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Abstract

In optimal transport, quadratic regularization is a sparse alternative to entropic regu-
larization: the solution measure tends to have small support. Computational experience
suggests that the support decreases monotonically to the unregularized counterpart as
the regularization parameter is relaxed. We find it useful to investigate this monotonicity
more abstractly for linear programs over polytopes, regularized with the squared norm.
Here, monotonicity can be stated as an invariance property of the curve mapping the reg-
ularization parameter to the solution: once the curve enters a face of the polytope, does
it remain in that face forever? We show that this invariance is equivalent to a geometric
property of the polytope, namely that each face contains the minimum norm point of
its affine hull. Returning to the optimal transport problem and its associated Birkhoff
polytope, we verify this property for low dimensions, but show that it fails for marginals
with five or more point masses. As a consequence, the conjectured monotonicity of the
support fails in general, even if experiments suggest that monotonicity holds for many
cost matrices. Separately, we apply our geometric point of view to a problem of Erdős,
namely to characterize the doubly stochastic matrices whose maximal trace equals their
squared norm.

Keywords Linear Program, Quadratic Regularization, Optimal Transport, Sparsity
AMS 2020 Subject Classification 49N10; 49N05; 90C25

1 Introduction

Let P ⊂ Rd be a polytope and c ∈ Rd. The regularized linear program

xδ = argmin
x∈P: ∥x∥≤δ

⟨c, x⟩ (1)

has a unique solution as long as δ ≥ 0 belongs to a certain interval [δmin, δmax], cf. Lemma 2.1,
hence we can consider the curve δ 7→ xδ ∈ P which travels across various faces of P as δ
increases (i.e., as the regularizing constraint relaxes). We are interested in the following
invariance property: once δ 7→ xδ ∈ P enters a given face, does it ever leave that face?
(Cf. Figure 1.) In the optimal transport applications that motivate our study (see below),
this property corresponds to the monotonicity of the optimal support sptxδ wrt. the reg-
ularization strength. (The support is defined as the set of locations with nonzero mass,
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Figure 1: A non-monotone (left) and a monotone (right) polytope with cost c (red). The
curve [δmin, δmax] ∋ δ 7→ xδ follows the blue arrows and has the invariance property only in
the right example.

sptx := {i : xi > 0} for x = (x1, . . . , xd) ∈ Rd.) Our abstract result, Theorem 3.2, geomet-
rically characterizes all polytopes such that the invariance property holds (for any cost c).
We show that this property holds for the set of probability measures (unit simplex), but
fails for the set of transport plans (Birkhoff polytope) when the dimension d ≥ 25. As a
consequence—which may be surprising given numerical experience—the optimal support in
quadratically regularized optimal transport problems is not always monotone.

1.1 Motivation

This study is motivated by optimal transport and related minimization problems over proba-
bility measures. In its simplest form, the transport problem between probability measures µ
and ν is

inf
γ∈Γ(µ,ν)

∫
ĉ(x, y) γ(dx, dy), (OT)

where ĉ(x, y) is a given “cost” function and Γ(µ, ν) denotes the set of couplings; i.e., joint
probability measures γ with marginals (µ, ν). See [35] for a detailed discussion. In many
applications such as machine learning or statistics (see [24, 32] for surveys), the marginals
encode observed data points X1, . . . , XN and Y1, . . . , YN which are represented by their em-
pirical measures µ = 1

N

∑
i δXi and ν = 1

N

∑
i δYi . Denoting by cij = ĉ(Xi, Yj) the resulting

N ×N cost matrix, (OT) then becomes a linear program

inf
x∈P

⟨c, x⟩ (LP)

where the polytope P is (up to a constant factor) the Birkhoff polytope of doubly stochastic
matrices of size N × N . For different choices of polytope, (LP) includes other problems of
recent interest, such as multi-marginal optimal transport and Wasserstein barycenters [2]
or adapted Wasserstein distances [3]. The optimal transport problem is computationally
costly when N is large. The impactful paper [14] proposed to regularize (OT) by penalizing
with Kullback–Leibler divergence (entropy). Then, solutions can be computed using the
Sinkhorn–Knopp algorithm, which has lead to an explosion of high-dimensional applications
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(see [33]). More generally, [15] introduced regularized optimal transport with regularization
by a divergence. Different divergences give rise to different properties of the solution. Entropic
regularization always leads to couplings whose support contains all data pairs (Xi, Yj), even
though (OT) typically has a sparse solution. In some applications that is undesirable; for
instance, it may correspond to blurrier images in an image processing task [6]. The second-
most prominent regularization is χ2-divergence or equivalently the squared norm, as proposed
in [6],1 which gives rise to sparse solutions. In the Eulerian formulation of [15], this is exactly
our problem (1) with P being the (scaled) Birkhoff polytope. Alternately, the problem can
be stated in Lagrangian form as in [6], making the squared-norm penalty explicit:

inf
γ∈Γ(µ,ν)

∫
ĉ(x, y) γ(dx, dy) +

1

2η

∥∥∥∥ dγ

d(µ⊗ ν)

∥∥∥∥2
L2(µ⊗ν)

(QOT)

where dγ/d(µ⊗ ν) denotes the density of γ wrt. the product measure µ⊗ ν and the regular-
ization strength is now parameterized by η ∈ [0,∞]. In the general setting, this corresponds
to

inf
x∈P

⟨c, x⟩+ 1

2η
∥x∥2 (2)

which has a unique solution xη for any η ∈ (0,∞). The curves (xη) and (xη) of solutions
to (1) and (2), respectively, coincide up to a simple reparametrization.

In optimal transport, the regularized problem is often solved to approximate the linear
problem (OT). The latter has a generically unique (see [13]) solution x, which is recovered
as δ → δmax (or η → ∞): x = xδmax = x∞.2 In particular, the support of xδ converges to
the support of x, which is generically sparse (N out of N2 possible points, again by [13]). In
numerous experiments, it has been observed not only that sptxδ is sparse when δ is large, but
also that sptxδ monotonically decreases to sptx (e.g., [6]). If this monotonicity holds, then
in particular sptx ⊂ sptxδ, meaning that sptxδ can be used as a multivariate confidence
band for the (unknown) solution x.

1.2 Summary of Results

When P is the unit simplex or the Birkhoff polytope, its elements can be interpreted as
probability measures and thus carry a natural notion of support, sptx := {i : xi > 0} for
x = (x1, . . . , xd) ∈ Rd. We can then ask whether sptxδ is monotone wrt. the strength δ
of regularization. When P is a general polytope, the set of vertices of the minimal face
containing x yields a similar notion, replacing the concept of support. The question of
monotonicity then becomes to the aforementioned invariance property: if xδ ∈ F for some
face F , does it follow that xδ′ ∈ F for all δ′ ≥ δ? (This indeed specializes to the monotonicity
of sptxδ when P is the simplex or the Birkhoff polytope; cf. Lemma 4.2.) The answer may
of course depend on the cost c; we call P monotone if the invariance holds for any c ∈ Rd.

