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Abstract

We establish the duality formula for the superreplication price in a
setting of volatility uncertainty which includes the example of �random
G-expectation.� In contrast to previous results, the contingent claim
is not assumed to be quasi-continuous.
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1 Introduction

This paper is concerned with superreplication-pricing in a setting of volatility
uncertainty. We see the canonical process B on the space Ω of continuous
paths as the stock price process and formalize this uncertainty via a set
P of (non-equivalent) martingale laws on Ω. Given a contingent claim �
measurable at time T > 0, we are interested in determining the minimal
initial capital x ∈ ℝ for which there exists a trading strategy H whose
terminal gain x+

∫ T
0 Hu dBu exceeds � P -a.s., simultaneously for all P ∈ P.

The aim is to show that under suitable assumptions, this minimal capital
is given by x = supP∈P E

P [�]. We prove this duality formula for Borel-
measurable (and, more generally, upper semianalytic) claims � and a model
P where the possible values of the volatility are determined by a set-valued
process. Such a model of a �random G-expectation� was �rst introduced in
[9], as an extension of the �G-expectation� of [15, 16].
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The duality formula under volatility uncertainty has been established for
several cases and through di�erent approaches: [6] used ideas from capacity
theory, [17, 21, 24] used an approximation by Markovian control problems,
and [23, 12] used a method discussed below. See also [18] for a follow-
up on our results, related to optimal martingale transportation. The main
di�erence between our results and the previous ones is that we do not impose
continuity assumptions on the claim � (as a functional of the stock price).
Thus, on the one hand, our result extends the duality formula to traded
claims such as digital options or options on realized variance, which are not
quasi-continuous (cf. [6]), and cases where the regularity is not known, like
an American option evaluated at an optimal exercise time (cf. [14]). On the
other hand, our result con�rms the general robustness of the duality.

The main di�culty in our endeavor is to construct the superreplicating
strategy H. We adopt the approach of [23] and [12], which can be outlined
as follows:

(i) Construct the conditional (nonlinear) expectation ℰt(�) related to P
and show the tower property ℰs(ℰt(�)) = ℰs(�) for s ≤ t.

(ii) Check that the right limit Yt := ℰt+(�) exists and de�nes a super-
martingale under each P ∈ P (in a suitable �ltration).

(iii) For every P ∈ P, show that the martingale part in the Doob�Meyer
decomposition of Y is of the form

∫
HP dB. Using that HP can be

expressed via the quadratic (co)variation processes of Y and B, deduce
that there exists a universal process H coinciding with HP under each
P , and check that H is the desired strategy.

Step (iii) can be accomplished by ensuring that each P ∈ P has the
predictable representation property. To this end�and for some details of
Step (ii) that we shall skip for the moment�[23] introduced the set of Brow-
nian martingale laws with positive volatility, which we shall denote by PS :
if P is chosen as a subset of PS , then every P ∈ P has the representation
property (cf. Lemma 4.1) and Step (iii) is feasible.

Step (i) is the main reason why previous results required continuity as-
sumptions on �. Recently, it was shown in [13] that the theory of analytic
sets can be used to carry out Step (i) when � is merely Borel-measurable
(or only upper semianalytic), provided that the set of measures satis�es a
condition of measurability and invariance, called Condition (A) below (cf.
Proposition 2.2). It was also shown in [13] that this condition is satis�ed
for a model of random G-expectation where the measures are chosen from
the set of all (not necessarily Brownian) martingale laws. Thus, to follow
the approach outlined above, we formulate a similar model using elements
of PS and show that Condition (A) is again satis�ed. This essentially boils
down to proving that the set PS itself satis�es Condition (A), which is our
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main technical result (Theorem 2.4). Using this fact, we can go through
the approach outlined above and establish our duality result (Theorem 2.3
and Corollary 2.6). As an aside of independent interest, Theorem 2.4 yields
a rigorous proof for a dynamic programming principle with a fairly general
reward functional (cf. Remark 2.7).

The remainder of this paper is organized as follows. In Section 2, we �rst
describe our setup and notation in detail and we recall the relevant facts from
[13]; then, we state our main results. Theorem 2.4 is proved in Section 3,
and Section 4 concludes with the proof of Theorem 2.3.

2 Results

2.1 Notation

We �x the dimension d ∈ ℕ and let Ω = {! ∈ C([0,∞);ℝd) : !0 = 0}
be the canonical space of continuous paths equipped with the topology of
locally uniform convergence. Moreover, let ℱ = ℬ(Ω) be its Borel �-algebra.
We denote by B := (Bt)t≥0 the canonical process Bt(!) = !t, by P0 the
Wiener measure and by F := (ℱt)t≥0 the (raw) �ltration generated by B.
Furthermore, we denote by P(Ω) the set of all probability measures on Ω,
equipped with the topology of weak convergence.

