows average trading paths from simulations with different initial impact states
(y = −30, 0, 30, 100 bps) and martingale in-flow. A negative value is favorable in the sense that the
price of a trade offsetting the initial in-flow z > 0 is reduced. Indeed, in the favorable simulation,
the unwind strategy hedges a sizable part of z in the opening auction. For increasing values of y,
the block trade is reduced; volume is deferred to exploit impact reversal. For high initial impact,
reducing the impact state takes priority over reducing inventory and the opening trade adds to the
initial inventory rather than hedging it. The strategy then trades aggressively during the day to
unwind the acquired position.

Figure 12: Sensitivity to initial impact state (y) for an initial inventory (z) and daily flow volatility
(σ) of 10% ADV: average metrics.
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A.4 A Representative Market-Maker Model for Stochastic Order flow

This section illustrates possible θ values from public market data. We preface this study with two
important caveats to highlight that these estimates are purely presented for illustration purposes.

First, our estimates of market flow autocorrelation are simple, and there are many more sophis-
ticated models and studies. Second, know your client. Trading teams should calibrate stochastic
models on their own in-flows and compare those to the representative market maker; they should
not assume their in-flows behave like the aggregate market. For instance, competitive market mak-
ers may capture milder order flows, while less competitive desks may only capture toxic order flow,
leading to more inventory risk. Similarly, a CRB’s orders may not include smaller retail trades
present on the tape.

The representative market-maker approach is a standard model for stochastic order flow in
financial markets. For instance, market-making applications in [21] and the references therein
assume that a trading strategy can capture a certain proportion of the overall market order flow.
Empirical papers leverage the representative market-maker approach to provide statistics on market
flow for trading applications. For example, [18] quantify market-maker’s inventories and the follow-
up paper [17] tracks individual traders’ flows. This section uses the representative market-maker
approach to calibrate the proposed OU model for stochastic order flow on public market data.
Therefore, the study discretizes the model for Z using a step size ∆t. Furthermore, σ is normalized
to one, as the representative market maker by definition captures 100% of the day’s trading volume:

Zt+∆t = −θZt∆t+Wt+∆t −Wt. (A.1)

Figure 13 plots the doubling time log(2)/θ as a function of the discretization choice ∆t. The
doubling time is to momentum flow what the half-life is to reverting flow. For each stock in the
S&P 500, the study estimates a single θ per stock over the year 2019, and the figure plots the
corresponding distribution of doubling times across stocks. Our data source is LOBSTER [39],
which provides all Nasdaq limit order book events in a standard table format and is aimed at
academic research.

In line with [13] and the references therein, we find that the market order flow consistently
exhibits momentum across the S&P 500 for time steps ranging from ten seconds to one hour. The
corresponding doubling times are of the order of a couple of hours, to be compared to the roughly
one-hour half-life of the OW model, as per [42]. Again, in line with [14], order flow autocorrelation
is roughly of the same magnitude as impact’s decay, leading to approximately martingale impact
state.

Furthermore, our study finds that θ depends on the discretization choice, in line with [13, 49] and
the references therein, where order flow is found to have long-range autocorrelation and, therefore,
cannot be calibrated on multiple time scales with a single OU model. Intuitively, different market
participants, e.g., mutual funds, hedge funds, HFTs, submit orders over different timescales, e.g.,
minutes to days, and the aggregate order flow autocorrelation reflects each timescale. Furthermore,
[16] empirically link client timescales to liquidity providers’ internalization strategies.
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Figure 13: Doubling time log(2)/θ as a function of the discretization choice ∆t. The distribution
covers the S&P 500 for the year 2019.

B Proofs for Sections 2.2–2.4: Dynamic Programming

Proof of Proposition 2.4. By its definition (2.10), C(J0, q, JT ) equals the sum of two expectations.
First, E[

∫ T
0 St dQt], which equals E[STZT ] by Lemma B.1. And second,
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[∫ T

0
Ytqt dt+
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2
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Here Lemma B.2 shows that∫ T

0
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Moreover, using (2.4) and the liquidation constraint,

YT = YT− + λTJT = YT− − λTXT = Y c
T − λTXT .