We show that monotonicity can be characterized by the geometry of P. Namely, mono-
tonicity of P is equivalent to two properties: for any proper face F , the minimum-norm point

1See also [18] for a similar formulation of minimum-cost flow problems, and the predecessors referenced
therein. Our model with a general polytope includes such problems, and many others.

2By “generic” we mean that the set of c where uniqueness fails is a Lebesgue nullset. For problems with
non-unique solution, xδmax recovers the minimum-norm solution.
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of the affine hull of F must lie in F , and moreover, the minimum-norm point of P must lie
in the relative interior riP. See Theorem 3.2. Once the right point of view is taken, the
proof is quite elementary. An example satisfying both properties, and hence monotonicity,
is the unit simplex ∆ ⊂ Rd, for any d ≥ 1. For that choice of polytope, xδ is a sparse
soft-min of c = (c1, . . . , cd), converging to 1

#argmin c 1{argmin c} in the unregularized limit. On
the other hand, we show that the Birkhoff polytope violates the first condition whenever the
marginals have N ≥ 5 data points (meaning that d ≥ 25). As a result, the optimal support
in quadratically regularized optimal transport problems is not always monotone, even if it
appears so in numerous experiments. In fact, we exhibit a particularly egregious failure of
monotonicity where the support of the limiting (unregularized) optimal coupling x is not
contained in sptxδ for some reasonably large δ. Our counterexample is constructed by hand,
based on theoretical considerations. Our numerical experiments using random cost matrices
have failed to locate counterexamples, suggesting that there are, in some sense, “few” faces
violating our condition on the minimum-norm point. (See also the proof of Lemma 4.10.)

This is an interesting problem for further study in combinatorics, where the Birkhoff
polytope has remained an active topic even after decades of research (e.g., [31] and the refer-
ences therein). In that spirit, we also apply our point of view to a problem of Erdős, namely
to characterize the doubly stochastic N × N matrices A satisfying ∥A∥2 = max trA :=
maxσ

∑N
i=1 ai,σ(i) where σ ranges over all permutations of {1, . . . , N}. We show in Theo-

rem 5.4 that this is precisely the set of minimum-norm points of certain faces F of the Birkhoff
polytope. We use this geometric characterization to prove a conjecture of [7], namely that
such matrices must have rational entries.

The remainder of this note is organized as follows. Section 2 introduces the regularized
linear program and its solution curve in detail. Section 3 contains the main abstract result,
whereas Section 4 reports the applications to optimal transport and soft-min. We conclude
in Section 5 with the application to Erdős’ problem about doubly stochastic matrices.

2 Preliminaries

This section collects notation and well-known or straightforward results for ease of reference.
Let ⟨·, ·⟩ be an inner product on Rd and ∥ · ∥ the induced norm. Let ∅ ̸= P ⊆ Rd be a
polytope; i.e., the convex hull of finitely many points. The minimal set of such points, called
vertices or extreme points, is denoted extP. A face of P is a subset F ⊂ P such that any
open line segment L = (x, y) ⊂ P with L ∩ F ̸= ∅ satisfies L ⊂ F , where L = [x, y] denotes
closure. Alternately, a nonempty face F of P is the intersection F = P ∩ H of P with a
tangent hyperplane H. Here a hyperplane H = {x ∈ Rd : ⟨a, x⟩ = b} is called tangent if
H ∩ P ≠ ∅ and P ⊂ {x ∈ Rd : ⟨a, x⟩ ≤ b}. We denote by riK and rbdK = K \ riK the
relative interior and relative boundary of a set K, and by affK its affine span. See [9] for
background on polytopes and related notions.

Next, we introduce the regularized linear program and the interval of parameters δ where
the set of feasible points is nonempty and the constraint is binding.

Lemma 2.1 (Eulerian Formulation). Denote P(δ) := {x ∈ P : ∥x∥ ≤ δ} for δ ≥ 0 and

δmin := min{δ ≥ 0 : P(δ) ̸= ∅}, δmax := min

{
δ ≥ 0 : min

x∈P(δ)
⟨c, x⟩ = min

x∈P
⟨c, x⟩

}
.
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Then

D :=

{
δ > δmin : argmin

x∈P(δ)
⟨c, x⟩ ∩ argmin

x∈P
⟨c, x⟩ = ∅

}
= (δmin, δmax).

For each δ ∈ D = [δmin, δmax], the problem

inf
x∈P(δ)

⟨c, x⟩ has a unique minimizer xδ. (3)

Moreover, [δmin, δmax] ∋ δ 7→ xδ is continuous and ∥xδ∥ = δ. In particular, xδmin is the
singleton P(δmin), and xδmax is the minimum-norm solution of minx∈P⟨c, x⟩.

Proof. Compactness of P implies that the minima defining δmin and δmax are indeed attained.
Moreover, the identity D = (δmin, δmax) follows directly from the definition of δmax.

Fix δ ∈ D. Let xδ ∈ argminx∈P(δ)⟨c, x⟩ and x∗ ∈ argminx∈P⟨c, x⟩. If ∥xδ∥ < δ, then
x := λxδ + (1 − λ)x∗ ∈ P(δ) for sufficiently large λ ∈ (0, 1). By optimality it follows that
xδ ∈ argminx∈P⟨c, x⟩, meaning that δ /∈ D. Thus, for δ ∈ D, we have ∥xδ∥ = δ. In particular,
the set argminx∈P(δ)⟨c, x⟩ is contained in the sphere {x : ∥x∥ = δ}. As the set is also convex,
it must be a singleton by the strict convexity of ∥ ·∥. Continuity of δ 7→ xδ is straightforward.

It remains to deal with the boundary cases. For δ = δmin, we note that ∥xδ∥ < δ is
trivially ruled out, hence we can conclude as above. Clearly {xδmin} = P(δmin). Define x∗

as the minimum-norm solution of minx∈P⟨c, x⟩, which is unique by strict convexity. Clearly
∥x∗∥ = δmax. Thus when δ = δmax, we must have xδ = x∗ for any xδ ∈ argminx∈P(δ)⟨c, x⟩.
Continuity and ∥xδ∥ = δ are again straightforward.

The next lemma recalls the standard projection theorem (e.g., [8, Theorem 5.2]).