We recall that a subset of a Polish space is called analytic if it is the image
of a Borel subset of another Polish space under a Borel map. Moreover, an ℝ-
valued function f is called upper semianalytic if {f > c} is analytic for each
c ∈ ℝ; in particular, any Borel-measurable function is upper semianalytic.
(See [1, Chapter 7] for background.) Finally, the universal completion of a
�-�eld A is given by A∗ := ∩PAP , where AP denotes the completion with
respect to P and the intersection is taken over all probability measures on A.

Throughout this paper, �stopping time� will refer to a �nite F-stopping
time. Let � be a stopping time. Then the concatenation of !, !̃ ∈ Ω at � is
the path

(! ⊗� !̃)u := !u1[0,�(!))(u) +
(
!�(!) + !̃u−�(!)

)
1[�(!),∞)(u), u ≥ 0.

For any probability measure P ∈ P(Ω), there is a regular conditional prob-
ability distribution {P!� }!∈Ω given ℱ� satisfying

P!�
{
!′ ∈ Ω : !′ = ! on [0, �(!)]

}
= 1 for all ! ∈ Ω;

cf. [25, p. 34]. We then de�ne P �,! ∈ P(Ω) by

P �,!(A) := P!� (! ⊗� A), A ∈ ℱ , where ! ⊗� A := {! ⊗� !̃ : !̃ ∈ A}.

Given a function � on Ω and ! ∈ Ω, we also de�ne the function ��,! on Ω by

��,!(!̃) := �(! ⊗� !̃), !̃ ∈ Ω.

Then, we have EP
�,!

[��,!] = EP [�∣ℱ� ](!) for P -a.e. ! ∈ Ω.
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2.2 Preliminaries

We formalize volatility uncertainty via a set of local martingale laws with
di�erent volatilities. To this end, we denote by S the set of all symmetric
d × d-matrices and by S>0 its subset of strictly positive de�nite matrices.
The set PS ⊂ P(Ω) consists of all local martingale laws of the form

P� = P0 ∘
(∫ ⋅

0
�1/2
s dBs

)−1

, (2.1)

where � ranges over all F-progressively measurable processes with values in
S>0 satisfying

∫ T
0 ∣�s∣ ds <∞ P0-a.s. for every T ∈ ℝ+. (We denote by ∣ ⋅ ∣

the Euclidean norm in any dimension.) In other words, these are all laws
of stochastic integrals of a Brownian motion, where the integrand is strictly
positive and adapted to the Brownian motion. The set PS was introduced
in [23] and its elements have several nice properties; in particular, they have
the predictable representation property which plays an important role in the
proof of the duality result below (see also Section 4).

We intend to model �uncertainty� via a subset P ⊂ P(Ω) (below, each
P ∈ P will be a possible scenario for the volatility). However, for technical
reasons, we make a detour and consider an entire family of subsets of P(Ω),
indexed by (s, !) ∈ ℝ+ × Ω, whose elements at s = 0 coincide with P. As
illustrated in Example 2.1 below, this family is of purely auxiliary nature.

Let {P(s, !)}(s,!)∈ℝ+×Ω be a family of subsets of P(Ω), adapted in the
sense that

P(s, !) = P(s, !̃) if !∣[0,s] = !̃∣[0,s],

and de�ne P(�, !) := P(�(!), !) for any stopping time � . Note that the
set P(0, !) is independent of ! as all paths start at the origin. Thus, we
can de�ne P := P(0, !). Before giving the example, let us state a condition
on {P(s, !)} whose purpose will be to construct the conditional sublinear
expectation related to P.

Condition (A). Let s ∈ ℝ+, let � be a stopping time such that � ≥ s, let
!̄ ∈ Ω and P ∈ P(s, !̄). Set � := � s,!̄ − s.

(A1) The graph {(P ′, !) : ! ∈ Ω, P ′ ∈ P(�, !)} ⊆ P(Ω)× Ω is analytic.

(A2) We have P �,! ∈ P(�, !̄ ⊗s !) for P -a.e. ! ∈ Ω.

(A3) If � : Ω → P(Ω) is an ℱ�-measurable kernel and �(!) ∈ P(�, !̄ ⊗s !)
for P -a.e. ! ∈ Ω, then the measure de�ned by

P̄ (A) =

∫∫
(1A)�,!(!′) �(d!′;!)P (d!), A ∈ ℱ (2.2)

is an element of P(s, !̄).
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Conditions (A1)�(A3) will ensure that the conditional expectation is
measurable and satis�es the �tower property� (see Proposition 2.2 below),
which is the dynamic programming principle in this context (see [1] for back-
ground). We remark that (A2) and (A3) imply that the family {P(s, !)} is
essentially determined by the set P. As mentioned above, in applications,
P will be the primary object and we shall simply write down a correspond-
ing family {P(s, !)} such that P = P(0, !) and such that Condition (A) is
satis�ed. To illustrate this, let us state a model where the possible values
of the volatility are described by a set-valued process D and which will be
the main application of our results. This model was �rst introduced in [9]
and further studied in [13]; it generalizes the G-expectation of [15, 16] which
corresponds to the case where D is a (deterministic) compact convex set.

