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Abstract

We show that pointwise limits of semistatic trading strategies in
discrete time are again semistatic strategies. The analysis is carried
out in full generality for a two-period model, and under a probabilistic
condition for multi-period, multi-stock models. Our result contrasts
with a counterexample of Acciaio, Larsson and Schachermayer, and
shows that their observation is due to a failure of integrability rather
than instability of the semistatic form. Mathematically, our results
relate to the decomposability of functions as studied in the context of
Schrödinger bridges.
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1 Introduction

Closedness properties of trading strategies play a pivotal role in mathemat-
ical finance. They are at the heart of the separation arguments underlying
the Fundamental Theorem of Asset Pricing, the superhedging duality, the
existence of optimal portfolios for utility maximization problems, and other
key results (see, e.g., [7, 8] and the references therein). In the most classical
setting, strategies refer to dynamic trading in a stock or other liquidly traded
securities. Closedness refers to the limit of a sequence of final outcomes from
self-financing trading again being an outcome of some admissible trading
strategy, or at least being dominated by one.

In addition to dynamic trading in a stock (Xt), a semistatic strategy
allows for buy-and-hold trading in options written on X, usually European
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options maturing at the time horizon T of the model. The static nature
of this position reflects the increased trading cost relative to the stock. By
combining options such as calls with different strikes, the trader can approx-
imate the payoff g(XT ) for an arbitrary function g. A linear pricing rule for
all such payoffs is equivalent to fixing the risk-neutral distribution of XT [6].
Taking this distribution as a primitive, a large body of literature starting
with [14] developed the theory of model-free or robust finance, where the
distribution of X is taken to be unknown or partially unknown, respectively,
up to a no-arbitrage condition (see [2, 5, 9, 15], among many others).

In the classical setting where X is modeled on a given probability space,
semistatic trading is equally natural but the mathematical foundations of the
theory are not well developed. We might expect this setting to lie between
the usual one (with a fixed reference measure but without options) and the
model-free one (with options but without reference measure). Maybe sur-
prisingly, this is not the case: it had been observed for some time that the
standard arguments for closure and separation do not apply in a straight-
forward way. The explanation is provided by [1] whose main result consists
of two counterexamples, one in discrete and one in continuous time, stat-
ing that the space of (final outcomes from) semistatic trading strategies is
not closed in the sense defined there. This clearly creates an obstacle to
developing the theory along the usual lines. In this paper, we focus on the
discrete-time setting and provide positive closedness results. In particular,
we illuminate what goes wrong in the example of [1]. Our results open the
door to developing other aspects of mathematical finance in the semistatic
setting. One such aspect, the existence of an optimal portfolio for the expo-
nential utility maximization problem, is treated in a companion paper [18]
which takes our result as its starting point. A related question comes up
in [11, 12], where trading also involves the volatility index VIX and it is
postulated that a certain optimal log-density has the form of a semistatic
portfolio. The arguments of the present work should be useful to deduce this
from first principles.

The aforementioned discrete-time example of [1] considers a two-period
model of dynamic trading in a stock (Xt)t=0,1,2 and static trading in options
g(X2), where g is integrable under the law µ of X2. The physical measure P
of the model is taken to be a risk-neutral measure, thus excluding issues re-
lated to arbitrage. The authors exhibit a sequence of bounded strategies with
nonnegative outcomes converging in Lp for any finite p and prove that the
limit of the outcomes is not the outcome of an admissible strategy (not even
dominated by one). The proof is based on a clever contradiction argument
which circumvents studying the limiting random variable in detail.
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Our first main result below focuses on a two-period model and a sequence
of semistatic strategies converging pointwise. In a non-probabilistic setting,
it shows that the limiting outcome is again a semistatic strategy. This re-
sult implies stability under almost-sure convergence in a probabilistic setting
by application to a set of measure one. As there are no restrictions on the
probability measure, the result holds regardless of arbitrage considerations
or other probabilistic assumptions. Returning to the example of [1], our
result indicates that the main failure relates to the integrability of the lim-
iting option position rather than the semistatic functional form: the limit is
still a sum of dynamic trading and an option; however, the integrability of
the option can fail. (This is by no means a negligible issue—it removes the
obvious way of assigning a price to the option.) Of course, one may hope
that specific limiting portfolios nevertheless enjoy good integrability proper-
ties. In the companion paper [18], we prove this for the optimal portfolio of
exponential utility maximization.

The proof of our two-period, single stock result involves analyzing some
finer algebraic structures of the set where convergence takes place. While
our experience suggests that the result may extend to more general models,
the complexity of our analysis grows rather quickly, possibly to the extent
of becoming infeasible. In our second main result, we aim to exhibit a rea-
sonably weak financial/probabilistic condition that eliminates some of the
subtleties and enables a general closedness result by a more generic analy-
sis. Indeed, our result covers the standard setting with any (finite) number
of stocks and periods, and options on all individual stocks. The analysis
immediately extends to trading constraints such as no-shorting, and with
modest efforts it could be adapted for options at intermediate dates, options
only on some of the stocks, or similar scenarios. The proposed financial con-
dition is that the reference measure P of the model be equivalent to (i.e.,
have the same nullsets as) a product measure; namely, the product of all
the marginals of the individual stocks at the individual dates. Intuitively,
this means that none of the (a priori possible) future stock prices becomes
completely impossible given an intermediate state of the prices. We remark
that this interpretation is similar to the “conditional full support” assump-
tion known in the theory of transaction costs; see [10] and the literature
thereafter.

Remarkably, we have not been able to use the classical arguments of
mathematical finance, nor the techniques known from the dual problem of
martingale optimal transport [3] in this work, despite the setting lying be-
tween those two. Instead, we draw inspiration from the literature on the
dual of the Schrödinger bridge problem, especially [4, 19]. See also [16, 17]
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for general introductions. We shall see that in the present context, the anal-
ysis is significantly more involved as the increments of the stock create an
interaction between the variables. Nevertheless, notions such as the connect-
edness defined in [4] are crucially helpful. The observation that semistatic
trading is related to a martingale version of the Schrödinger bridge problem
goes back to [13] which discusses a continuous-time problem.

The remainder of this paper is organized as follows. Section 2 contains
a complete analysis of the two-period, single-stock model. Building on its
insights, Section 3 proposes a probabilistic condition enabling the analysis of
a multi-period, multi-stock model: we show that the problem of closedness
reduces to a problem of linear algebra. The latter consists in establishing
that a certain matrix has full rank, which is the content of Section 4.

2 Two-Period Model

In this section, we provide a pointwise convergence analysis for a two-period
model with a single stock. In our formulation, the variable x represents the
stock price at date 1 and y the price at date 2. Equivalently, the stock price
process is given by the canonical process (X,Y ) on R2. Throughout the
section, we fix E ⊂ R2, interpreted as the set of possible states for (x, y).

Definition 2.1. A function v : E → R is a semistatic strategy if

v(x, y) = h(x)(y − x) + g(y), (x, y) ∈ E

for some functions h, g : R→ R. We refer to h as a stock position and g as
an option position.