Lemma 2.2 (Projection). Let ∅ ≠ K ⊆ Rd be closed and convex. Given x ∈ Rd, there exists
a unique xK ∈ K, called the projection of x onto K and denoted xK = projK(x), such that

∥x− xK∥ = inf
x′∈K

∥x− x′∥.

Moreover, xK is characterized within K by

⟨x− xK , x′ − xK⟩ ≤ 0 for all x′ ∈ K. (4)

If xK ∈ riK, then xK = projaff K(x) and (4) can be sharpened to

⟨x− xK , x′ − xK⟩ = 0 for all x′ ∈ K. (5)

In particular, (5) holds when K is an affine subspace. In that case, x 7→ projK(x) is affine.

Below, we often use projK(0) as a convenient notation for argminx∈K ∥x∥, the minimum-
norm point of K. In the Lagrangian formulation of our regularized linear program, the
solution can be expressed as a projection onto P as follows.

Lemma 2.3 (Lagrangian Formulation). Define

xη := projP(−ηc), η ∈ [0,∞), x∞ := lim
η→∞

xη. (6)
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Then

xη = argmin
x∈P

⟨c, x⟩+ 1

2η
∥x∥2, η ∈ (0,∞), (7)

x0 = argmin
x∈P

∥x∥, x∞ = argmin
x′∈argminx∈P ⟨c,x⟩

∥x′∥. (8)

The limit xη → x∞ is stationary; i.e., there exists η̄ ∈ R+ such that xη = x∞ for all η ≥ η̄.

Proof. Let η ∈ (0,∞). Then (7) follows from

1

2η
∥ − ηc− x∥2 = η

2
∥c∥2 + ⟨c, x⟩+ 1

2η
∥x∥2.

The first claim in (8) is trivial. For the second claim and the stationary convergence xη → x∞
(which will not be used directly), see [28, Theorem 2.1], or [21] for the exact threshold η̄.

The algorithm of [23] solves the problem of projecting a point onto a polyhedron, hence can
be used to find xη = projP(−ηc) numerically. The solutions xδ of the Eulerian formulation (3)
and xη of the Lagrangian formulation (6) are related as follows.

Lemma 2.4 (Euler ↔ Lagrange). Given η ∈ [0,∞], there exists a unique δ = δ(η) ∈ D such
that xη = xδ, namely δ = ∥xη∥. The function η 7→ δ(η) is nondecreasing.

Conversely, let δ ∈ D. Then there exists η ∈ [0,∞) (possibly non-unique) such that
xη = xδ. Define η(δ) as the minimal η with xη = xδ.3 Then δ 7→ η(δ) is strictly increasing
on D.

Proof. We first prove the second part. Let δ ∈ D and recall that ∥xδ∥ = δ. Note also that
η 7→ xη is continuous and that η 7→ ∥xη∥ is nondecreasing, with range [∥x0∥, ∥x∞∥] = D.
Hence there exists η = η(δ) such that ∥xη∥ = δ. We see from (7) that xη minimizes ⟨c, x⟩
among all x ∈ P(δ), which is to say that xη = xδ.

To see the first part, fix η ∈ [0,∞] and define δ(η) := ∥xη∥. The above shows that
xη = xδ(η). Moreover, δ(η) must be unique with that property, due to ∥xδ∥ = δ.

3 Abstract Result

Recall that xδ and xη denote the solutions of the Eulerian (3) and Lagrangian (6) for-
mulation, respectively. Lemma 2.4 shows that the curves (xδ)δmin≤δ≤δmax and (xη)η≥0 are
reparametrizations of one another. In particular, they trace out the same trajectory, and
only the trajectory matters for the subsequent definition.

Definition 3.1. Let P ⊂ Rd be a polytope and c ∈ Rd. We say that P is c-monotone if for
any face F of P,

xδ ∈ F =⇒ xδ
′ ∈ F for all δ′ ≥ δ in [δmin, δmax], or equivalently if (9)

xη ∈ F =⇒ xη′ ∈ F for all η′ ≥ η in [0,∞]. (10)

We say that P is monotone if it is c-monotone for all c ∈ Rd.
3This is merely for concreteness; any choice of selector will do.
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This definition means that the “support” of xδ is monotonically decreasing in δ, in the
following sense. For any x ∈ P, there is a unique face F = F (x) such that x ∈ riF ;
moreover, x ∈ riF if and only if x is a convex combination of the vertices extF with
strictly positive weights [9, Exercise 3.1, Theorem 5.6]. Thus extF (x) is a notion of support
for x, and then the property (9) indeed means that the support of xδ is monotonically
decreasing for inclusion. When P is the unit simplex {x : xi ≥ 0,

∑
i xi = 1}, then extF (x)

boils down to the usual measure-theoretic notion of support, namely {i : xi > 0} for x =
(x1, . . . , xd) ∈ P. This identification breaks down when P is the Birkhoff polytope, but
monotonicity is nevertheless equivalent for the two notions of support (see Lemma 4.2).4

Next, we characterize monotonicity in geometric terms.

Theorem 3.2. A polytope P is monotone (Definition 3.1) if and only if

(H1) projP(0) ∈ riP and

(H2) projaff F (0) ∈ F for each face ∅ ≠ F ⊂ P.

The two conditions are similar, with the requirement for the proper faces F being less
stringent than for the improper face P: while projF (0) ∈ riF is a sufficient condition for (H2),
the condition (H2) includes the boundary case where projF (0) = projaff F (0) ∈ rbdF . We
shall see that (H1) and (H2) play different roles in the proof. Simple examples show that
changing riP to P in (H1) or F to riF in (H2) invalidates the equivalence in Theorem 3.2.

3.1 Proof of Theorem 3.2

We first prove the “if” implication, using the Lagrangian formulation (Lemma 2.3). This
parametrization is convenient because η 7→ xη is piecewise affine. While the latter is well-
known (even for some more general norms, see [19] and the references therein); we detail the
statement for completeness.

Lemma 3.3. Let P ⊆ Rd be a polytope, c ∈ Rd and let xη be the solution of (2) with η > 0.
The curve [0,∞] ∋ η 7→ xη is piecewise affine. The affine pieces correspond to faces of P
as follows. Fix η0 ∈ [0,∞] and let F be the unique face of P such that xη0 ∈ riF . Let
I = {η : xη ∈ riF}. Then I is an interval containing η0 and I ∋ η 7→ xη ∈ F is affine. In
particular, the curve η 7→ xη does not return to riF after leaving it.

Proof. Consider η1 < η2 in I and let H = aff F . As xηi ∈ riF , we have xηi = projF (−ηic) =
projH(−ηic). Since H is an affine subspace, the curve η 7→ projH(−ηc) is affine. In particular,
convexity of riF implies that projH(−ηc) ∈ riF for all η ∈ [η1, η2]. Thus I is an interval and
I ∋ η 7→ xη ∈ riF is affine, and this extends to the closure by continuity.