Substituting this into (B.1) and noting that Yt = Y c
t for t ∈ [0, T ), the claim follows.

Lemma B.1. Let Q ≡ (J0, q, JT ) ∈ A. Then

E
[∫ T

0
Qt dSt

]
= E

[
S0J0 +

∫ T

0
Stqt dt+ STJT

]
= E[STZT ]. (B.2)

Proof. Note that Qc
t :=

∫ t
0 qs ds is a continuous process of finite variation. The integration-by-parts

formula and Qc
0 = 0 then yield that∫ T

0
Stqt dt =

∫ T

0
St dQ

c
t = STQ

c
T −

∫ T

0
Qc

t dSt.

By the definition of admissibility, the last integral is a true martingale, hence has zero expectation.
Admissibility also includes the liquidation constraint J0 +Qc

T + JT = ZT and thus

S0J0 + STQ
c
T + STJT = S0J0 + ST (ZT − J0) = −(ST − S0)J0 + STZT .
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Here E[(ST − S0)J0] = 0 as S is a martingale and J0 ∈ R. The claim follows by combining the
displays and taking expectation.

Lemma B.2. Let Q ≡ (J0, q, JT ) ∈ A. Then∫ T

0
Ytqt dt =
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0

2βt + γ̇t
2λt

Y 2
t dt+
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. (B.3)

Moreover,
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Y 2
0
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Y 2
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λT
−

Y 2
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λT

. (B.4)

Proof. We first focus on t ∈ (0, T ). Note that Y as defined in (2.3) is continuous and has finite
variation on (0, T ) when Q is of the form (2.5). Using λt = eγt and qt dt = e−γt(dYt + βtYt dt), we
have ∫ T

0
Ytqt dt =

∫
(0,T )

e−γtYt dYt +

∫ T

0
e−γtβtY

2
t dt.

Applying integration-by-parts to e−γtY 2
t over t ∈ (0, T ) yields that

2
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e−γtYt dYt = e−γT−Y 2
T− − e−γ0+Y 2

0+ +

∫ T

0
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−γtY 2
t dt.

Since Y, λ are right-continuous at t = 0 and λ is also left-continuous at t = T , the claim (B.3)
follows by combining the displays. The second claim, (B.4), follows by specializing

(Yt + Yt−)(Qt −Qt−) =
1

λt−
(Yt + Yt−)(Yt − Yt−) =

1

λt−
(Y 2

t − Y 2
t−)

to t ∈ {0, T} and recalling that λT− = λT .

Proof of Proposition 2.6. Omitting arguments for brevity, the generator of the controlled process is
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σ2

2
(∂xxv − 2∂xzv + ∂yyv)

= (∂xv + λ∂yv)q − β∂yv y + θ(∂xv − ∂zv)z +
σ2

2
(∂xxv − 2∂xzv + ∂yyv) .

The running cost is c(t, x, y, z, q) = 2βt+γ̇t
2λt

y2+ εt
2 q

2, so that the HJB equation −∂tv−infq(Lqv+c) = 0
reads

−∂tv − inf
q∈R

[
(∂xv + λt∂yv)q +

εt
2
q2
]
+ βt∂yv y −

2βt + γ̇t
2λt

y2

− θt(∂xv − ∂zv)z −
σ2
t

2
(∂xxv − 2∂xzv + ∂yyv) = 0. (B.5)

The candidate optimal control in feedback form is given by the minimizer in (B.5),

q∗t = −ε−1
t (∂xv + λt∂yv),
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which yields

− inf
q∈R

[
(∂xv + λt∂yv)q +

εt
2
q2
]
=

1

2εt
(∂xv + λ∂yv)

2.

If v ∈ C1,2([0, T ] × R3) is defined by (2.18) with A, . . . , F solving (2.20), one verifies by direct
calculation that v solves the HJB equation (B.5) as well as the terminal condition

v(T, x, y, z) =
1

2

(
λTx

2 − 2xy +
y2

λT

)
. (B.6)

corresponding to the terminal cost. A standard verification argument then yields that v is the value
function and q∗t gives the optimal strategy.11 Uniqueness of the optimal control holds by strict
convexity of (C.1).