In general, h and g are not uniquely determined by v, hence one should
think of v as a function E → R rather than consisting of the pair h, g. We
note that trading between the initial date 0 and date 1 is not represented
explicitly. This entails no loss of generality: if the initial state is determin-
istic, an expression of the form h0(x − x0) + h(x)(y − x) + g(y) can always
be rewritten as a semistatic strategy in the above sense.

Theorem 2.2. The set of semistatic strategies is closed under pointwise
convergence.

While the theorem states that a limit of semistatic strategies vn is again
a semistatic strategy, we emphasize that the corresponding stock and option
positions do not converge in general. Clearly the theorem entails its proba-
bilistic counterparts: if convergence holds P -a.s. under some measure P , we
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can apply the above with E being the set of full measure where convergence
holds. Even if P satisfies a no-arbitrage condition, the structure of E can be
quite complicated in this context, hence the importance of leaving E general
in the theorem.

The proof of Theorem 2.2 is stated at the end of Section 2.1, after an
analysis which also provides detailed insight about what happens with the
stock and option positions in the passage to the limit.

2.1 Analysis of the Two-Period Model

We divide the given set E ⊂ R2 into its set Ed := {(x, y) ∈ E : x = y}
of diagonal points and the complement Eo := E \ Ed of off-diagonal points.
Consider a semistatic strategy v(x, y) = h(x)(y−x)+g(y) at a point (x, y) ∈
Eo, then as y − x 6= 0, the value h(x) uniquely determines g(y), and vice
versa. Similarly, for a sequence vn(x, y) = hn(x)(y−x)+gn(y) where vn(x, y)
converges, the value hn(x) converges if and only if gn(y) does. For (x, y) ∈
Ed, the situation is quite different: v(x, y) = h(x)(y − x) + g(y) = g(y), so
that the option position is determined (or convergent, respectively), whereas
h(x)(y− x) = 0 irrespectively of the stock position h(x) at x. This does not
mean that h(x) can be ignored—if (x, y′) ∈ E for some y′ 6= y, the value h(x)
is nevertheless relevant for the strategy.

We first focus our analysis on Eo. The following notion was introduced
by [4] in a different context.

Definition 2.3. Two points (x, y), (x′, y′) ∈ Eo are connected, denoted
(x, y) ∼ (x′, y′), if there exist k ∈ N0 and (xi, yi)

k
i=1 ∈ Eko such that the

points

(x, y), (x1, y), (x1, y1), (x2, y1), . . . , (xk, yk), (x
′, yk), (x

′, y′) (2.1)

all belong to Eo. In that case, (xi, yi)
k
i=1 is called a path (in Eo) from (x, y)

to (x′, y′). A set C ⊂ Eo is connected (in Eo) if any two points in C are
connected.

For the list (2.1), the crucial property is that only one coordinate is
changed in each step. In our notation, the first coordinate changes first, but
because a point can be repeated in the list, this entails no loss of generality.
We observe that ∼ is an equivalence relation on Eo. The corresponding
equivalence classes C = {Cγ : γ ∈ Γ} are called the connected components
of Eo.

We say that uniqueness of portfolio positions holds at (x, y) ∈ E if for
any semistatic strategy v : E → R, the stock and option positions h(x)
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and g(y) are uniquely determined at (x, y). In that situation, convergence
of portfolio positions holds at (x, y) ∈ E if for any semistatic strategies vn
converging pointwise, the positions hn(x) and gn(y) are also convergent.

Lemma 2.4. Let C ⊆ Eo be connected. If uniqueness (convergence) of
portfolio positions holds at some point of C, then uniqueness (convergence)
of portfolio positions holds at all points of C.

Proof. Let uniqueness of portfolio positions hold at (x, y) and let (x, y) ∼
(x′, y′). Consider a path as in (2.1), then as discussed at the beginning
of Section 2.1, uniqueness of the option position at y implies uniqueness
of the stock position at x1 which in turn implies uniqueness of the option
position at y1, and so on, leading to uniqueness at (x, y). Similarly for the
convergence.

Definition 2.5. A path (xi, yi)
k
i=1 from (x, y) ∈ Eo to itself is called a cycle.

The cycle is identifying if

k∏
i=1

(yi − xi)−
k∏
i=1

(yi − xi+1) 6= 0, (2.2)

where we use the cyclical convention xk+1 := x1.

The terminology is explained by the subsequent lemma: such a cycle
uniquely “identifies” the portfolio positions along its points. We note that
k ≥ 2 must hold for any identifying cycle. If ((x1, y1), (x2, y2)) is a cycle,
then it is identifying if and only if x1 6= x2 and y1 6= y2, because (2.2) reduces
to (x1−x2)(y1−y2) 6= 0. In particular, the cycle can be envisioned as a non-
degenerate rectangle {x1, x2} × {y1, y2} ⊂ Eo. This simple characterization
does not extend to larger cycles.

Lemma 2.6. Let (xi, yi)
k
i=1 be an identifying cycle. Then uniqueness and

convergence of portfolio positions hold at (x1, y1).

Proof. Consider a semistatic strategy v(x, y) = h(x)(y− x) + g(y) along the
points (2.1),

v(x, y) = h(x)(y − x) + g(y) for (x, y) ∈ {(xi, yi), (xi+1, yi) : 1 ≤ i ≤ k}.
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This can be cast as the 2k × 2k linear system

y1 − x1 1
1 y1 − x2

y2 − x2 1
1 y2 − x3

1
. . .
. . . . . .

yk − xk 1
yk − x1 1





h(x1)
g(y1)
h(x2)
g(y2)
...

h(xk)
g(yk)


=



v(x1, y1)
v(x2, y1)
v(x2, y2)
v(x3, y2)

...
v(xk, yk)
v(x1, yk)


where omitted matrix entries are zero. Using Laplace expansion along the
first column and the convention xk+1 := x1, we see that the determinant of
the matrix is

(y1 − x1) [(y2 − x2) · · · (yk − xk)]
+(−1)2k+1(yk − x1) [(y1 − x2) · · · (yk−1 − xk)]

=

k∏
i=1

(yi − xi)−
k∏
i=1

(yi − xi+1).

As the cycle is identifying, it follows that the matrix is invertible, and the
inverse map is continuous as a finite-dimensional linear map. In summary,
the numbers (h(xi), g(yi))1≤i≤k are uniquely determined by a continuous
function of the numbers (v(xi, yi), v(xi+1, yi))1≤i≤k, showing the result.

Combining Lemma 2.4 and Lemma 2.6, we have the following.

Corollary 2.7. Let C ⊆ Eo be connected. If C contains an identifying cycle,
then uniqueness and convergence of portfolio positions hold on C.

Next, we study what happens in the absence of identifying cycles. Given
a subset S ⊂ R2, we denote by Sx and Sy its projections onto the first and
second coordinate, respectively.

Proposition 2.8. Let C be a connected component of Eo containing no
identifying cycles.