Recall that rbdK := K \ riK denotes the relative boundary of K ⊂ Rd. Consider the
first time the curve η 7→ xη touches a given face F of P. That point may lie in riF or
in rbdF . As seen in Lemma 3.5 below, the boundary situation indicates that η 7→ xη left
another face F∗ when it entered F ̸⊂ F∗, meaning that P is not monotone. Hence, we analyze
that situation in detail in the next lemma.

4Clearly this equivalence does not hold in general. E.g., when P ⊂ (0, 1)d, all points have the same
measure-theoretic support.
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Lemma 3.4. Let P ⊆ Rd be a polytope, c ∈ Rd and let xη be the solution of (2) with η > 0.
Let F be a face of P and I = {η : xη ∈ riF} ̸= ∅. Let η0 := inf I. If xη0 ∈ rbdF , then
exactly one of the following holds true:

(i) projaff F (0) /∈ F ;

(ii) η0 = 0, and then xη0 = x0 = projP(0) = projaff F (0) ∈ rbdF . In particular, x0 /∈ riP.

Proof. Recall from Lemma 3.3 that I is an interval and I ∋ η 7→ xη ∈ F is affine. Let
H = aff F and consider zη := projH(−ηc). Recalling Lemma 2.2, we have for η ∈ I that
xη = projP(−ηc) = projF (−ηc) = projH(−ηc) = zη and in particular zη ∈ riF .

As xη = zη for η ∈ I and both curves are continuous, it follows that xη0 = zη0 . Therefore,
our assumption that xη0 ∈ rbdF implies that zη0 ∈ rbdF .

Since H is an affine space, R+ ∋ η 7→ zη is affine. We have zη0 ∈ rbdF and zη ∈ riF for all
η ∈ (η0, η1), where η1 := sup I > η0. (Note that I cannot be a singleton when zη0 ∈ rbdF .)
As F is convex, it follows that zη /∈ F for 0 ≤ η < η0. If z0 /∈ F , we are in the first case.
Whereas if z0 ∈ F , it follows that η0 = 0. Thus xη0 = x0 = projP(0) = projF (0). Moreover,
zη0 = xη0 ∈ F implies xη0 = projaff F (0).

Lemma 3.5. Let P ⊆ Rd be a polytope, c ∈ Rd and let xη be the solution of (2) with η > 0.
Let η∗ ≥ 0 and let F∗ be the unique face of P with xη∗ ∈ riF∗. Suppose there exists η > η∗
such that xη /∈ F∗ and let η0 = max{η ≥ η∗ : xη ∈ F∗}. For sufficiently small η1 > η0, there
is a unique face F such that xη ∈ riF for all η ∈ (η0, η1).5 If x0 := projP(0) ∈ riP, then F
satisfies projaff F (0) /∈ F .

Proof. For x ∈ P, let F (x) denote the unique face such that x ∈ riF (x). By Lemma 3.3,
the map (η0,∞) ∋ η 7→ F (xη) has finitely many values and the preimage of each value is
an interval. Hence the map must be constant on (η0, η1) for sufficiently small η1 > η0. Let
F = F (xη), η ∈ (η0, η1) be the corresponding face. As F∗ and F are faces with F∗ ̸⊂ F ,
we have F ∩ F∗ ⊂ rbdF . Thus xη0 ∈ F ∩ F∗ implies xη0 ∈ rbdF , and now Lemma 3.4
applies.

Proof of Theorem 3.2. Step 1: (H1), (H2) ⇒ monotone. If P is not monotone, then Lemma 3.5
shows that either (H1) or (H2) must be violated.

Step 2: Not (H1) ⇒ not monotone. Suppose that x0 := projP(0) /∈ riP. As x0 ∈
P \ (riP), there exists a hyperplane H =

{
x ∈ Rd : ⟨a, x⟩ = b

}
with

x0 ∈ H, P ⊆
{
x ∈ Rd : ⟨a, x⟩ ≤ b

}
, riP ⊆

{
x ∈ Rd : ⟨a, x⟩ < b

}
.

Define c = a and F = H ∩ P and δ0 = ∥x0∥, and denote Bδ = {x ∈ Rd : ∥x∥ ≤ δ}. Then
P ∩Bδ0 = {x0} and in particular xδ0 = x0. Moreover,

⟨c, x⟩ = b for all x ∈ F, while ⟨c, x⟩ < b for all x ∈ riP. (11)

For any δ > δ0, we have Bδ ∩ riP ≠ ∅, and then (11) implies xδ /∈ F . In particular, P is not
monotone for the cost c.

5When traveling along the curve (xη)η≥η∗ , F is the first face outside F∗ whose interior is visited.
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Step 3: Not (H2) ⇒ not monotone. Given the assumption, there exists a face F of P
such that projaff F (0) does not belong to F . Set xmin := projF (0). As F is a face of P, there
is a hyperplane H = {x ∈ Rd : ⟨a, x⟩ = b} such that

F = H ∩ P and P ⊂ {x ∈ Rd : ⟨a, x⟩ ≥ b}.

Define c = a− xmin and δ1 = ∥xmin∥. Then for every x ∈ P ∩Bδ1 ,

⟨c, x⟩ = ⟨a, x⟩ − ⟨xmin, x⟩ ≥ b− ∥x∥∥xmin∥ ≥ b− ∥xmin∥2 = ⟨c, xmin⟩,

showing that xδ1 = xmin. Recall that xmin := projF (0), so that ⟨xmin, x − xmin⟩ ≥ 0 for all
x ∈ F (Lemma 2.2). Thus xmin ̸= projaff F (0) implies that

F ′ := {x ∈ Rd : ⟨xmin, x− xmin⟩ = 0} ∩ F

is a proper face of F—and a fortiori a face of P—such that

∅ ≠ F \ F ′ ⊂ {x ∈ Rd : ⟨xmin, x− xmin⟩ > 0}.

We claim that xδ /∈ F ′ for all δ > δ1. Indeed, for any x′ ∈ F ′ it holds that

⟨c, x′⟩ = ⟨a, x′⟩ − ⟨xmin, x
′⟩ = b− ⟨xmin, x

′⟩ = ⟨c, xmin⟩,

whereas for any x ∈ F \ F ′, it holds that

⟨c, x⟩ = b− ⟨xmin, x⟩ = ⟨c, xmin⟩ − ⟨xmin, x− xmin⟩ < ⟨c, xmin⟩.