Example 2.1 (Random G-Expectation). We consider a set-valued process
D : Ω×ℝ+ → 2S; i.e., Dt(!) is a set of matrices for each (t, !). We assume
that D is progressively graph-measurable: for every t ∈ ℝ+,{

(!, s,A) ∈ Ω× [0, t]× S : A ∈ Ds(!)
}
∈ ℱt × ℬ([0, t])× ℬ(S),

where ℬ([0, t]) and ℬ(S) denote the Borel �-�elds of S and [0, t].
We want a set P consisting of all P ∈ PS under which the volatility takes

values in D P -a.s. To this end, we introduce the auxiliary family {P(s, !)}:
given (s, !) ∈ ℝ+ × Ω, we de�ne P(s, !) to be the collection of all P ∈ PS
such that

d⟨B⟩u
du

(!̃) ∈ Du+s(! ⊗s !̃) for P × du-a.e. (!̃, u) ∈ Ω× ℝ+. (2.3)

In particular, P := P(0, !) then consists, as desired, of all P ∈ PS such
that d⟨B⟩u/du ∈ Du holds P × du-a.e. We shall see in Corollary 2.6 that
Condition (A) is satis�ed in this example.

The following is the main result of [13]; it is stated with the conventions
sup ∅ = −∞ and EP [�] := −∞ if EP [�+] = EP [�−] = +∞, and ess supP

denotes the essential supremum under P .

Proposition 2.2. Suppose that {P(s, !)} satis�es Condition (A) and that

P ∕= ∅. Let � ≤ � be stopping times and let � : Ω → ℝ be an upper

semianalytic function. Then the function

ℰ� (�)(!) := sup
P∈P(�,!)

EP [��,!], ! ∈ Ω

is ℱ∗� -measurable and upper semianalytic. Moreover,

ℰ�(�)(!) = ℰ�(ℰ� (�))(!) for all ! ∈ Ω. (2.4)

Furthermore, with P(�;P ) = {P ′ ∈ P : P ′ = P on ℱ�}, we have

ℰ�(�) = ess supP

P ′∈P(�;P )
EP

′
[ℰ� (�)∣ℱ�] P -a.s. for all P ∈ P. (2.5)
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2.3 Main Results

Some more notation is needed to state our duality result. In what follows,
the set P determined by the family {P(s, !)} will be a subset of PS . We
shall use a �nite time horizon T ∈ ℝ+ and the �ltration G = (Gt)0≤t≤T ,
where

Gt := ℱ∗t ∨NP ;

here ℱ∗t is the universal completion of ℱt and NP is the collection of sets
which are (ℱT , P )-null for all P ∈ P.

Let H be a G-predictable process taking values in ℝd and such that∫ T
0 H⊤u d⟨B⟩uHu < ∞ P -a.s. for all P ∈ P. Then H is called an admissi-
ble trading strategy if 1

∫
H dB is a P -supermartingale for all P ∈ P; as

usual, this is to rule out doubling strategies. We denote by ℋ the set of all
admissible trading strategies.

Theorem 2.3. Suppose {P(s, !)} satis�es Condition (A) and ∅ ∕= P ⊂ PS.
Moreover, let � : Ω → ℝ be an upper semianalytic, GT -measurable function

such that supP∈P E
P [∣�∣] <∞. Then

sup
P∈P

EP [�]

= min

{
x ∈ ℝ : ∃H ∈ ℋ with x+

∫ T

0
Hu dBu ≥ � P -a.s. for all P ∈ P

}
.

The assumption that P ⊂ PS will be essential for our proof, which is
stated in Section 4. In order to have nontrivial examples where the previous
theorem applies, it is essential to know that the set PS (seen as a constant
family P(s, !) ≡ PS) satis�es itself Condition (A). This fact is our main
technical result.

Theorem 2.4. The set PS satis�es Condition (A).

The proof is stated Section 3. It is easy to see that if two families satisfy
Condition (A), then so does their intersection. In particular, we have:

Corollary 2.5. If {P(s, !)} satis�es Condition (A), so does {P(s, !)∩PS}.

The following is the main application of our results.

Corollary 2.6. The family {P(s, !)} related to the random G-expectation
(as de�ned in Example 2.1) satis�es Condition (A). In particular, the duality

result of Theorem 2.3 applies in this case.