Proof of Proposition 2.7. We show that the Riccati system (2.20) has a unique solution on [0, T ]
and that At, Ct ≥ 0 for t ∈ [0, T ].

Consider first the (autonomous) ODE system for (A,B,C). It can be stated as the matrix
Riccati equation

Ṗt = PtBtN
−1
t B′

tPt −A′
tPt −PtAt −Ct, t ∈ [0, T ]

with the terminal condition

PT =
1

2

[
λT −1
−1 1/λT

]
,

where

Pt :=
1

2

[
At Bt

Bt Ct

]
, Nt :=

1

2

[
εt
]

At :=

[
0 0
0 −βt

]
, Bt :=

[
1
λt

]
, Ct :=

[
0 0

0 2βt+γ̇t
2λt

]
.

We note that PT is nonnegative definite. As the coefficients are bounded and εt was assumed to be
bounded away from zero, [51, Theorem 2.1(i)(ii)] shows that there exists a unique solution Pt and
that Pt is nonnegative definite for all for t ∈ [0, T ]. In particular, this yields At ≥ 0 and Ct ≥ 0.

We can now consider A,B,C as given bounded functions. The ODE system for (D,E, F,K) in
(2.20) is then linear with bounded coefficients, hence has a unique solution.

Proof of Proposition 2.8. (i) Nonnegative definiteness was established in the proof of Proposition 2.7.
We show that Ct ≤ λ−1

t and Bt + λtCt > 0 for t ∈ [0, T ).
Recall that the solution to a linear, first-order ODE ẏt = ptyt − ℓt with terminal condition yT is

given by

yt = e−
∫ T
t ps dsyT +

∫ T

t
e−

∫ s
t pu duℓs ds. (B.7)

11To be precise, this requires q∗ to be admissible. While q∗ is automatically square-integrable, we also need that∫ t

0
Qc

s dSs is a true martingale, where Qc
t :=

∫ t

0
q∗s ds. This is an integrability condition on S, and is satisfied, e.g., if

dSt = νt dBt where B is a Brownian motion and ν is bounded.
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In particular, yt ≥ 0 for t ∈ [0, T ) if yT ≥ 0 and ℓt ≥ 0 for t ∈ [0, T ), and yt > 0 for t ∈ [0, T ) if
additionally either yT > 0 or ℓt > 0 for t in a non-degenerate interval of [0, T ).

We first prove that C†
t := −Ct + λ−1

t ≥ 0 for t ∈ [0, T ]. Indeed,

Ċ†
t = −Ċt − λ−1

t γ̇t = 2βtC
†
t − ε−1

t (Bt + λtCt)
2, C†

T = 0.

Seeing this as a special case of (B.7) with ℓt := ε−1
t (Bt+λtCt)

2 ≥ 0, we deduce C†
t ≥ 0 for t ∈ [0, T ].

Lastly, define Mt := At + λtBt and Nt := Bt + λtCt = Bt − λtC
†
t + 1. Then

Ṅt = Ḃt − λt(Ċ
†
t + γ̇tC

†
t )

= ε−1
t MtNt + βtBt + λtε

−1
t N2

t − 2λtβtC
†
t − λtγ̇tC

†
t

= (ε−1
t Mt + λtε

−1
t Nt + βt)Nt − λt[(2βt + γ̇t)C

†
t + βtCt], NT = 0

where we used Bt = Nt − λtCt from the second to the third line. Recall that Ct ≥ 0, βt > 0 and
2βt+γ̇t > 0. As CT = λ−1

T > 0, for t close to T we have Ct > 0 and thus ℓt := (2βt+γ̇t)C
†
t+βtCt > 0.