In summary, ⟨c, x⟩ < ⟨c, x′⟩ for all x ∈ F \ F ′ and x′ ∈ F ′. In view of xδ1 = xmin ∈ F ′, it
follows that xδ /∈ F ′ for all δ > δ1 and in particular that P is not monotone for the cost c.

4 Applications

4.1 Soft-Min

To begin with a straightforward example, let P = ∆ be the unit simplex in Euclidean space Rd

and c = (c1, . . . , cd) ∈ Rd. Then

min
x∈∆

⟨c, x⟩ = min
1≤i≤d

ci

corresponds to finding the minimum value of c. More specifically, x = (x1, . . . , xd) is a
minimizer if and only if x is supported in argmin c; i.e., sptx = {i : xi ̸= 0} ⊂ argmin c.
When this linear program is regularized with the entropy of x, we obtain the usual soft-min
(counterpart of log-sum-exp) which gives large weights to the small values of c but non-zero
weights to all values. The quadratic regularization,

xδ = argmin
x∈∆: ∥x∥≤δ

⟨c, x⟩ or xη = argmin
x∈∆

⟨c, x⟩+ 1

2η
∥x∥2, (12)

yields a sparse soft-min: as δ → δmax (or as η → ∞), the support of the solution tends to
argmin c. In this example, δmin = 1√

d
and δmax = 1√

#argmin c
.
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Corollary 4.1. The unit simplex ∆ ⊂ Rd is monotone for all d ≥ 1; i.e., the support of the
soft-min xδ (or xη) defined in (12) decreases monotonically to argmin c as δ ∈ [δmin, δmax]
(or η ≥ 0) increases.

Proof. We have ext∆ = {e1, . . . , ed}, the canonical basis of Rd. Let F ⊂ ∆ be a face, then
there exist {i1, . . . , ik} ⊆ {1, . . . , d} such that F = conv(ei1 , . . . , eik). Note that projF (0) =∑k

j=1 λjeij , where λ = (λ1, . . . , λk) is the solution of

min
λ∈Rd

∥∥ k∑
j=1

λjeij
∥∥2 s.t.

k∑
j=1

λj = 1,

namely λ = (k−1, . . . , k−1). In particular, projF (0) = k−1
∑k

j=1 eij ∈ riF . Now Theorem 3.2
applies.

4.2 Optimal Transport

We recall the quadratically regularized optimal transport problem

inf
γ∈Γ(µ,ν)

∫
ĉ(x, y)dγ(x, y) +

1

2η

∥∥∥∥ dγ

d(µ⊗ ν)

∥∥∥∥2
L2(µ⊗ν)

(QOT)

where Γ(µ, ν) denotes the set of couplings of the probability measures (µ, ν). We will be con-
cerned with the discrete case as introduced in [6, 15, 18]. See also [26, 27, 30] for more general
theory, [4, 17, ?] for asymptotic aspects, [16, 20, 22, 25, 34] for computational approaches
and [25, 36] for some recent applications.

Fix N ∈ N and two sets of distinct points, {X1, . . . , XN} ⊂ RD and {Y1, . . . , YN} ⊂ RD.
Let µ = 1

N

∑N
i=1 δXi and ν = 1

N

∑N
i=1 δYi denote the associated empirical measures, and

let ĉ : RD × RD → R be a (cost) function. We note that µ ⊗ ν = 1
N2

∑N
i,j=1 δ(Xi,Yj) while

dγ/d(µ⊗ ν) is simply the ratio of the probability mass functions. Any coupling γ ∈ Γ(µ, ν)
can be identified with its matrix of probability weights

(γi,j)
n
i,j=1 ∈ ΓN =

γ ∈ RN×N :
N∑
i=1

γi,j =
1

N
,

N∑
j=1

γi,j =
1

N
, γi,j ≥ 0


via γ =

∑N
i,j=1 γi,jδ(Xi,Yj). Writing similarly cij = ĉ(Xi, Xj), (QOT) can be identified with

the problem

inf
γ∈ΓN

⟨c, γ⟩+ εN

2
∥γ∥2.

Clearly ΓN = 1
NΠN where

ΠN =

π ∈ RN×N :

N∑
i=1

πi,j = 1,

N∑
j=1

πi,j = 1, πi,j ≥ 0


denotes the Birkhoff polytope of doubly stochastic matrices; see, e.g., [10]. The monotonicity
(in the sense of Definition 3.1) of ΠN is equivalent to that of ΓN .

The following result connects the measure-theoretic support sptπ = {(i, j) : πij > 0}
with the geometric notion discussed below Definition 3.1.
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Lemma 4.2. Let π, π′ ∈ ΠN . Denote by F (π) the unique face F ⊂ ΠN such that π ∈ riF .
For π, π′ ∈ ΠN , the following are equivalent:

(i) sptπ′ ⊂ sptπ,

(ii) F (π′) ⊂ F (π),

(iii) if π ∈ F for some face F ⊂ ΠN , then π′ ∈ F .

Proof. The equivalence of (ii) and (iii) follows from the fact that F (π) is the smallest face
containing π [9, Theorem 5.6]. The equivalence of (i) and (iii) is deferred to Lemma 4.8 below.
(The implication (ii) ⇒ (i) is straightforward, and holds for any polytope P of measures.)

As a consequence of Lemma 4.2, we have the following equivalence.

Corollary 4.3. Let γη,ĉ denote the solution of (QOT) for ĉ : RN × RN → R. The Birkhoff
polytope is monotone if and only if the optimal support spt γη,ĉ is monotone decreasing in η
for all ĉ.

Theorem 4.4. The Birkhoff polytope ΠN is monotone for 1 ≤ N ≤ 4 but not monotone for
N ≥ 5. In particular, when N ≥ 5, the optimal support η 7→ spt(γη,ĉ) is not monotone for
some costs ĉ.

Example 4.5. We exhibit an example for N = 5 where the support is not monotone. (This is
not easily achieved by brute-force numerical experiment). Our starting point is the matrix A
in (14) below, which is used to describe a face where (H2) fails. Step 3 in the proof of
Theorem 3.2 then suggests to perturb −A in a suitable direction to find a cost c exhibiting
non-monotonicity. With some geometric considerations, this leads us to propose the cost
matrix

c =


−1.1 −1 −1 −1 −1
−1 −1.1 0 0 0
−1 0 −1.1 0 0
−1 0 0 −1.1 0
−1 0 0 0 −1.1

 .

(If one prefers a nonnegative cost matrix, one can obtain that by adding 1.1 to all entries.
This translation does not change the solution γη to (QOT).) For η = 2.5, or equivalently
regularization strength 1/(2η) = 0.2, the corresponding problem (QOT) has an exact solution
coupling γη with probability weights given by

(γη=2.5) =


0 0.05 0.05 0.05 0.05

0.05 0.15 0 0 0
0.05 0 0.15 0 0
0.05 0 0 0.15 0
0.05 0 0 0 0.15

 .