(a) Uniqueness of portfolio positions fails at each point of C. For any
semistatic strategy, the set of portfolio positions is a one-parameter
family.
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(b) Closedness of semistatic strategies holds on C. More precisely, let
vn(x, y) = hn(x)(y − x) + gn(y) be semistatic strategies converging
pointwise on C to v : C → R. Then there exist h′n, g′n such that

vn(x, y) = h′n(x)(y − x) + g′n(y), (x, y) ∈ C

and their pointwise limits exist,

h′ := limh′n on Cx, g′ := lim g′n on Cy.

In particular, v(x, y) = h′(x)(y − x) + g′(y) on C.

The positions h′n, g′n can be constructed as follows. Fix an arbitrary
point (x0, y0) ∈ C. Then there exist unique functions a, b : R→ R\{0}
such that a(x)b(y) = y − x on C and a(x0) = 1. We can choose

h′n(x) := hn(x)− hn(x0)

a(x)
, g′n(y) := gn(y) + hn(x0)b(y).

Before stating the proof, we recall the Borwein–Lewis characterization
for the decomposability of a function of two variables into a product of
single-variable functions. More generally, this result applies to group-valued
functions on arbitrary sets; see [4, Theorem 3.3].

Lemma 2.9. Let S ⊂ R × R and c : S → R \ {0}. The following are
equivalent:

(i) There exist a, b : R→ R \ {0} such that

c(x, y) = a(x)b(y), (x, y) ∈ S.

(ii) For any cycle (xi, yi)
k
i=1 in S,

k∏
j=1

c(xj , yj) =
k∏
j=1

c(xj+1, yj), (2.3)

where xk+1 := x1.

In that case, on each connected component of S, the functions a and b are
unique up on a scalar multiple.
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Proof of Proposition 2.8. The absence of identifying cycles means that (2.3)
holds for the function c(x, y) := y−x on C. Note that c is valued in R \ {0}
due to C ⊂ Eo. Hence Lemma 2.9 implies that there exist a, b : R→ R \ {0}
such that a(x)b(y) = y−x on C, and these functions are uniquely determined
by the normalization that a(x0) = 1 for some fixed x0 ∈ Cx.

Consider a semistatic strategy v(x, y) = h(x)(y − x) + g(y) on C. Given
α ∈ R, let hα(x) := h(x) + α/a(x) and gα(y) := g(y)− αb(y). Then

hα(x)(y − x) + gα(y) = [h(x) + α/a(x)]a(x)b(y) + g(y)− αb(y)

= h(x)a(x)b(y) + g(y) = v(x, y),

showing that the portfolio positions inducing v include the one-parameter
family (hα, gα)α∈R. Conversely, by connectedness, we know that portfolio po-
sitions are uniquely determined as soon as the option position is determined
at one point y0. Because α 7→ gα(y0) = g(y0)− αb(y0) is surjective onto R,
this shows that (hα, gα)α∈R exhausts all portfolio positions inducing v.

Turning to the convergence, note that

v̄n(x, y) :=
vn(x, y)

b(y)
= hn(x)a(x) +

gn(y)

b(y)

on C. Define

h̄n(x) := hn(x)a(x)− hn(x0)a(x0), ḡn(y) :=
gn(y)

b(y)
+ hn(x0)a(x0),

so that
v̄n(x, y) = h̄n(x) + ḡn(y). (2.4)

Clearly v̄n(x, y) is convergent for all (x, y) ∈ C. Moreover, h̄n(x0) = 0
for all n, so that h̄n(x0) is convergent. As C is connected, the additive
decomposition (2.4) implies as in the proof of Lemma 2.4 (or [4]) that the
separate limits ḡ(y) := limn ḡn(y) and h̄(x) := limn h̄n(x) exist for all (x, y) ∈
C. It follows that

h′n(x) = h̄n(x)/a(x) → h̄(x)/a(x) = h′(x),

g′n(y) = ḡn(y)b(y) → ḡ(y)b(y) = g′(y),

completing the proof.

We can now prove the main result.
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Proof of Theorem 2.2. Let vn(x, y) = hn(x)(y − x) + gn(y) be semistatic
strategies converging pointwise on E to v : E → R. We shall construct
h : Ex → R and g : Ey → R such that v(x, y) = h(x)(y − x) + g(y) on E.

Recall the partition (Cγ)γ∈Γ of Eo into connected components. The
definition of ∼ implies that for each γ ∈ Γ,

Cγ =
(
Cx
γ × Cy

γ

)
∩ Eo ⊂

(
Cx
γ × Cy

γ

)
∩ E;

the last inclusion can be strict as Cx
γ × Cy

γ can contain points from the
diagonal Ed. Conversely, some points from the diagonal may not pertain
to Cx

γ × C
y
γ for any γ ∈ Γ; these points form the set

N := E \
⋃
γ∈Γ

(
Cx
γ × Cy

γ

)
⊆ Ed.

Let (Dj)j∈J be the collection consisting of all singletons {(x, y)} with
(x, y) ∈ N as well as the sets

(
Cx
γ × C

y
γ

)
∩ E, γ ∈ Γ. Note that two points

in Eo sharing one coordinate are necessarily connected, and two points in
Ed sharing one coordinate must coincide. This implies that (Dj)j∈J is a
partition of E with the following property: If (x, y), (x, y′) ∈ E, then (x, y)
and (x, y′) belong to the same component Dj . Similarly, if (x, y), (x′, y) ∈ E,
then (x, y) and (x′, y) belong to the same component Dj . As a consequence,
we may construct the positions h, g separately on each Dj without danger
of creating any inconsistencies. (This is not true for {Cγ , Ed}, whence the
need for yet another collection.)

(i) Let Dj = (Cx
γ × C

y
γ) ∩ E for some γ ∈ Γ, where Cγ contains an iden-

tifying cycle. Then we can choose (h, g) := lim(hn, gn) on (Cx
γ , C

y
γ)

according to Corollary 2.7.

(ii) Let Dj = (Cx
γ × C

y
γ) ∩ E for some γ ∈ Γ, where Cγ does not contain

an identifying cycle. Then we can choose (h, g) on (Cx
γ , C

y
γ) according

to Proposition 2.8.

(iii) Let Dj = {(x, y)} for some (x, y) ∈ N ⊆ Ed. Then we can define
h(x) = 0 and g(y) = v(x, y). In fact, as y − x = 0, any choice for h(x)
will do.

The preceding analysis also quantifies the non-uniqueness for portfolio
positions; that is, the exact number of degrees of freedom in choosing the
portfolio positions for any given semistatic strategy.
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Remark 2.10. Given any semistatic strategy v on E, the set of all portfolio
positions (h, g) with v(x, y) = h(x)(y − x) + g(y) for all (x, y) ∈ E is a
k-parameter family, where

k = card
(
N ∪ {γ ∈ Γ : Cγ contains no identifying cycle}

)
.