1 Here
∫
H dB is, with some abuse of notation, the usual Itô integral under the �xed

measure P . We remark that we could also de�ne the integral simultaneously under all
P ∈ P by the construction of [10]. This would yield a cosmetically nicer result, but we
shall avoid the additional set-theoretic subtleties as this is not central to our approach.
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Proof. Let Ma ⊂ P(Ω) be the set of all local martingale laws on Ω under
which the quadratic variation of B is absolutely continuous with respect to
the Lebesgue measure; then PS ⊂ Ma. Moreover, let P̃(s, !) be the set of
all P ∈Ma such that (2.3) holds. Then, clearly, P(s, !) = P̃(s, !)∩PS , and
since we know from [13, Theorem 4.3] that {P̃(s, !)} satis�es Condition (A),
Corollary 2.5 shows that {P(s, !)} again satis�es Condition (A).

Remark 2.7. In view of (2.4), Theorem 2.4 yields the dynamic program-
ming principle for the optimal control problem sup�E

P0 [�(X�)] with a very

general reward functional �, where X� =
∫ ⋅

0 �
1/2
s dBs. We remark that the

arguments in the proof of Theorem 2.4 could be extended to other control
problems; for instance, the situation where the state process X� is de�ned
as the solution of a stochastic functional/di�erential equation as in [11].

3 Proof of Theorem 2.4

In this section, we prove that PS (i.e., the constant family P(s, !) ≡ PS)
satis�es Condition (A). Up to some minor di�erences in notation, property
(A2) was already shown in [23, Lemma 4.1], so we focus on (A1) and (A3).

Let us �x some more notation. We denote by E[ ⋅ ] the expectation under
the Wiener measure P0; more generally, any notion related to Ω that implic-
itly refers to a measure will be understood to refer to P0. Unless otherwise
stated, any topological space is endowed with its Borel �-�eld. As usual,
L0(Ω;ℝ) denotes the set of equivalence classes of random variables on Ω, en-
dowed with the topology of convergence in measure. Moreover, we denote by
Ω̄ = Ω×ℝ+ the product space; here the measure is P0×dt by default, where
dt is the Lebesgue measure. The basic space in this section is L0(Ω̄; S), the
set of equivalence classes of S-valued processes that are product-measurable.
We endow L0(Ω̄;S) (and its subspaces) with the topology of local conver-
gence in measure; that is, the metric

d(⋅, ⋅) =
∑
k∈ℕ

2−k
dk(⋅, ⋅)

1 + dk(⋅, ⋅)
, where dk(X,Y ) = E

[ ∫ k

0
1 ∧ ∣Xs − Ys∣ ds

]
.

(3.1)

As a result, Xn → X in L0(Ω̄;S) if and only if limnE[
∫ T

0 1∧∣Xn
s −Xs∣ ds] = 0

for all T ∈ ℝ+.

3.1 Proof of (A1)

The aim of this subsection is to show that PS ⊂ P(Ω) is analytic. To this
end, we shall show that PS ⊂ P(Ω) is the image of a Borel space (i.e., a
Borel subset of a Polish space) under a Borel map; this implies the claim by
[1, Proposition 7.40, p. 165]. Indeed, let L0

prog(Ω̄; S) ⊂ L0(Ω̄;S) be the subset
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of F-progressively measurable processes and

L1
loc(Ω̄;S>0) =

{
� ∈ L0

prog(Ω̄; S>0) :

∫ T

0
∣�s∣ ds <∞ P0-a.s. for all T ∈ ℝ+

}
.

Moreover, we denote by

Φ : L1
loc(Ω̄;S>0)→ P(Ω), � 7→ P� = P0 ∘

(∫ ⋅
0
�1/2
s dBs

)−1

(3.2)

the map which associates to � the corresponding law. Then PS is the image

PS = Φ(L1
loc(Ω̄;S>0));

therefore, the claimed property (A1) follows from the two subsequent lem-
mas.

Lemma 3.1. The space L0
prog(Ω̄; S) is Polish and L1

loc(Ω̄; S>0) ⊂ L0
prog(Ω̄;S)

is Borel.

Proof. We start by noting that L0(Ω̄;S) is Polish. Indeed, as ℝ+ and Ω are
separable metric spaces, we have that L2(Ω × [0, T ];S) is separable for all
T ∈ ℕ (e.g., [7, Section 6.15, p. 92]). A density argument and the de�ni-
tion (3.1) then show that L0(Ω̄;S) is again separable. On the other hand,
the completeness of S is inherited by L0(Ω̄; S); see, e.g., [3, Corollary 3].
Since L0

prog(Ω̄; S) ⊂ L0(Ω̄;S) is closed, it is again a Polish space.
Next, we show that L1

loc(Ω̄;S) is a Borel subset of L0
prog(Ω̄;S). We �rst

observe that

L1
loc(Ω̄;S) =

∩
T∈ℕ

{
� ∈ L0

prog(Ω̄;S) : P0

[
arctan

(∫ T

0
∣�s∣ ds

)
≥ �

2

]
= 0

}
.