(This can be verified by noticing that the stated coupling is induced by the dual potentials
f = g = (−0.575,−0.175,−0.175,−0.175,−0.175); see for instance [30, Theorem 2.2 and
Remark 2.3].) We observe in particular that the location (X1, Y1) is not in the support. On
the other hand, because the diagonal of c features the smallest costs, the solution γ∞ of the
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unregularized transport problem is to put all mass on the diagonal; i.e., to transport all mass
from Xi to Yi for each i. Because of the stationary convergence mentioned in Lemma 2.3,
that is also the solution of the regularized problem for large enough value of η (e.g., η = 100
will do):

(γη=100) = (γ∞) =


0.2 0 0 0 0
0 0.2 0 0 0
0 0 0.2 0 0
0 0 0 0.2 0
0 0 0 0 0.2

 .

In particular, (X1, Y1) is part of the support for large η, completing the example. Figure 2
shows in more detail the weight at (X1, Y1) as a function of (the inverse of) η.

Figure 2: Probability mass γη(X1, Y1) plotted against 1/(2η), showing that (X1, Y1) is in the
support for small and large values of η but outside for an intermediate interval.

Remark 4.6. The early work of [18] considered a minimum-cost flow problem with quadratic
regularization that predates the optimal transport literature for this regularization. The
authors point out that the solution can have non-monotone support already in the minimal
setting of 2 × 2 points [18, Figure 1]. Similarly, it is not hard to obtain non-monotonicity
if instead of µ ⊗ ν we use a different measure to define the L2-norm in (QOT), similarly
as in [30, Example A.1]. In those examples, the mechanism causing non-monotonicity is
straightforward and quite different than in the present work, where non-monotonicity arises
only in higher dimensions.

4.3 Proof of Lemma 4.2 and Theorem 4.4

The celebrated Birkhoff’s theorem [5] (or, e.g., [?, p. 30]) states that the vertices extΠN are
the permutation matrices of {1, . . . , N}; that is, the elements of ΠN with binary entries.
Following [12], the faces of ΠN can be described using the so-called permanent function. If A
is a binary N×N matrix, its permanent per(A) ∈ N is defined as the number of permutation
matrices P with P ≤ A (meaning that Pi,j ≤ Ai,j for all i, j). Denoting by conv(·) the convex
hull, the following characterization is contained in [12, Theorem 2.1].

12



Lemma 4.7. Let t ∈ N and P (1), . . . , P (t) ∈ ext(ΠN ). Let A = (Ai,j)
N
i,j=1 be the matrix

such that Ai,j = 1 if there exists s ∈ {1, . . . , t} with P
(s)
i,j = 1 and Ai,j = 0 otherwise. Then

conv({P (1), . . . , P (t)}) is a face of ΠN if and only if per(A) = t.

We use Lemma 4.7 to relate faces with the distribution of zeros.

Lemma 4.8. Let π, π′ ∈ ΠN . The following are equivalent:

(i) there exists (i, j) such that πi,j = 0 and π′
i,j > 0;

(ii) there exists a face F of ΠN such that π ∈ F and π′ /∈ F .

Proof. (i) ⇒ (ii): Let (i, j) be such that πi,j = 0 and π′
i,j > 0. Assume w.l.o.g. that

(i, j) = (1, 1). Then π belongs to the set

F = {π ∈ ΠN : ⟨π,A⟩ = N},

where A is the matrix

A =


0 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

 .

As ΠN ⊂ {π ∈ ΠN : ⟨π,A⟩ ≤ N}, we see that F is a face. Clearly π′ does not belong to F ,
proving the claim.

(ii) ⇒ (i): Let P (1), . . . , P (t) ∈ extΠN be such that F = conv({P (1), . . . , P (t)}) and let
A = (Ai,j)

N
i,j=1 be the matrix such that Ai,j = 1 if there exists s ∈ {1, . . . , t} such that

P
(s)
i,j = 1 and Ai,j = 0 otherwise. We have per(A) = t by Lemma 4.7. As an element of ΠN ,

π′ can be written as a convex combination of permutation matrices, i.e.,

π′ =
∑

P∈ext(ΠN )

λPP, with λP ∈ [0, 1] and
∑

P∈ext(ΠN )

λP = 1.

As π′ /∈ F , there exists P ∈ ext(ΠN ) \ {P (1), . . . , P (t)} with λP > 0. Using the fact that
per(A) = t, we derive the existence of (i, j) such that Pi,j = 1 but Ai,j = 0. In particular,
π′
i,j ≥ λP > 0 but πi,j = 0, proving the claim.

Lemma 4.9. Let N ≥ 1. Define the permutation matrices P k ∈ RN×N , 1 ≤ k ≤ N by

P k
i,j =


1 if i = 1 and j = k,

1 if i = k and j = 1,

1 if 1 ̸= i = j ̸= k,

0 otherwise.

That is, P k permutes the first with the k-th element. Then F := conv(P 1, . . . , PN ) is a face
of ΠN and

projaff F (0) =

N∑
i=1

λkP
k for λ1 =

4−N

N + 2
, λ2 = · · · = λN =

2

N + 2
. (13)
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As a consequence,

projaff F (0) ∈


riF, if N = 1, 2, 3,

rbdF, if N = 4,

RN×N \ F if N ≥ 5,

and in particular (H2) is violated for N ≥ 5.

Proof. Define A ∈ RN×N by

Ai,j =


1 if i = j,

1 if i = 1 or j = 1,

0 otherwise,
(14)

so that A is the entry-wise maximum A = max(P 1, . . . , PN ). One readily verifies that
per(A) = N . Hence by Lemma 4.7, F := conv(P 1, . . . , PN ) is a face of ΠN . To determine
projaff F (0), we consider the minimization problem

min
λ=(λ1,...,λN )∈RN

∥∥ N∑
i=1

λiP
i
∥∥2 s.t.

N∑
i=1

λi = 1,

where ∥ · ∥ denotes the Frobenius norm. The Lagrangian for this problem is

L(λ, ρ) = λ2
1 + 2

N∑
j=2

λ2
j +

N∑
j=2

(∑
k ̸=j

λk

)2
+ ρ

(
1−

N∑
j=1

λj

)
.