3 General Probabilistic Model

Given integers d ≥ 1 and T ≥ 2, we denote by X = (Xt)
T
t=1 the canonical

process on (Rd)T , where Xt = (Xt,j)
d
j=1 are interpreted as the prices of d

stocks at date t. We also fix a probability measure P on (Rd)T ; only the
nullsets of P will matter for our results. For the purposes of this section, a
semistatic strategy is a random variable V satisfying

V =
T−1∑
t=1

d∑
j=1

ĥt,j(X1, . . . , Xt) (Xt+1,j −Xt,j) +
d∑
j=1

ĝj(XT,j) (3.1)

P -a.s. for some real-valued measurable functions ĥt,j and ĝj . It will be
notationally convenient to work instead with the random variables

ht,j := ĥt,j(X1, . . . , Xt), gj := ĝj(XT,j).

We call h = (ht,j) the stock position and g = (gj) the option position,
respectively. Together, they form the portfolio position (h, g) of V . The
portfolio position is not uniquely determined by V in general: it is clearly
possible to add a constant to g1 and subtract the same from gj for any j 6= 1,
without affecting V . These d − 1 degrees of freedom are easily removed by
fixing an “anchor” point x0 ∈ (Rd)T and normalizing

gj(x
0) = 0, j = 2, . . . , d. (3.2)

In the context of Theorem 3.1 below, it will be shown that the anchor point
can be chosen arbitrarily outside a certain nullset.

In this probabilistic setting, we say that uniqueness of portfolio posi-
tions holds if for any semistatic strategy V , after a normalization of the
form (3.2), the portfolio position (h, g) is uniquely determined P -a.s. Con-
vergence of portfolio positions holds if, after a normalization of the form (3.2),
for any semistatic strategies V (n) converging P -a.s., the corresponding posi-
tions (h(n), g(n)) also converge P -a.s.

The aim of this section is to exhibit a probabilistic condition circumvent-
ing some of the complications highlighted in Section 2. To that end, let µt,j
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be the law of Xt,j , or equivalently, the one-dimensional marginal law of P on
the component (t, j). We assume throughout that µt,i is not a Dirac measure
for any t, j. (This serves to simplify the exposition; while the results and
arguments could be generalized, the degenerate case is not relevant finan-
cially and hence omitted.) The key condition for our result is that P be
measure-theoretically equivalent to the product of its marginals.

Theorem 3.1. Suppose that P ∼ ⊗Tt=1⊗dj=1 µt,j. Then the set of semistatic
strategies is closed under P -a.s. convergence. Moreover, uniqueness and con-
vergence of portfolio positions hold.

As mentioned in the Introduction, P ∼ ⊗Tt=1 ⊗dj=1 µt,j intuitively means
that none of the (a priori possible) future stock prices becomes completely
impossible given an intermediate state of the prices, similarly as in the con-
dition of conditional full support [10]. Technically, we shall see that for
such P , any set of full measure contains an abundance of cuboids that will
play the role of identifying cycles (cf. Section 2). Indeed, fix x0, x1 ∈ (Rd)T
such that x0

t,j 6= x1
t,j for all t, j and consider the cuboid D generated by their

components,

D :=
T∏
t=1

d∏
j=1

{
x0
t,j , x

1
t,j

}
⊆ (Rd)T . (3.3)

That is, each point in D is a matrix (x
εt,j
t,j )t,j where εt,j ∈ {0, 1}.

Proposition 3.2. Let V and V (n) be semistatic strategies with portfolio
positions (h, g) and (h(n), g(n)), respectively, such that (3.1) and (3.2) hold
on D. Then (h, g) are uniquely determined on D. Moreover, V (n) → V
pointwise on D implies that (h(n), g(n))→ (h, g) pointwise on D.

The proof is lengthy and deferred to Section 4. In a nutshell, we view (3.1)
as linear system where the values of h and g at points in D are the variables;
each equation of the system corresponds to evaluating V at a point in D. We
prove that the (finite-dimensional) linear map associated with the system
is injective, hence admits a continuous inverse. As a result, the portfolio
position (h, g) is a continuous function of the strategy V .

The next lemma is a general measure-theoretic fact; it formalizes the
claim that there is an abundance of cuboids in any set of full P -measure.

Lemma 3.3. Consider probability spaces (Ωi,Fi, µi)ni=1 and their product
(Ω,F , µ) given by Ω =

∏n
i=1 Ωi, F = ⊗ni=1Fi and µ = ⊗ni=1µi. If A ∈ F

12



satisfies µ(A) = 1, then µ-a.e. x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ A satisfies

µ

{
x ∈ A :

n∏
i=1

{
x0
i , xi

}
⊆ A

}
= 1.

Proof. Let Ω0,Ω1 be two copies of Ω with components denoted Ωj
i . Consider

the product space Ω̂ =
∏n
i=1(Ω0

i × Ω1
i ) endowed with the product σ-field F̂

and the product measure µ̂ = ⊗ni=1(µi ⊗ µi). For each multi-index J =

(j1, j2, . . . , jn) ∈ {0, 1}n, define the projection πJ : Ω̂→
∏n
i=1 Ωji

i by

(x0
1, x

1
1, x

0
2, x

1
2, . . . , x

0
n, x

1
n) 7−→ (xj11 , x

j2
2 , . . . , x

jn
n ).

Clearly the law of πJ under µ̂ is µ, so that µ̂(πJ ∈ A) = µ(A) = 1. Defin-
ing S := ∩{πJ ∈ A} as the intersection over all J ∈ {0, 1}n, it follows
that µ̂(S) = 1. Denote by Sx0 the section of S at x0 ∈ Ω0. In view of
µ̂(S) = 1, Fubini’s theorem implies

µ
{
x0 ∈ Ω0 : µ (Sx0) = 1

}
= 1.

The desired result follows once we observe that (x0
1, x1, x

0
2, x2, . . . , x

0
n, xn) ∈ S

if and only if
∏n
i=1

{
x0
i , xi

}
⊆ A.

We can now deduce the main result.

Proof of Theorem 3.1. Suppose that V (n) is of the form (3.1) with portfolio
position (h(n), g(n)) and that V (n) → V on A ⊆ (Rd)T with P (A) = 1. In
view of P ∼ ⊗Tt=1⊗dj=1µt,j , Lemma 3.3 implies that there exists x0 ∈ A such
that

B :=

x ∈ A :
T∏
t=1

d∏
j=1

{
x0
t,j , xt,j

}
⊆ A


satisfies P (B) = 1. (In fact, P -almost any x0 ∈ A will do.) We use this
point x0 for the normalization (3.2).

We claim that the limit (h(x), g(x)) := limn(h(n)(x), g(n)(x)) exists for
all x ∈ B. To prove this, let x1 ∈ B satisfy x1

t,j 6= x0
t,j for all t, j and

consider the cuboid D determined by x0 and x1; cf. (3.3). Then we see from
Proposition 3.2 that (h(n), g(n)) converges to some (h, g) on D, and that
(h, g) is uniquely determined on D. In particular, the limit exists at x := x0

and at x := x1. Given an arbitrary x ∈ B, as µt,j is not a Dirac measure, we
can find x1 ∈ B such that x1

t,j = xt,j if xt,j 6= x0
t,j and x

1
t,j 6= x0

t,j for all t, j.
Applying the above to x0 and x1, we see that the limit exists at x. The
same argument also establishes the uniqueness and convergence of portfolio
positions.