Using again (B.7), we deduce Nt > 0 for t ∈ [0, T ).
(ii) Let B†

t := −Bt, Mt := At +λtBt and Nt := Bt +λtCt. To show that Bt < 0 and Mt > 0 for
t ∈ [0, T ), we first show that (B†

t ,Mt) ∈ [0,∞)2. Indeed, we have the system{
Ḃ†

t = βtB
†
t − ε−1

t MtNt, B†
T = 1

Ṁt = ε−1
t (Mt + λtNt)Mt − λt(βt + γ̇t)B

†
t , MT = 0,

(B.8)

which is of the general form (Ḃ†
t , Ṁt) = Φ(t, B†

t ,Mt). Here the vector field −Φ is inward-pointing
on the boundary of the first quadrant [0,∞)2; that is, −Φ1(t, b,m) ∈ [0,∞) whenever b = 0,m ≥ 0,
and −Φ2(t, b,m) ∈ [0,∞) whenever b ≥ 0,m = 0. In view of the terminal condition (B†

T ,MT ) =

(1, 0) ∈ [0,∞)2, it follows that (B†
t ,Mt) ∈ [0,∞)2 for all t ∈ [0, T ]. We can now apply (B.7) together

with βt + γ̇t > 0 and B†
T = 1 to deduce (B†

t ,Mt) ∈ (0,∞)2 for all t ∈ [0, T ).
Next, we set V †

t := Mt − (Dt + λtEt), W
†
t := −Bt + Et and consider{

V̇ †
t = (ε−1

t Mt + λtε
−1
t Nt + θt)V

†
t − λt(βt + γ̇t)W

†
t , V †

T = 0

Ẇ †
t = (θt + βt)W

†
t − ε−1NtV

†
t , W †

T = 1.
(B.9)

Writing this as (V̇ †
t , Ẇ

†
t ) = Φ(t, V †

t ,W
†
t ), we see that −Φ is inward-pointing on the boundary of the

first quadrant. Repeating the argument above, we deduce that (V †
t ,W

†
t ) ∈ (0,∞)2 for all t ∈ [0, T ).

(iii) Lastly, we establish the comparison result regarding θ. Let θ̃ : [0, T ] → R is measurable and
bounded, and define D̃, Ẽ like D,E but with θ̃ instead of θ. Suppose that θt ≥ θ̃t for t ∈ [0, T ], and
define (V †

t ,W
†
t ), (Ṽ

†
t , W̃

†
t ) and Φ, Φ̃ as in (B.9), where (V †

T ,W
†
T ) = (Ṽ †

T , W̃
†
T ) = (0, 1). Check that

−Φ1(t, v, w) ≤ −Φ̃1(t, ṽ, w̃), for 0 ≤ v = ṽ, 0 ≤ w ≤ w̃

−Φ2(t, v, w) ≤ −Φ̃2(t, ṽ, w̃), for 0 ≤ v ≤ ṽ, 0 ≤ w = w̃.

It follows that V †
t ≤ Ṽ †

t and W †
t ≤ W̃ †

t for t ∈ [0, T ], or equivalently,

Dt + λtEt ≥ D̃t + λtẼt and Et ≤ Ẽt, t ∈ [0, T ],

as Mt and Bt do not depend on θt or θ̃t. In particular, we note that D̃t, Ẽt ≡ 0 when θ̃t ≡ 0.
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Proof of Proposition 2.12. We first note that the cost (2.21) is convex in j0. Indeed, it follows from
Proposition 2.8 that v(t, x, y, z) is convex in x and y, and thus v(0, j0 − z, y+ λ0−j0, z) is convex in
j0. The second term in (2.21) is also convex in j0 as 0 < λ0− ≤ λ0.

Since (2.21) is quadratic in j0, we can compute ∂j0V (j0) where

V (j0) := v(0, j0 − z, y + λ0−j0, z) +
1

2

(
λ−1
0− − λ−1

0

)
(y + λ0−j0)

2. (B.10)

Recall that

∂xv(0, x, y, z) = A0x+B0y +D0z, ∂yv(0, x, y, z) = B0x+ C0y + E0z,

and

−f0−
ε0

= A0 + λ0−B0, −g0−
ε0

= B0 + λ0−C0, −h0−
ε0

= D0 + λ0−E0.