Here the first three terms arise from the objective: the first is the value
(∑N

i=1 λiP
i
)
1,1

, the
second is the sum of all remaining terms in the first row and column, and the third is the sum
of the remaining terms in the diagonal. Finally, the fourth term arises from the constraint.
The resulting optimality equations are

ρ = 2Nλ1 + 2(N − 2)
N∑
j=2

λj ,
N∑
j=1

λj = 1,

ρ = 2Nλi + 2(N − 2)λ1 + 2(N − 3)
N∑
j=2
j ̸=i

λj for 2 ≤ i ≤ N.

By symmetry, the unique optimal λ satisfies λi = λj =: λ0 for all i, j ≥ 2, so that

2Nλ0 + 2(N − 2)λ1 + 2(N − 2)(N − 3)λ0 = 2Nλ1 + 2(N − 1)(N − 2)λ0,

λ1 + (N − 1)λ0 = 1

and finally

λ1 = λ0
(4−N)

2
, λ1 + (N − 1)λ0 = 1.

Solving for λ1 and λ0 yields (13). Note that λ0 > 0 for any N whereas λ1 > 0 for N ∈ {1, 2, 3},
λ1 = 0 for N = 4 and λ1 < 0 for N ≥ 5, implying the last claim.
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The matrix A of (14) is inspired by the 4×4 matrix in [11, Example 1.5] where the authors
are interested in a different problem (and, in turn, credit [1]).6 For the present question
of monotonicity, this matrix yields a counterexample only for N ≥ 5. As an aside, the
subsequent proof that for N = 4, the face F considered in Lemma 4.9 is (up to symmetries)
the only face where projaff F (0) ∈ rbdF , whereas all other faces F ′ satisfy projaff F ′(0) ∈ riF ′.

Lemma 4.10. Let 1 ≤ N ≤ 4. Then ΠN is monotone.

Proof. We verify (H1) and (H2). Note that projΠN
(0) is the matrix with all entries equal to

1/N (corresponding to the product measure). This matrix is clearly in the relative interior
of ΠN , showing (H1). The property (H2) is trivial for N = 1, 2. For N = 3 and N = 4, we
give a computer-assisted proof in the interest of brevity.78 Specifically, we generate all N×N
permutation matrices and determine all families {P1, . . . , Pm} of permutation matrices that
form the vertices of a nonempty face F by using the permanent function as in Lemma 4.7.
There are 49 nonempty faces for N = 3 and 7443 for N = 4. For each face F , we can
numerically compute projaff F (0) or more specifically scalar coefficients (λk)1≤k≤m such that
projaff F (0) =

∑
k λkPk and

∑
k λk ≤ 1. The coefficients λk are non-unique for some faces;

in that case, we choose positive weights if possible. Note that as Pk are binary matrices and
N ≤ 4, the computation can be done with accuracy close to machine precision. It turns
out that for N = 3, all coefficients satisfy λk > 0.01 (much larger than machine precision),
establishing that projaff F (0) ∈ riF and in particular (H2). For N = 4, most faces have
coefficients λk > 0.01, whereas for 96 faces, one coefficient is numerically close to zero,
hence requiring an analytic argument. We verify that all those 96 faces are equivalent up to
permutations of rows and columns, corresponding to a relabeling of the points Xi and Yj .
Specifically, they are all equivalent to the particular face analyzed in Lemma 4.9, where we
have seen that projaff F (0) ∈ F for N ≤ 4 (and in fact projaff F (0) ∈ rbdF for N = 4). We
conclude that (H2) holds for all faces F when N = 4, completing the proof.

Proof of Theorem 4.4. In view of Theorem 3.2, the last statement of Lemma 4.9 implies that
ΠN is not monotone for N ≥ 5, whereas we have seen in Lemma 4.10 that ΠN is monotone
for 1 ≤ N ≤ 4.

5 On a Problem of Erdős

Let A = (aij) be an N ×N matrix. Then its maximal trace is defined as

max trA := max
σ

N∑
i=1

ai,σ(i)

where σ ranges over all permutations of {1, . . . , N}. When A ∈ ΠN (i.e., A is doubly
stochastic) a result of the early paper [29] states that

∥A∥2 ≤ max trA, (15)
6In [11], the conclusion is that “not every zero pattern of a fully indecomposable (0, 1)-matrix is realizable

as the zero pattern of a doubly stochastic matrix whose diagonal sums avoiding the 0’s are constant.”
7An analytic proof is also available, but requires us to go through 52 different cases for N = 4.
8The cases N ≤ 3 can also be obtained as a corollary of the case N = 4. One can check directly that if the

Birkhoff polytope ΠN is (not) monotone for some N ∈ N, then ΠN′ is also (not) monotone for all N ′ ≤ (≥)N .
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where ∥A∥2 =
∑

i,j a
2
ij is the squared Frobenius norm. For a simple proof of (15), note that

the maximal trace can be expressed as

max trA = max
P∈extΠN

⟨P,A⟩ (16)

where P ranges over the set extΠN of all N ×N permutation matrices (Birkhoff’s theorem)
and the inner product is the Frobenius one, ⟨B,A⟩ =

∑
i,j bijaij for A = (aij) and B = (bij).

Consider the linear optimization problem maxB∈ΠN
⟨B,A⟩. Its maximum must be attained

at an extreme point. On the other hand, A ∈ ΠN , hence

∥A∥2 = ⟨A,A⟩ ≤ max
B∈ΠN

⟨B,A⟩ = max
P∈extΠN

⟨P,A⟩ = max trA,

proving (15). Erdős posed the following problem; see also [7] for further background.

Question 5.1 (Erdős). For which doubly stochastic matrices A is inequality (15) saturated?

In formulas, the problem is to describe the set {A ∈ ΠN : ∥A∥2 = max trA}. To simplify
the discussion, let us introduce the following terminology.

Definition 5.2. We call A ∈ RN×N an Erdős matrix if it is doubly stochastic (i.e., A ∈ ΠN )
and ∥A∥2 = max trA.

Definition 5.3. Let F be a face of ΠN . We say that F is centered if projaff F (0) ∈ F .

In this terminology, Theorem 3.2 states that ΠN is monotone iff every face of ΠN is
centered. The following theorem shows that Erdős matrices can be parametrized by the
centered faces of ΠN ; in particular, we provide a geometric answer to Erdős’ question. As
a reminder, for N ≤ 4, all faces of ΠN are centered, whereas for N ≥ 5, not all faces are
centered (see Theorem 4.4).

Theorem 5.4. For A ∈ RN×N , the following are equivalent:

(i) A is an Erdős matrix,

(ii) A = projaff F (0) for some centered face F of ΠN , and A ̸= projF ′(0) for any non-
centered face F ′ containing F .