13



4 Proof of Proposition 3.2

Suppose that V : D → R is of the form (3.1) with portfolio position (h, g),
where g satisfies (3.2) at x0. This induces a linear system with the val-
ues of h and g at the points in D as variables and the price increments
∆t+1,j = Xt+1,j − Xt,j as coefficients. To start with the simplest exam-
ple, consider T = 2 and d = 1, so that V = h1,1 (X2,1 − X1,1) + g1 and
D =

{
(x0

1,1, x
0
2,1), (x0

1,1, x
1
2,1), (x1

1,1, x
0
2,1), (x1

1,1, x
1
2,1)
}
. This corresponds to 4

equations and can be cast as a 4× 4 linear system
x0

2,1 − x0
1,1 1

x1
2,1 − x0

1,1 1

x0
2,1 − x1

1,1 1

x1
2,1 − x1

1,1 1




ĥ1,1(x0

1,1)

ĥ1,1(x1
1,1)

ĝ1(x0
2,1)

ĝ1(x1
2,1)

 =


V (x0

1,1, x
0
2,1)

V (x0
1,1, x

1
2,1)

V (x1
1,1, x

0
2,1)

V (x1
1,1, x

1
2,1)

 . (4.1)

In this example, the condition (3.2) is vacuous as d = 1.
In the general case, (3.1) on D can be viewed as a Nr×Nc linear system

that we describe next. For 1 ≤ t ≤ T , consider the binary vector εt =
(εt,1, εt,2, . . . , εt,d) ∈ {0, 1}d. We view

~εt := (εs)
t
s=1 := (ε1,1, . . . , ε1,d, ε2,1, . . . , ε2,d, . . . , εt,1, . . . , εt,d) ∈ {0, 1} d t

as a multi-index of length d t and denote the collection of all such ~εt by Et.
There is a one-to-one correspondence between ET and D via ~εT 7→ x~εT :=
(x
εt,j
t,j )t,j . More generally, for 1 ≤ t ≤ T , the set Et corresponds to the

set
∏t
s=1

∏d
j=1{x0

s,j , x
1
s,j} via ~εt 7→ x~εt := (x

εs,j
s,j )s,j , where 1 ≤ s ≤ t and

1 ≤ j ≤ d.
Every point x~εT ∈ D gives rise to an equation as we evaluate V at x~εT .

Hence the number of rows in our system is Nr = 2 d T , the cardinality of ET .
On the other hand, for each 1 ≤ t ≤ T −1 and each 1 ≤ j ≤ d, ĥt,j gives rise
to 2 d t variables, namely ĥt,j(x~εt) for ~εt ∈ Et. In addition, recalling (3.2), ĝ
gives rise to d+ 1 variables, namely ĝ1(x0

T,1) and ĝj(x1
T,j) for 1 ≤ j ≤ d. As

a result, the total number of variables (hence columns in the system) is

Nc = d

T−1∑
t=1

2 d t + (d+ 1) = d
2 d T − 1

2d − 1
+ 1.

As in (4.1), the coefficients of the matrix are given by stock price in-
crements (x

εt+1,j

t+1,j − x
εt,j
t,j )t,j and binary entries related to the options. To

unambiguously determine the matrix, we need to specify an order for the
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rows and columns; in fact, we tailor our order to facilitate the exposition be-
low. For 1 ≤ t ≤ T , consider the natural lexicographic order on Et and equip
(x~εt)~εt∈Et with the induced order; that is, x~εt ≤ x~ηt if and only if ~εt ≤ ~ηt. In
particular, the order on ET induces an order on D = (x~εT )~εT∈ET . The row
ordering is set by evaluating (3.1) on D in that order. The column ordering
is given by the following (top-to-bottom) hierarchy:

(i) The variables from ĥ appear before those from ĝ.

(ii) The d
∑T−1

t=1 2 d t variables ĥt,j(x~εt) are sorted

(a) in descending order of t ∈ {T − 1, T − 2, . . . , 1},
(b) then in ascending order of ~εt ∈ Et, and
(c) lastly in ascending order of j ∈ {1, 2, . . . , d}.

(iii) The d+ 1 variables from ĝ are ordered as

ĝ1(x0
T,1), ĝ1(x1

T,1), ĝ2(x1
T,2), ĝ3(x1

T,3), . . . , ĝd(x
1
T,d).

The reader can verify that the matrix in (4.1) follows the desired ordering;
a more advanced example can be found in (4.6) below. For the general case
T ≥ 2 and d ≥ 1, the above convention uniquely determines a matrix LT
which will be shown to have the following property.

Lemma 4.1. The matrix LT has full column rank.

Remark 4.2. In the case d = 1 of a single stock, LT is a square matrix and

detLT = (−1)T−1

[
T−1∏
t=1

(
x0
t,1 − x1

t,1

)2t−1

] (
x0
T,1 − x1

T,1

)2T−1−1 6= 0.

The proof uses arguments similar to the proof of Lemma 4.1 below.

Once the lemma is established, Proposition 3.2 is a direct consequence:

Proof of Proposition 3.2. By Lemma 4.1, the linear map associated with LT
is injective. Its inverse is continuous as a linear finite-dimensional map,
showing that the portfolio position is a continuous function of the strategy.
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4.1 Proof of Lemma 4.1

Next, we introduce some additional notation for the proof of Lemma 4.1.
Given 1 ≤ t ≤ T − 1 and ~εt ∈ Et, we define D~εt ⊆ D by

D~εt :=
{
x~εt
}
×

 T∏
s=t+1

d∏
j=1

{
x0
s,j , x

1
s,j

} . (4.2)

That is, D~εt consists of the 2 d (T−t) points in D that share the vector x~εt in
their first d t coordinates. Note that for each 1 ≤ t ≤ T − 1, {D~εt : ~εt ∈ Et}
forms a partition of D.

For each 1 ≤ t ≤ T − 1, 1 ≤ j ≤ d and (k, l) ∈ {0, 1}2, we introduce a
shorthand for the corresponding stock price increment

∆k,l
t+1,j := xkt+1,j − xlt,j , (4.3)

as well as the stock price difference

δt,j := x0
t,j − x1

t,j (4.4)

which is nonzero by assumption. We record two identities for later use,

∆0,l
t+1,j −∆1,l

t+1,j = δt+1,j and ∆l,0
t+1,j −∆l,1

t+1,j = −δt,j , (4.5)

where the right-hand sides do not depend on l ∈ {0, 1}.
As the proof of Lemma 4.1 is somewhat involved, we first state an exam-

ple to illustrate some of the arguments.

Example 4.3 (T = 2 and d = 2). Note that (3.1) reads

V = h1,1 (X2,1 −X1,1) + h1,2 (X2,2 −X1,2) + g1 + g2.