Therefore, it su�ces to show that for �xed T ∈ ℕ,

� 7→ P0

[
arctan

(∫ T

0
∣�s∣ ds

)
≥ �

2

]
is Borel. Indeed, this is the composition of the function

L0(Ω;ℝ)→ ℝ, f 7→ P0 [f ≥ �/2] ,

which is upper semicontinuous by the Portmanteau theorem and thus Borel,
with the map

L0
prog(Ω̄;S)→ L0(Ω;ℝ), � 7→ arctan

(∫ T

0
∣�s∣ ds

)
.

The latter is Borel because it is, by monotone convergence, the pointwise
limit of the maps

� 7→ arctan

(∫ T

0
n ∧ ∣�s∣ ds

)
,
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which are continuous for �xed n ∈ ℕ due to the elementary estimate

E

[
1 ∧

∣∣∣∣ arctan

(∫ T

0
n ∧ ∣�s∣ ds

)
− arctan

(∫ T

0
n ∧ ∣�̃s∣ ds

)∣∣∣∣]
≤ E

[ ∫ T

0
n ∧ ∣�s − �̃s∣ ds

]
.

This completes the proof that L1
loc(Ω̄;S) is a Borel subset of L0

prog(Ω̄;S). To
deduce the same property for L1

loc(Ω̄;S>0), note that

L1
loc(Ω̄;S>0) =

∩
T∈ℕ

{
� ∈ L1

loc(Ω̄;S) : �T
[
� ∈ S ∖ S>0

]
= 0
}
,

where �T is the product measure �T (A) = E[
∫ T

0 1A ds]. As S>0 ⊂ S is
open, � 7→ �T [� ∈ S ∖ S>0] is upper semicontinuous and we conclude that
L1
loc(Ω̄;S>0) is again Borel.

Lemma 3.2. The map Φ : L1
loc(Ω̄;S>0)→ P(Ω) de�ned in (3.2) is Borel.

Proof. Consider �rst, for �xed n ∈ ℕ, the mapping Φn de�ned by

Φn(�) = P0 ∘
(∫ ⋅

0
�n(�1/2

s ) dBs

)−1

,

where �n is the projection onto the ball of radius n around the origin in S.
It follows from a direct extension of the dominated convergence theorem for
stochastic integrals [19, Theorem IV.32, p. 176] that

� 7→
∫ ⋅

0
�n(�1/2

s ) dBs

is continuous for the topology of uniform convergence on compacts in prob-
ability (�ucp�), and hence that Φn is continuous for the topology of weak
convergence. In particular, Φn is Borel. On the other hand, a second appli-
cation of dominated convergence shows that∫ ⋅

0
�n(�1/2

s ) dBs →
∫ ⋅

0
�1/2
s dBs ucp as n→∞

for all � ∈ L1
loc(Ω̄;S>0) and hence that Φ(�) = limn Φn(�) in P(Ω) for all

�. Therefore, Φ is again Borel.

3.2 Proof of (A3)

Given a stopping time � , a measure P ∈ PS and an ℱ� -measurable kernel
� : Ω→ P(Ω) with �(!) ∈ PS for P -a.e. ! ∈ Ω, our aim is to show that

P̄ (A) :=

∫∫
(1A)�,!(!′) �(!, d!′)P (d!), A ∈ ℱ
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de�nes an element of PS . That is, we need to show that P̄ = P �̄ for some
�̄ ∈ L1

loc(Ω̄;S>0). In the case where � has only countably many values, this
can be accomplished by explicitly writing down an appropriate process �̄, as
was shown already in [23]. The present setup requires general kernels and a
measurable selection proof. Roughly speaking, up to time � , �̄ is given by
the integrand � determining P , whereas after � , it is given by the integrand
of �(!), for a suitable !. In Step 1 below, we state precisely the requirement
for �̄; in Step 2, we construct a measurable selector for the integrand of �(!);
�nally, in Step 3, we show how to construct the required process �̄ from this
selector.

Step 1. Let � ∈ L1
loc(Ω̄; S>0) be such that P = P�, letX� :=

∫ ⋅
0 �

1/2
s dBs,

and let �̃ := � ∘X�. Suppose we have found �̂ ∈ L0
prog(Ω̄;S) such that

�̂! := �̂⋅+�̃(!)(!⊗�̃ ⋅) ∈ L1
loc(Ω̄; S>0) and P �̂

!
= �(X�(!)) for P0-a.e. ! ∈ Ω.

Then P̄ = P �̄ for �̄ de�ned by

�̄s(!) = �s(!)1[0,�̃(!)](s) + �̂s(!)1(�̃(!),∞)(s).