Define η0− := −ε−1
0 (1− λ0−/λ0) ≤ 0. It is straightforward to find

ε−1
0 ∂j0v(0, j0 − z, y + λ0−j0, z) =− (f0− + λ0−g0−)j0 − g0−y + (f0− − h0−)z

and

ε−1
0 ∂j0V (j0) = rj0 − (g0− + η0−) y + (f0− − h0−)z (B.11)

where r := −f0− − λ0−(g0− + η0−). As j0 7→ v(0, j0 − z, y + λ0−j0, z) is convex and quadratic, we
must have −f0− − λ0−g0− ≥ 0. We show below that the inequality is strict, and thus r > 0 as
η0− ≤ 0. It then follows that V is not affine, hence strictly convex, and the desired formula for the
optimal j0 follows by setting (B.11) to zero and solving for j0.

Suppose towards a contradiction that −f0−−λ0−g0− = 0. Recall that f0− and g0− do not depend
on y, z, θ, and consider the particular case where y, z = 0 and θ, σ ≡ 0. The above calculation shows
∂j0v(0, j0, λ0−j0, 0) = 0 and in particular v(0, j0, λ0−j0, 0) = v(0, 0, 0, 0) = 0. In words, the round-
trip strategy starting with an initial jump j0 ̸= 0 has zero cost, contradicting Corollary 2.5.

Next, we show g0− + η0− < 0. Indeed,

−ε0(g0− + η0−) = B0 + λ0−C0 + (1− λ0−/λ0)

= B0 + λ0C0 + (1− λ0−/λ0)(1− λ0C0) > 0,

where we recall from Proposition 2.8 that 1− λ0C0 ≥ 0 and B0 + λ0C0 > 0.
Lastly, suppose that βt + γ̇t > 0 for all t ∈ [0, T ]. Then

−ε0(f0− − h0−) = (A0 + λ0−B0)− (D0 + λ0−E0)

= (A0 + λ0B0)− (D0 + λ0E0)− (λ0 − λ0−)(B0 − E0) > 0,

where we again recall from Proposition 2.8 that A0 + λ0B0 > D0 + λ0E0 and B0 < E0.

Sketch of proof for Proposition 2.13. Given q ∈ A, introduce a process V q by V q
t = v(t,X, Y, Zt),

where v is defined in (2.18) and X,Y are the controlled states corresponding to q. Note that
V q
0 = v(0, x, y, z) is deterministic and independent of q; it is the quantity V0 in the statement.

Consider also the process

V̂ q
t :=

1

2

∫ t

0

[
2βs + γ′s

λs
(Y q)2s + εsq

2
s

]
ds+ V q

t .
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In view of (B.6), the expected cost of q ∈ A in (2.17) is given by E[V̂ q
T ]. A (lengthy) application

of Ito’s formula shows that the process V̂ q is a local submartingale for any q ∈ A, and a local
martingale for q = q∗. This calculation uses the fact that (2.24) is equivalent to the generalized
linear backward SDE

dKt = −1

2
(At − 2Dt + Ft) d[M,M ]t + dNt, KT = 0,

where N is a martingale (namely, Nt = E[
∫ T
0

1
2(As − 2Ds + Fs) d[M,M ]s|Ft]). The definition of A

and an integrability condition on M are chosen such that q∗ ∈ A and such that the local martingale
terms are true martingales for any q ∈ A. Then, the (sub)martingale properties yield

E[V̂ q
T ] ≥ V̂ q

0 = V0 = V̂ q∗

0 = E[V̂ q∗

T ].

This shows that q∗ is optimal and that V0 is the value. Uniqueness of the optimal control is clear
from the strict convexity of the cost.