The matrix L2 has 16 rows and 11 columns; see Figure 1(a). Since E1 =
{(0, 0), (0, 1), (1, 0), (1, 1)}, the column ordering corresponds to the vector of
11 variables[

ĥ1,1(x~ε1), ĥ1,2(x~ε1) for ~ε1 ∈ E1

]
, ĝ1(x0

2,1), ĝ1(x1
2,1), ĝ2(x1

2,2). (4.6)

To show that L2 has full column rank, we proceed in four steps.

Step 1. Our goal is to divide L2 into 4 submatrices (L~ε12 )~ε1∈E1 , each of which
has 4 rows and 11 columns. We will identify a linearly dependent row in
each L~ε12 .
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1 2 3 4 5 6 7 8 9 10 11

1 1

2 1 1

3 1

4 1 1

5 1

6 1 1

7 1

8 1 1

9 1

10 1 1

11 1

12 1 1

13 1

14 1 1

15 1

16 1 1

(a) L2 in Example 4.3

1 2 3 4 5 6 7 8 9 10 11

1 1 1

2 2 1 1

3 3 1

4 5 1

5 6 1 1

6 7 1

7 9 1

8 10 1 1

9 11 1

10 13 1

11 14 1 1

12 15 1

(b) L′2 in Example 4.3

Figure 1: The blue and green blocks are coefficients associated with ĥ and ĝ,
respectively. The white blocks are identically zero. Panel (a): L2 is divided
by the double border into 4 submatrices (L~ε12 )~ε1∈E1 , each of which has 4 rows
and 11 columns (where only 5 columns are nonzero). Panel (b): L′2 is formed
by vertically stacking the 3× 11 submatrices (L~ε12 )′ for all ~ε1 ∈ E1. The old
and new row numbers are printed in black and red, respectively.

Consider (4.2) with T = 2. For each ~ε1 ∈ E1, evaluating V on D~ε1

gives rise to a 4 × 11 submatrix L~ε12 of L2. It has 4 rows as |D~ε1 | = 4;
there are in total 4 submatrices as |E1| = 4. The coefficients across these
submatrices follow a similar pattern. For concreteness, consider ~ε1 = (0, 0) ∈
E1. Recalling the definition of price increments from (4.3), evaluating V on
D~ε1 gives


∆0,0

2,1 ∆0,0
2,2 · · · 1

∆0,0
2,1 ∆1,0

2,2 · · · 1 1

∆1,0
2,1 ∆0,0

2,2 · · · 1

∆1,0
2,1 ∆1,0

2,2 · · · 1 1





h1,1(x(0,0))

h1,2(x(0,0))
...

g1(x0
2,1)

g1(x1
2,1)

g2(x1
2,2)


=


v(x(0,0), x0

2,1, x
0
2,2)

v(x(0,0), x0
2,1, x

1
2,2)

v(x(0,0), x1
2,1, x

0
2,2)

v(x(0,0), x1
2,1, x

1
2,2)

 , (4.7)

where the omitted entries (including 6 entire columns) are zero. Denote the
matrix in (4.7) by L~ε12 and let Ri stand for its Row i. Note that R1 −R2 =
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R3−R4. Since R4 is a linear combination of the other rows, dropping it from
L~ε12 does not alter the matrix rank. This argument applies to all ~ε1 ∈ E1.
Denote the remaining matrix by (L~ε12 )′. We form the matrix L′2 by vertically
stacking (L~ε12 )′ for all ~ε1 ∈ E1; see Figure 1(b). It follows that L′2 has the
same rank as L2.

Step 2. Recall that elementary row and column operations preserve the
matrix rank. In this step, we aim to bring L′2 to a block lower triangular
matrix L′′2

B C

 , where C =

1
1 1

1

 (4.8)

by suitable row operations. Indeed, let 1 = (1, 1) ∈ E1 and ~ε1 6= 1 in
E1. After subtracting (L12 )′ from (L~ε12 )′, we denote the resultant matrix by
(L~ε12 )′′. By applying this procedure to all ~ε1 6= 1, we bring L′2 into the desired
form, where

L′′2 =



∆0,0
2,1 ∆0,0

2,2 −∆0,1
2,1 −∆0,1

2,2

∆0,0
2,1 ∆1,0

2,2 −∆0,1
2,1 −∆1,1

2,2

∆1,0
2,1 ∆0,0

2,2 −∆1,1
2,1 −∆0,1

2,2

∆0,0
2,1 ∆0,1

2,2 −∆0,1
2,1 −∆0,1

2,2

∆0,0
2,1 ∆1,1

2,2 −∆0,1
2,1 −∆1,1

2,2

∆1,0
2,1 ∆0,1

2,2 −∆1,1
2,1 −∆0,1

2,2

∆0,1
2,1 ∆0,0

2,2 −∆0,1
2,1 −∆0,1

2,2

∆0,1
2,1 ∆1,0

2,2 −∆0,1
2,1 −∆1,1

2,2

∆1,1
2,1 ∆0,0

2,2 −∆1,1
2,1 −∆0,1

2,2



. (4.9)

Clearly C has full rank, and it follows that L2 has full column rank if and
only if L′′2 does.

Step 3. Recall the definition of stock price differences (4.4). Let ~ε1 6= 1. In
(L~ε12 )′′, subtracting its Row 1 from all other rows leaves each of them with
precisely two nonzero entries of the same magnitude, δ2,j , with the opposite
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signs; cf. (4.5). Applying this procedure to all ~ε1 6= 1 yields

∆0,0
2,1 ∆0,0

2,2 −∆0,1
2,1 −∆0,1

2,2

−δ2,2 δ2,2

−δ2,1 δ2,1

∆0,0
2,1 ∆0,1

2,2 −∆0,1
2,1 −∆0,1

2,2

−δ2,2 δ2,2

−δ2,1 δ2,1

∆0,1
2,1 ∆0,0

2,2 −∆0,1
2,1 −∆0,1

2,2

−δ2,2 δ2,2

−δ2,1 δ2,1



. (4.10)

Recall that the odd and even numbered columns correspond to the vari-
ables ĥ1,1(x~ε1) and ĥ1,2(x~ε1) for ~ε1 ∈ E1, respectively. In particular, Col-
umn 7 corresponds to ĥ1,1(x1) and Column 8 corresponds to ĥ1,2(x1). We
add Columns 1, 3, 5 to Column 7, and Columns 2, 4, 6 to Column 8:

∆0,0
2,1 ∆0,0

2,2 −δ1,1 −δ1,2

−δ2,2

−δ2,1

∆0,0
2,1 ∆0,1

2,2 −δ1,1

−δ2,2

−δ2,1

∆0,1
2,1 ∆0,0

2,2 −δ1,2

−δ2,2

−δ2,1



. (4.11)

All rows except Rows 1, 4, 7 have exactly one nonzero entry, and none of these
entries share a common column. (We remark that Rows 1, 4, 7 correspond
to the multi-indices (~ε1, 0, 0) for ~ε1 6= 1 in E1.) Dropping these rows and
columns, we denote the remaining 3× 2 submatrix by M2:

M2 =

−δ1,1 −δ1,2

−δ1,1

−δ1,2

 . (4.12)
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It follows that L2 has full column rank if and only if M2 does.