Indeed, we clearly have �̄ ∈ L1
loc(Ω̄;S>0). Moreover, we note that �̃ is

again a stopping time by Galmarino's test [4, Theorem IV.100, p. 149]. To
see that P̄ = P �̄, it su�ces to show that

EP̄
[
 
(
Bt1 , . . . , Btn

)]
= EP0

[
 
(
X �̄
t1 , . . . , X

�̄
tn

)]
for all n ∈ ℕ, 0 < t1 < t2 < ⋅ ⋅ ⋅ < tn < ∞, and any bounded continu-
ous function  : ℝn → ℝ. Recall that B has stationary and independent
increments under the Wiener measure P0. For P0-a.e. ! ∈ Ω such that
t̃ := �̃(!) ∈ [tj , tj+1), we have

EP0
[
 
(
X �̄
t1 , . . . , X

�̄
tn

)∣∣ℱ�̃ ](!)

= EP0
[
 
(
X �̄
t1(! ⊗t̃ B), . . . , X �̄

tn(! ⊗t̃ B)
)]

= EP0

[
 

(
X�
t1(!), . . . , X�

tj (!), X�
t̃

(!) +

∫ tj+1

t̃
�̂1/2
s (! ⊗t̃ B) dBs−t̃, . . . ,

X�
t̃

(!) +

∫ tn

t̃
�̂1/2
s (! ⊗t̃ B) dBs−t̃

)]
and thus, by the de�nition of �!,

EP0
[
 
(
X �̄
t1 , . . . , X

�̄
tn

)∣∣ℱ�̃ ](!)

= EP
�! [

 
(
X�
t1(!), . . . , X�

tj (!), X�
t̃

(!) +Btj+1−t̃, . . . , X
�
t̃

(!) +Btn−t̃
)]

=

∫
 
(
X�
t1(!), . . . , X�

tj (!), X�
t̃

(!) +Btj+1−t̃(!
′), . . . ,

X�
t̃

(!) +Btn−t̃(!
′)
)
�
(
X�(!), d!′

)
.
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Integrating both sides with respect to P0(d!) and noting that t̃ ∈ [tj , tj+1)
implies t := �(!) ∈ [tj , tj+1) P -a.s., we conclude that

EP0
[
 
(
X �̄
t1 , . . . , X

�̄
tn

)]
=

∫∫
 
(
X�
t1(!), . . . , X�

tj (!), X�
t̃

(!) +Btj+1−t̃(!
′), . . . ,

X�
t̃

(!) +Btn−t̃(!
′)
)
�(X�(!), d!′)P0(d!)

=

∫∫
 
(
Bt1(!), . . . , Btj (!), Bt(!) +Btj+1−t(!

′), . . . ,

Bt(!) +Btn−t(!
′)
)
�(!, d!′)P (d!)

=

∫∫
 �,!

(
Bt1 , . . . , Btn

)
(!′) �(!, d!′)P (d!)

= EP̄
[
 
(
Bt1 , . . . , Btn

)]
.

This completes the �rst step of the proof.

Step 2. We show that there exists an ℱ� -measurable function

� : Ω→ L1
loc(Ω̄;S>0) such that P �(!) = �(!) for P -a.e. ! ∈ Ω.

To this end, consider the set

A =
{

(!, �) ∈ Ω× L1
loc(Ω̄;S>0) : �(!) = P�

}
.

We have seen in Lemma 3.1 that L1
loc(Ω̄;S>0) is a Borel space. On the other

hand, we have from Lemma 3.2 that � 7→ P� is Borel, and � is Borel by
assumption. Hence, A is a Borel subset of Ω × L1

loc(Ω̄;S>0). As a result,
we can use the Jankov�von Neumann theorem [1, Proposition 7.49, p. 182]
to obtain an analytically measurable map � from the Ω-projection of A to
L1
loc(Ω̄;S>0) whose graph is contained in A; that is,

� : {! ∈ Ω : �(!) ∈ PS} → L1
loc(Ω̄;S>0) such that P �(⋅) = �(⋅) .

Since � is, in particular, universally measurable, and since �(⋅) ∈ PS P -a.s.,
we can alter � on a P -nullset to obtain a Borel-measurable map

� : Ω→ L1
loc(Ω̄; S>0) such that P �(⋅) = �(⋅) P -a.s.

Finally, we can replace � by ! 7→ �(!⋅∧�(!)), then we have the required
ℱ� -measurability as a consequence of Galmarino's test. Moreover, since
A ∈ ℱ� ⊗ ℬ(L1

loc(Ω̄;S>0)) due to the ℱ� -measurability of �, Galmarino's
test also shows that we still have P �(⋅) = �(⋅) P -a.s., which completes the
second step of the proof.

Step 3. It remains to construct �̂ ∈ L0
prog(Ω̄;S) as postulated in Step 1.

While the map � constructed in Step 2 will eventually yield the processes �̂!

11



de�ned in Step 1, we note that � is a map into a space of processes and so we
still have to glue its values into an actual process. This is simple when there
are only countably many values; therefore, following a construction of [20],
we use an approximation argument.