C Proofs for Section 2.5: Maximum Principle

Throughout this section, β, λ, ε ∈ (0,∞) are constant; in particular, λ0− = λ. The proof of
Theorem 2.14 is based on the stochastic maximum principle. Consider the control problem (2.17),
i.e.,

inf
q∈Q

1

2
E
{∫ T

t

[
2β

λ
(Y c

s )
2 + εq2s

]
ds+

1

λ
(λXT − Y c

T )
2

}
(C.1)

with the state processes (Xs, Y
c
s , Zs)s∈[t,T ] with initial time t ∈ [0, T ) and position (x, y, z),
dXs = qs ds− dZs, Xt = x

dY c
s = (−βY c

s + λqs) ds, Y c
t = y

dZs = −θsZs ds+ σs dWs, Zt = z

(C.2)

(For brevity, we write Y instead of Y c throughout this section.) We emphasize that (t, x, y, z)
should be seen as fixed parameters in the subsequent arguments; they are introduced in order to
recover the full form of the feedback strategy in Theorem 2.2.

The maximum principle (e.g., [46, Theorem 6.4.6]) yields a BSDE system on [t, T ],
−dUX

s = −V X
s dWs, UX

T = λXT − YT

−dUY
s = (−βUY

s + 2β
λ Ys) ds− V Y

s dWs, UY
T = −XT + λ−1YT

−dUZ
s = θs(U

X
s − UZ

s ) ds− V Z
s dWs, UZ

T = 0,

(C.3)

with optimality condition

UX
s + λUY

s + εq∗s = 0, s ∈ [t, T ] (C.4)

along the optimal state processes. Here (q∗s)s∈[t,T ] denotes the optimal strategy in open-loop form
(i.e., as a function of ω ∈ Ω). In particular, (C.4) and the terminal conditions in (C.3) together
yield that

q∗T = 0. (C.5)
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We note that the maximum principle applies rigorously in our context, as we have already established
that the value function is smooth (e.g., [46, Theorem 6.4.7]).

Recall from Proposition 2.3 that the desired functions ft, gt, ht do not depend on σt. Thus, we
may specialize to σ ≡ 0 without loss of generality, rendering the in-flow process Z deterministic.
The BSDE system (C.3) then reduces to the backward ODE system

−U̇X
s = 0, UX

T = λXT − YT

−U̇Y
s = −βUY

s + 2β
λ Ys, UY

T = −XT + λ−1YT

−U̇Z
s = θs(U

X
s − UZ

s ), UZ
T = 0.

(C.6)

(The above steps also apply in the case of time-varying coefficients, but we do not expect a closed-
form solution in that situation.) We recall that

ε̃ :=
εβ

2λ
, κ := β

√
1 + ε̃−1 > β, (C.7)

and note the relations

1

κ± β
=

1

β(
√
1 + ε̃−1 ± 1)

=
ε̃

β

(√
1 + ε̃−1 ∓ 1

)
=

ε̃

β

(
κ

β
∓ 1

)
(C.8)

which will be used repeatedly without further mention.

Proposition C.1. If β, λ, ε ∈ (0,∞) are constant and σ ≡ 0, the optimal trading speed (in open-loop
form) for (C.1) is

q∗s := C1
t e

κ(T−s) + C2
t e

−κ(T−s) − (C1
t + C2

t ), s ∈ [t, T ], (C.9)

where C1
t and C2

t are uniquely determined by the invertible linear system

Mt

[
C1
t

C2
t

]
=

[
−x̄

−λ−1y

]
, Mt :=

[
a11t a12t
a21t a22t

]
, (C.10)

where

x̄ = x+ (1− e−
∫ T
t θu du) z

a11t = κ−1eκ(T−t) − (T − t) + [(κ+ β)−1 − β−1 − κ−1]

a12t = −κ−1e−κ(T−t) − (T − t) + [−(κ− β)−1 − β−1 + κ−1]

a21t = eκ(T−t)(κ− β)−1 + β−1

a22t = −e−κ(T−t)(κ+ β)−1 + β−1.

This result will be obtained by solving the forward-backward system consisting of the (forward)
state dynamics (C.2) and the backward system (C.6), which are coupled through the optimality
condition (C.4).