Step 4. By inspection, M2 indeed has full column rank. The example is
complete.

Remark 4.4. The example can be generalized to T = 2 and d ≥ 1 without
much effort; cf. Steps 1 to 3 in the proof of Lemma 4.1 below. In the presence
of d stocks, (4.8) holds with a (d+1)×(d+1) matrix C of binary coefficients

C =


1
1 1
...

...
1 1

1

 . (4.13)

Evidently, C has full rank. In this case, M2 has (2d−1) rows and d columns;
cf. (4.12). For 1 ≤ j ≤ d, the coefficients in Column j alternate among

( −δ1,j , . . . ,−δ1,j︸ ︷︷ ︸
×2d−j

, 0, . . . , 0︸ ︷︷ ︸
×2d−j

).

It is straightforward to verify thatM2 has full column rank; cf. (4.16) below.
(In fact, the rows in M2 are linear combinations of the rows in C ′′.)

Proof of Lemma 4.1. We proceed in four steps. In Step 1, we show that
keeping only a selected number of rows in LT does not decrease the matrix
rank. In Steps 2 and 3, we use row and column operations to reduce the
problem to showing that a certain matrix MT has full column rank. In
Step 4, we establish the latter by induction on T ≥ 2. (Steps 1 to 3 are
generalizations/abstractions of Example 4.3; the matrix in Figure 2 may
serve as an illustration for LT .)
Step 1. We will divide LT into 2 d (T−1) submatrices L~εT−1

T for ~εT−1 ∈ ET−1,
each of which has 2d rows and Nc columns. Then, we will identify and
remove linearly dependent rows in each submatrix. Thus, the remaining
matrix, denoted by L′T , will have the same rank as LT .

Recall the definition (4.2). For each ~εT−1 ∈ ET−1, evaluating V on D~εT−1

gives rise to a 2d×Nc submatrix L~εT−1

T of LT . It has 2d rows as |D~εT−1 | = 2d;
there are in total 2 d (T−1) submatrices as |ET−1| = 2 d (T−1).

Fix ~εT−1 ∈ ET−1. Consider two points in D~εT−1 that share all but one
entry. Formally, they can be denoted as x~ηT and x~ρT for ~ηT , ~ρT ∈ ET such
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Figure 2: Illustration of LT in the proof of Lemma 4.1 for T = 3 and
d = 2. Columns 1–32 correspond to the variables ĥ2,j(x

~ε2) for 1 ≤ j ≤ 2

and ~ε2 ∈ E2, Columns 33–40 correspond to the variables ĥ1,j(x
~ε1) for 1 ≤

j ≤ 2 and ~ε1 ∈ E1, and lastly Columns 41–43 correspond to the variables
ĝ1(x0

3,1), ĝ1(x1
3,1), ĝ2(x1

3,2).
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that for some fixed 1 ≤ k ≤ d, we have ηt,j = ρt,j = εt,j for all 1 ≤ t ≤ T − 1
and 1 ≤ j ≤ d, ηT,j = ρT,j for all j 6= k, and lastly ηT,k = 0 and ρT,k = 1.
Then, it follows from (3.1) that

V (x~ηT )−V (x~ρT ) = ĥT−1,k(x
~εT−1) (x0

T,k−x1
T,k)+ ĝk(x

0
T,k)− ĝk(x1

T,k), (4.14)

where the right-hand side does not depend on any xηT,j

T,j = x
ρT,j

T,j for j 6= k
(i.e., the shared stock prices at date T ).

Let 0 and ej , 1 ≤ j ≤ d, be the zero vector and the unit vectors in {0, 1}d.
Note that ~εT−1 ∈ ET−1 is still fixed, and that (~εT−1,0) and (~εt−1, ej), 1 ≤
j ≤ d, are d+1 elements in ET . Let (L

~εT−1

T )′ be the submatrix of L~εT−1

T whose
rows are generated by these elements. By repeated applications of (4.14), it
is not hard to see that all rows in L~εT−1

T are linear combinations of the rows
in (L

~εT−1

T )′. This argument applies to all ~εT−1 ∈ ET−1. We form the matrix
L′T by vertically stacking (L

~εT−1

T )′ for all ~εT−1 ∈ ET−1. It follows that L′T
has the same rank as LT .

As a remark for later use, we note that for each 1 ≤ t ≤ T−1, coefficients
of LT (and L′T ) in the columns corresponding to ĥt,j(x~εt) for 1 ≤ j ≤ d are
nonzero if and only if they belong to the rows that arise from evaluating V
on D~εt . In other words, for each 1 ≤ t ≤ T − 1, the d 2 d t columns of LT
that correspond to ĥt,j(x~εt) for 1 ≤ j ≤ d and ~εt ∈ Et form a block diagonal
matrix, where each block has 2 d (T−t) rows and d columns.

Step 2. After some block-by-block row operations, we will bring L′2 to a
block lower triangular matrix[

L′′T
B C

]
, with C as in (4.13).

For 1 ≤ t ≤ T−1, we denote (1, . . . , 1) ∈ Et by 1t. Fix ~εT−1 6= 1T−1 in ET−1.
After subtracting (L

1T−1

T )′ from (L
~εT−1

T )′, we denote the resultant matrix by
(L

~εT−1

T )′′. Applying this procedure to all ~εT−1 6= 1T−1 brings L′T into the
form above, where the submatrix [B C ] is precisely (L

1T−1

T )′. Our choice
of d + 1 rows in Step 1 guarantees that C is the matrix (4.13) and has full
rank. Thus, it follows that LT has full column rank if and only if L′′T does.

To understand the structure of L′′T , we need to recall the remark in Step 1
and the stock price difference (4.4). Note that the columns of L′′T that
correspond to ĥt,j(x~εt) for 1 ≤ t ≤ T −1, 1 ≤ j ≤ d and ~εt 6= 1t in Et remain
the same as in L′T , since these columns are identically zero in (L

1T−1

T )′. On
the other hand, the nonzero coefficients of (L

1T−1

T )′ in the columns that
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correspond to ĥt,j(x1t) are subtracted from the coefficients of L′T in these
columns. We state two particular instances for later use:

(i) The columns in L′′T that correspond to ĥT−1,j(x
1T−1) for 1 ≤ j ≤ d

repeat the negative values of those columns in (L
1T−1

T )′; cf. (4.9).

(ii) For any εT−1 ∈ {0, 1}d and 1 ≤ j ≤ d, the coefficient of L′′T in the
row corresponding to (1T−2, εT−1,0) and the column corresponding to
ĥT−2,j(x

1T−2) is

(x
εT−1,j

T−1,j − x
1
T−2,j)− (x1

T−1,j − x1
T−2,j) =

{
δT−1,j if εT−1,j = 0

0 if εT−1,j = 1.

Analogous patterns hold in the columns corresponding to ĥt,j(x1t) for
1 ≤ t ≤ T − 3.