Since L1
loc(Ω̄;S>0) is separable (always for the metric introduced in (3.1)),

we can construct for any n ∈ ℕ a countable Borel partition (An,k)k≥1 of
L1
loc(Ω̄;S>0) such that the diameter of An,k is smaller than 1/n. Moreover,

we �x 
n,k ∈ An,k for k ≥ 1. Then,

�n(!) :=
∑
k≥1


n,k1An,k(�(!))

satis�es

sup
!∈Ω

d(�n(!), �(!)) ≤ 1

n
; (3.3)

that is, �n converges uniformly to �, as an L1
loc(Ω̄; S>0)-valued map.

Let � and �̃ = � ∘X� be as in Step 1. Moreover, for any stopping time �,
denote

!�⋅ := !⋅+�(!) − !�(!), ! ∈ Ω.

Then, for �xed n, the process

(!, s) 7→ �̂ns (!) := 1[�̃(!),∞)(s)[�n(X�(!))]s−�̃(!)(!
�̃(!))

≡ 1[�̃(!),∞)(s)
∑
k≥1


n,ks−�̃(!)(!
�̃(!))1An,k(�(X�(!)))

is well de�ned P0-a.s., and in fact an element of the Polish space L0
prog(Ω̄;S).

We show that (�̂n) is a Cauchy sequence and that the limit �̂ yields the
desired process. Fix T ∈ ℝ+ and m,n ∈ ℕ, then (3.3) implies that∫

Ω

∫ T

0
1 ∧

∣∣[�m(!)]s(!
′)− [�n(!)]s(!

′)
∣∣ dsP0(d!′) ≤ cT

(
1

m
+

1

n

)
(3.4)

for all ! ∈ Ω, where cT is an unimportant constant coming from the de�nition
of d in (3.1). In particular,∫

Ω

∫
Ω

∫ T

0
1 ∧

∣∣[�m(X�(!))]s(!
′)− [�n(X�(!))]s(!

′)
∣∣ dsP0(d!′)P0(d!)

≤ cT
(

1

m
+

1

n

)
. (3.5)

Since P0 is the Wiener measure, we have the formula∫
Ω
g(!⋅∧�̃(!), !

�̃ )P0(d!) =

∫
Ω

∫
Ω
g(!⋅∧�̃(!), !

′)P0(d!′)P0(d!)
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for any bounded, progressively measurable functional g on Ω × Ω. As � is
ℱ� -measurable, we conclude from (3.5) that∫

Ω

∫ T

0
1 ∧ ∣�̂ms (!)− �̂ns (!)∣ dsP0(d!) ≤ cT

(
1

m
+

1

n

)
. (3.6)

This implies that (�̂n) is Cauchy for the metric d. Let �̂ ∈ L0
prog(Ω̄;S) be

the limit. Then, using again the same formula, we obtain that

�n(X�(!)) = �̂n⋅+�̃(!)(! ⊗�̃ ⋅)→ �̂⋅+�̃(!)(! ⊗�̃ ⋅) ≡ �̂!

with respect to d, for P0-a.e. ! ∈ Ω, after passing to a subsequence. On
the other hand, by (3.3), we also have �n(X�(!)) → �(X�(!)) for P0-a.e.
! ∈ Ω. Hence,

�̂! = �(X�(!))

for P0-a.e. ! ∈ Ω. In view of Step 2, we have �(X�(!)) ∈ L1
loc(Ω̄;S>0) and

P �(X�(!)) = �(X�(!)) for P0-a.e. ! ∈ Ω. Hence, �̂ satis�es all requirements
from Step 1 and the proof is complete.

4 Proof of Theorem 2.3

We note that one inequality in Theorem 2.3 is trivial: if x ∈ ℝ and there
exists H ∈ ℋ such that x +

∫ T
0 H dB ≥ �, the supermartingale property

stated in the de�nition of ℋ implies that x ≥ EP [�] for all P ∈ P. Hence,
our aim in this section is to show that there exists H ∈ ℋ such that

sup
P∈P

EP [�] +

∫ T

0
Hu dBu ≥ � P -a.s. for all P ∈ P. (4.1)

The line of argument (see also the Introduction) is similar as in [23] or [12];
hence, we shall be brief.

We �rst recall the following known result (e.g., [8, Theorem 1.5], [22,

Lemma 8.2], [12, Lemma 4.4]) about the P -augmentation FP of F; it is the
main motivation to work with PS as the basic set of scenarios. We denote
by G+ = {Gt+}0≤t≤T the minimal right-continuous �ltration containing G.

Lemma 4.1. Let P ∈ PS. Then FP is right-continuous and in particu-

lar contains G+. Moreover, P has the predictable representation property;

i.e., for any right-continuous (FP , P )-local martingale M there exists an FP -
predictable process H such that M = M0 +

∫
H dB, P -a.s.

We recall our assumption that supP∈P E
P [∣�∣] < ∞ and that � is GT -

measurable. We also recall from Proposition 2.2 that the random variable

ℰt(�)(!) := sup
P∈P(t,!)