Proof. Step 1: We first derive a second-order, linear, non-homogeneous ODE for q∗. From the first
equation in (C.6), UX ≡ UX

T is constant, and hence the optimality condition (C.4) yields

UY
s = − ε

λ
q∗s −

1

λ
UX
T .
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The second equation in (C.6) then reads

ε

λ
q̇∗s = −U̇Y

s = β

(
ε

λ
q∗s +

1

λ
UX
T

)
+

2β

λ
Ys,

or, equivalently,

Ys =
1

2

(
ε

β
q̇∗s − εq∗s − UX

T

)
. (C.11)

The second equation in (C.2) now implies that

1

2

(
ε

β
q̈∗s − εq̇∗s

)
= −β

2

(
ε

β
q̇∗s − εq∗s − UX

T

)
+ λq∗s

or

q̈∗s − β2

(
1 +

2λ

εβ

)
q∗s −

β2

ε
UX
T = 0. (C.12)

We also have the terminal condition q∗T = 0 from (C.5). With ε̃ and κ as defined in (C.7), the
solution to (C.12) can be written as

q∗s = C1
t e

κ(T−s) + C2
t e

−κ(T−s) − β

2λ(1 + ε̃)
UX
T

= C1
t e

κ(T−s) + C2
t e

−κ(T−s) − (C1
t + C2

t ); (C.13)

here

UX
T =

2λ

β
(1 + ε̃)(C1

t + C2
t ) (C.14)

due to the terminal condition q∗T = 0 and C1
t , C

2
t ∈ R will be determined in Step 3 below.

Step 2: We calculate the state processes X,Y, Z in (C.2) at s ∈ [t, T ]. Note that

Zs = ze−
∫ s
t θu du. (C.15)

Then

Xs = x+

∫ s

t
qu du− (Zs − z)

= x+ C1
t

{
κ−1[eκ(T−t) − eκ(T−s)]− (s− t)

}
+ C2

t

{
κ−1[e−κ(T−s) − e−κ(T−t)]− (s− t)

}
+ (1− e−

∫ s
t θu du) z (C.16)

and

Ys = e−β(s−t)y + λe−βs

∫ s

t
eβuqu du

= e−β(s−t)y

+ λC1
t

{
(κ− β)−1[eκ(T−t)−β(s−t) − eκ(T−s)]− β−1[1− e−β(s−t)]

}
+ λC2

t

{
(κ+ β)−1[e−κ(T−s) − e−κ(T−t)−β(s−t)]− β−1[1− e−β(s−t)]

}
. (C.17)
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In particular, the state variables at T are

XT = x+ C1
t

{
κ−1[eκ(T−t) − 1]− (T − t)

}
+ C2

t

{
κ−1[1− e−κ(T−t)]− (T − t)

}
+ (1− e−

∫ T
t θu du) z (C.18)

and

YT = e−β(T−t)y + λC1
t

{
(κ− β)−1[e(κ−β)(T−t) − 1]− β−1[1− e−β(T−t)]

}
+ λC2

t

{
(κ+ β)−1[1− e−(κ+β)(T−t)]− β−1[1− e−β(T−t)]

}
. (C.19)

Step 3: We use the expressions from Step 2 to determine C1
t and C2

t . The derivation of (C.11)
from the maximal principle (C.4) shows that the forward-backward system is solved only if Y
satisfies

Ys =
ε̃λ

β2
q̇∗s −

ε̃λ

β
q∗s −

1

2
UX
T , s ∈ [t, T ]. (C.20)

Using the expressions of q∗s in (C.13), UX
T in (C.14) and Ys in (C.17), we claim that (C.20) holds if

and only if

C1
t

[
eκ(T−t)(κ− β)−1 + β−1

]
+ C2

t

[
−e−κ(T−t)(κ+ β)−1 + β−1

]
= −λ−1y. (C.21)

To wit, we can group the terms in (C.20) by e−β(s−t), eκ(T−s), e−κ(T−s) and the remaining constants.
The coefficient of e−β(s−t) being zero gives rise to (C.21); the other coefficients can be fully canceled
thanks to (C.8), so they do not yield further conditions.