Step 3. Note that L′′T has (d+1)(2 d (T−1)−1) rows and d
∑T−1

t=1 2 d t columns.
Fix ~εT−1 6= 1T−1. In (L

~εT−1

T )′′, we subtract its Row 1 from all other rows.
In view of (i) in Step 2, a variant of (4.14) implies that for 1 ≤ j ≤ d,
Row (d + 2 − j) has two nonzero entries of the same magnitude, δT,j , with
the opposite signs. More precisely, −δT,j is in the column corresponding to
ĥT−1,j(x

~εT−1) and δT,j is in the column corresponding to ĥT−1,j(x
1T−1); cf.

(4.10).
For 1 ≤ j ≤ d, we add the column corresponding to ĥT−1,j(x

~εT−1) to
the column corresponding to ĥT−1,j(x

1T−1). As a result, for 1 ≤ j ≤ d,
Row (d+ 2− j) now has precisely one nonzero entry, −δT,j , and this entry is
located in the column corresponding to ĥT−1,j(x

~εT−1); cf. (4.11). Moreover,
for 1 ≤ j ≤ d, the first coefficient of (L

~εT−1

T )′′ in the column corresponding
to ĥT−1,j(x

1T−1) is {
−δT−1,j if εT−1,j = 0

0 if εT−1,j = 1
(4.15)

and all other coefficients are zero. We apply this procedure to all ~εT−1 6=
1T−1. As a result, d(2 d (T−1) − 1) rows have only one nonzero entry each,
and these entries respectively belong to the first d(2 d (T−1) − 1) columns of
L′′T . Dropping these rows and columns, we denote the remaining matrix by
MT . Thus, we have shown that LT has full column rank if and only if MT

does.

Step 4. We now show that MT indeed has full column rank. We argue by
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induction on T ; the base case T = 2 was established in Remark 4.4. Note
that MT has (2 d (T−1) − 1) rows and d

∑T−2
t=0 2 d t columns, where

• the rows correspond to (~εT−1,0) for all ~εT−1 6= 1T−1 in ET−1;

• the first d columns correspond to ĥT−1,j(x
1T−1) for 1 ≤ j ≤ d; and

• the rest of the columns correspond to ĥt,j(x~εt) for t ∈ {T − 2, . . . , 1},
~εt ∈ Et and j ∈ {1, . . . , d}.

The matrix in Figure 3(a) may serve as an illustration. As

{(~εT−1,0) : ~εT−1 ∈ ET−1} =
{

(~εT−2, εT−1,0) : ~εT−2 ∈ ET−2, εT−1 ∈ {0, 1}d
}

we can divide MT into submatrices (M
~εT−2

T )~εT−2∈ET−2
such that the rows

of M~εT−2

T correspond to (~εT−2, εT−1,0) for all εT−1 ∈ {0, 1}d. Each M~εT−2

T

has 2d rows, with the exception that M1T−2

T has 2d− 1 rows (since MT does
not contain the row corresponding to 1T−1). For this reason, we need to
treat the cases d ≥ 2 and d = 1 separately.

(a) Case d ≥ 2: Similarly to Step 1, the rows in MT are linearly depen-
dent, and we can reduce MT to a matrix M ′T of (d+ 1)2 d (T−2) rows without
decreasing its rank. That is,M ′T consists of 2 d (T−2) submatrices (M

~εT−2

T )′ of
d+ 1 rows for ~εT−2 ∈ ET−2. As a consequence of (4.15), the first d columns
of (M

~εT−2

T )′ make up a (d+ 1)× d matrix

C ′′ :=



−δT−1,1 −δT−1,2 . . . −δT−1,d−1 −δT−1,d
...

... . . . −δT−1,d−1 0
...

... . . . 0 −δT−1,d
...

...
... −δT−1,d−1

...
...

...
...

...
...

... −δT−1,2
... . . .

...
...

−δT−1,1 0 . . .
...

...
0 −δT−1,2 . . . −δT−1,d−1 −δT−1,d


(4.16)

which does not depend on ~εT−2 and has full column rank. Thus, the first d
columns of M ′T are formed by vertically stacking C ′′ 2 d (T−2) times.
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Recalling (ii) from Step 2, we note that the last d + 1 rows of M ′T cor-
respond to (1T−2,0,0) and (1T−2, ej ,0) for 1 ≤ j ≤ d. As a result, the
submatrix of M ′T formed by taking the last d+ 1 rows and the columns cor-
responding to hT−2,j(x

1T−2) for 1 ≤ j ≤ d is precisely −C ′′. Now, adding
the columns corresponding to ĥT−1,j(x

1T−1) to the columns corresponding
to ĥT−2,j(x

1T−2) for 1 ≤ j ≤ d can bring M ′T to the block triangular form[
A′′ M ′′T
C ′′

]
.

(b) Case d = 1: There is no need to remove any rows from MT . We set
M ′T = MT and note that it has 2T−1 − 1 rows. A subtle difference to (a)
is that M ′T does not contain the row corresponding to (1T−1, e1,0). (We
remark that e1 = 1 and 0 = 0 in the case d = 1.) The coefficients of M ′T
in the first column alternate between −δT−1,1 and 0. Also, the last row
of M ′T has only one nonzero entry, δT−1,1, in the column corresponding to

1 2 3 4 5 6 7 8 9 10
31 32 33 34 35 36 37 38 39 40

1 1
2 5
3 9
4 13
5 17
6 21
7 25
8 29
9 33

10 37
11 41
12 45
13 49
14 53
15 57

(a) M3

1 2 3 4 5 6 7 8 9 10
31 32 33 34 35 36 37 38 39 40

1 1
2 5
3 9
4 17
5 21
6 25
7 33
8 37
9 41

10 49
11 53
12 57

(b) M ′3

Figure 3: Illustration of Step 4 in the proof of Lemma 4.1 for T = 3 and
d = 2. The row and column numbers in black are inherited from L3, and
the new row and column numbers are printed in red. The first two columns
correspond to ĥ2,j(x

12) for j = 1, 2; the rest of the columns correspond to
ĥ1,j(x

~ε1) for j = 1, 2 and ~ε1 ∈ E1. Coefficients in each light gold block are
the negatives of those in the dark gold block.
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hT−2,1(x1T−2). Adding the column corresponding to ĥT−1,1(x1T−1) to the
column corresponding to ĥT−2,1(x1T−2) brings M ′T to the form above with
the 1× 1 matrix C ′′ = [−δT−1,1].

Therefore, in either case, M ′′T is a matrix with (d + 1)(2 d (T−2) − 1) rows
and d

∑T−2
t=1 2 d t columns. It remains to show that it has full column rank.

Applying the same procedure as in Step 3 to M ′′T , we see that d(2 d (T−2)−1)
rows have only one nonzero entry each, and none of these entries share a
common column. We then drop these rows and columns. One can check
that the remaining matrix, of (2 d (T−2) − 1) rows and d

∑T−3
t=0 2 d t columns,

is precisely MT−1; we omit further details in the interest of brevity. The
inductive hypothesis applies.
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