EP [�t,!]

13



is Gt-measurable for all t ∈ ℝ+. Moreover, we note that ℰT (�) = � P -a.s.
for all P ∈ P. Indeed, for any �xed P ∈ P, Lemma 4.1 implies that we can
�nd an ℱT -measurable function �′ which is equal to � outside a P -nullset
N ∈ ℱT , and now the de�nition of ℰT (�) and Galmarino's test show that
ℰT (�) = ℰT (�′) = �′ = � outside N .

Step 1. We �x t and show that supP∈P E
P [∣ℰt(�)∣] < ∞. Note that ∣�∣

need not be upper semianalytic, so that the claim does not follows directly
from (2.4). Hence, we make a small detour and �rst observe that P is stable
in the following sense: if P ∈ P, Λ ∈ ℱt and P1, P2 ∈ P(t;P ) (notation from
Proposition 2.2), the measure P̄ de�ned by

P̄ (A) := EP
[
P1(A∣ℱt)1Λ + P2(A∣ℱt)1Λc

]
, A ∈ ℱ

is again an element of P. Indeed, this follows from (A2) and (A3) as

P̄ (A) =

∫∫
(1A)t,!(!′) �(!, d!′)P (d!)

for the kernel �(!, d!′) = P t,!1 (d!′)1Λ(!) + P t,!2 (d!′)1Λc(!). Following a
standard argument, this stability implies that for any P ∈ P, there exist
Pn ∈ P(t;P ) such that

EPn [∣�∣ ∣ℱt]↗ ess supP

P ′∈P(t;P )
EP

′
[∣�∣ ∣ℱt] P -a.s.

Since (2.5), applied with � = T , yields that

EP [∣ℰt(�)∣] = EP
[∣∣∣∣ess supP

P ′∈P(t;P )
EP

′
[�∣ℱt]

∣∣∣∣] ≤ EP[ess supP

P ′∈P(t;P )
EP

′
[∣�∣ ∣ℱt]

]
,

monotone convergence then allows us to conclude that

EP [∣ℰt(�)∣] ≤ lim
n→∞

EPn [∣�∣] ≤ sup
P∈P

EP [∣�∣] <∞.

Step 2. We show that the right limit Yt := ℰt+(�) de�nes a (G+, P )-
supermartingale for all P ∈ P. Indeed, Step 1 and (2.5) show that ℰt(�)
is an (F∗, P )-supermartingale for all P ∈ P. The standard modi�cation
theorem for supermartingales [5, Theorem VI.2] then yields that Y is well
de�ned P -a.s. and that Y is a (G+, P )-supermartingale for all P ∈ P, where
the second conclusion uses Lemma 4.1. We omit the details; they are similar
as in the proof of [12, Proposition 4.5].

For later use, let us also establish the inequality

Y0 ≤ sup
P ′∈P

EP
′
[�] P -a.s. for all P ∈ P. (4.2)
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Indeed, let P ∈ P. Then [5, Theorem VI.2] shows that

EP [Y0∣ℱ0] ≤ ℰ0(�) P -a.s.,

where, of course, we have EP [Y0∣ℱ0] = EP [Y0] P -a.s. since ℱ0 = {∅,Ω}.
However, as Y0 is G0+-measurable and G0+ is P -a.s. trivial by Lemma 4.1,
we also have that Y0 = EP [Y0] P -a.s. In view of the de�nition of ℰ0(�), the
inequality (4.2) follows.

Step 3. Next, we construct the process H ∈ ℋ. In view of Step 2, we can
�x P ∈ P and consider the Doob�Meyer decomposition Y = Y0 +MP −KP

under P , in the �ltration FP . By Lemma 4.1, the local martingale MP

can be represented as an integral, MP =
∫
HP dB, for some FP -predictable

integrand HP . The crucial observation (due to [23]) is that this process
can be described via d⟨Y,B⟩ = HP d⟨B⟩, and that, as the quadratic co-
variation processes can be constructed pathwise by Bichteler's integral [2,
Theorem 7.14], this relation allows to de�ne a process H such that H = HP

P ×dt-a.e. for all P ∈ P. More precisely, since ⟨Y,B⟩ is continuous, it is not
only adapted to G+, but also to G, and hence we see by going through the
arguments in the proof of [12, Proposition 4.11] that H can be obtained as a
G-predictable process in our setting. To conclude that H ∈ ℋ, note that for
every P ∈ P, the local martingale

∫
H dB is P -a.s. bounded from below by

the martingale EP [�∣G]; hence, on the compact [0, T ], it is a supermartingale
as a consequence of Fatou's lemma. Summing up, we have found H ∈ ℋ
such that

Y0 +

∫ T

0
Hu dBu ≥ YT = ℰT+(�) = � P -a.s. for all P ∈ P,

and in view of (4.2), this implies (4.1).
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