On the other hand, the first terminal condition in (C.6) reads

−UX
T + λXT − YT = 0. (C.22)

Note that (C.20) at T reduces to

YT =
λε̃κ

β2
(−C1

t + C2
t )−

1

2
UX
T , (C.23)

since q∗T = 0. Plugging (C.14), (C.18), (C.23) into (C.22), we arrive at

C1
t

[
(κ+ β)−1 − β−1 + κ−1[eκ(T−t) − 1]− (T − t)

]
+C2

t

[
−(κ− β)−1 − β−1 + κ−1[1− e−κ(T−t)]− (T − t)

]
= −x− (1− e−

∫ T
t θu du) z (C.24)

again with the help of (C.8).
The equations (C.21) and (C.24) forms the linear system (C.10). To calculate its determinant,

note that

det(Mt) = a11t a22t − a12t a21t

= −a11t e−κ(T−t)(κ+ β)−1 − a12t eκ(T−t)(κ− β)−1 + β−1(a11t − a12t ),
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where thanks to (C.8), we have

a11t − a12t = κ−1(eκ(T−t) + e−κ(T−t)) + [(κ+ β)−1 + (κ− β)−1 − 2κ−1]

= κ−1(eκ(T−t) + e−κ(T−t)) + 2
(
ε̃κβ−2 − κ−1

)
.

We group the terms in det(Mt) by eκ(T−t), e−κ(T−t), (T−t)eκ(T−t), (T−t)e−κ(T−t) and the constant
terms. All coefficients are strictly greater than zero when ε̃, β, λ > 0, and hence det(Mt) > 0:

det(Mt) = eκ(T−t)
{
(κ− β)−1[(κ− β)−1 + β−1 − κ−1] + β−1κ−1

}
+ e−κ(T−t)

{
(κ+ β)−1[−(κ+ β)−1 + β−1 + κ−1] + β−1κ−1

}
+ (T − t)eκ(T−t)(κ− β)−1 + (T − t)e−κ(T−t)(κ+ β)−1 + 4ε̃β−1κ−1.

In particular, the constant term is simplified from

κ−1[−(κ+ β)−1 + (κ− β)−1] + 2β−1
(
ε̃κβ−2 − κ−1

)
= 4ε̃β−1κ−1

thanks to (C.8) and ε̃κ2β−2 = 1 + ε̃.

We can now derive Theorem 2.14.

Proof of Theorem 2.14. As mentioned above, by Proposition 2.3, we can assume without loss of
generality that σ ≡ 0. We can then apply Proposition C.1. Rewriting the expression (C.13) at the
initial time s = t yields

q∗t = C1
t (e

κ(T−t) − 1)− C2
t (1− e−κ(T−t))

= (eκ(T−t) − 1)(C1
t − e−κ(T−t)C2

t ). (C.25)

From (C.10), we have

C1
t = −(a22t x̄− λ−1a12t y)/dt, (C.26)

C2
t = (a21t x̄− λ−1a11t y)/dt, (C.27)

where dt := det(Mt). Note that

C1
t − e−κ(T−t)C2

t = (−f̃tx̄+ g̃ty)/dt, (C.28)

where

f̃t : = −(a22t + e−κ(T−t)a21t )

= −[β−1 − (κ+ β)−1]e−κ(T−t) − [β−1 + (κ− β)−1] < 0

and

g̃t : = λ−1a12t + λ−1e−κ(T−t)a11t

= −λ−1(1 + e−κ(T−t))(T − t)− λ−1[β−1 + 2κ−1 − (κ+ β)−1]e−κ(T−t)

− λ−1[(κ− β)−1 + β−1 − 2κ−1] < 0.

In particular, it can be verified in the last line that the constant term is negative,

− 1

β

[
1√

1 + ε̃−1 − 1
+ 1− 2√

1 + ε̃−1

]
< 0.
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We can further rewrite g̃t as

g̃t = λ−1f̃t − λ−1(1 + e−κ(T−t))(T − t) + 2λ−1κ−1(1− e−κ(T−t)).

Plugging (C.28) into (C.25) yields

q∗t = (eκ(T−t) − 1)(−f̃tx̄+ g̃ty)/dt,

completing the proof.
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