Proof. (i) ⇒ (ii): Let A be an Erdős matrix and {P1, . . . , Pk} = argmaxP∈extΠN
⟨P,A⟩. Then

we have ⟨A,A⟩ = ⟨Pi, A⟩ for i = 1, . . . , k and ⟨A,A⟩ > ⟨P,A⟩ for all P ∈ extΠN\{P1, . . . , Pk}.
Hence,

F := conv(P1, . . . , Pk) = argmax
P∈ΠN

⟨P,A⟩

is a face containing A. As ⟨A,A⟩ = ⟨Pi, A⟩ for i = 1, . . . , k, we deduce A = projaff F (0); cf.
Lemma 2.2. Recalling that A is doubly stochastic, this implies A ∈ (aff F ) ∩ ΠN = F , and
hence that F is centered.

To see the second part of (ii), suppose that A = projF ′(0) for some face F ′. When F ′ is
not centered, it follows that A ̸= projaff F ′(0). By Lemma 2.2, the combination of both facts
implies that

0 < ⟨A,P −A⟩ = ⟨A,P ⟩ − ∥A∥2
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for some P ∈ extF ′, contradicting that A is Erdős. (We did not use the condition that
F ′ ⊃ F . Thus, the theorem remains true if in (ii) we require A ̸= projF ′(0) for all non-
centered faces F ′ of ΠN , and not just the ones containing F .)

(ii) ⇒ (i): Assume that A = projaff F (0) for some centered face F of ΠN , hence also
A ∈ F , and assume that A is not Erdős. We shall construct a face F ′ ⊃ F with A = projF ′(0)
that is not centered. Indeed, A = projaff F (0) implies in particular that

F ⊂ {π ∈ ΠN : ⟨A, π −A⟩ = 0}. (17)

We claim that there exists a face F ′ of ΠN such that F ⊂ F ′,

F ′ ⊂ {π ∈ ΠN : ⟨A, π −A⟩ ≥ 0} and {π ∈ ΠN : ⟨A, π −A⟩ > 0} ∩ F ′ ̸= ∅. (18)

This claim will complete the proof: Indeed, as A ∈ F ⊂ F ′, the first part of (18) implies
that A = projF ′(0). If F ′ were centered, this would yield A = projaff F ′(0), contradicting the
second part of (18).

It remains to prove the claim. Let {π : ⟨B, π−A⟩ = 0} be a supporting hyperplane such
that

ΠN ⊂ {π : ⟨B, π −A⟩ ≤ 0} and ΠN ∩ {π : ⟨B, π −A⟩ = 0} = F. (19)

We define
Hα = {π : ⟨αB + (1− α)A, π −A⟩ ≤ 0}, α ∈ [0, 1]

and the function

[0, 1] ∋ α 7→ Φ(α) :=

{
1 if ΠN ⊂ Hα,

0 otherwise.

Let π ∈ ΠN . As ⟨B, π − A⟩ ≤ 0, there are two cases: if ⟨A, π − A⟩ ≤ 0, then π ∈ Hα for all
α ∈ [0, 1], whereas if ⟨A, π − A⟩ > 0, then α 7→ ⟨αB + (1− α)A, π − A⟩ is nonincreasing. It
follows that α 7→ Hα∩ΠN is nondecreasing (for inclusion) and hence that Φ is nondecreasing.
Notice also that Φ is right-continuous (by continuity of the inner product) with Φ(1) = 1,
and that

{π ∈ ΠN : ⟨A, π −A⟩ ≤ 0} ⊂ Hα for all α ∈ [0, 1]. (20)

In view of (17) and (19), the latter implies that

F ⊂ (rbdHα) ∩ΠN ⊂ {π ∈ ΠN : ⟨A, π −A⟩ ≥ 0} for all α ∈ [0, 1]. (21)

Define
α∗ := min{α ∈ [0, 1] : Φ(α) = 1} and F ′ := (rbdHα∗) ∩ΠN ,

where the minimum is attained thanks to right-continuity and Φ(1) = 1. The fact that
Φ(α∗) = 1 yields that F ′ is a face of ΠN . Moreover, (21) for α = α∗ shows F ⊂ F ′ and the
first part of (18). It remains to show the second part of (18). Suppose for contradiction that
it fails, then by (20) we have F ′ ⊂ Hα for all α ∈ [0, 1]. Thus

F ′ := (rbdHα∗) ∩ΠN ⊂ Hα ∩ΠN for all α ∈ [0, 1].
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On the other hand, the definition of α∗ implies9

(rbdHα∗) ∩ΠN ̸⊂ Hα ∩ΠN for all α ∈ (α∗ − ϵ, α∗) ∩ [0, 1]

for some ϵ > 0. The two displays form a contradiction unless α∗ = 0. Hence Φ(0) = 1; that
is, ΠN ⊂ H0. The latter means that ⟨A, π − A⟩ ≤ 0 for all π ∈ ΠN , which in turn implies
that A is Erdős. This contradiction completes the proof.

As a consequence of Lemma 4.10, we deduce the following simpler statement for N ≤ 4.

Corollary 5.5. For A ∈ RN×N and N ≤ 4, the following are equivalent:

(i) A is an Erdős matrix,

(ii) A = projaff F (0) for some face F of ΠN .

Arguably Theorem 5.4 is a only a partial answer to Erdős’ question, as it is not straight-
forward to list all centered faces of ΠN when N is large. To illustrate how Theorem 5.4
can be useful, we use this geometric point of view to answer a question recently posed in [7,
Question 7.2]: Do all Erdős matrices have rational entries? (The main contribution of [7] is
to list explicitly all 3× 3 Erdős matrices, and it is observed that they have rational entries.
Of course this list can also be recovered using our description.) Theorem 5.4 allows us to
answer this affirmatively in a general and elegant way.

Corollary 5.6. Erdős matrices have rational entries.

Proof. Let A be an Erdős matrix. By Theorem 5.4, A = projaff F (0) for some face F of ΠN .
Let P1, . . . , Pk be the vertices of F and note that

A = projaff F (0) = projaff{0,P2−P1,...,Pk−P1}(−P1) = projlin{P2−P1,...,Pk−P1}(−P1),

the projection of −P1 onto the linear span of P2 − P1, . . . , Pk − P1. Eliminating some of the
latter matrices if necessary, we may assume that they are linearly independent. If we see
N ×N matrices as vectors of length N2 by stacking their columns, the projection admits the
following formula, well known as the solution of the least squares linear regression problem:

A = (X⊤X)−1X⊤(−P1), (22)

where X is the N2 × (k − 1) matrix with columns P2 − P1, . . . , Pk − P1. Because Pi are
permutation matrices, X has integer entries and it follows that (X⊤X)−1 has rational entries
(as can be seen from Cramer’s rule for computing the inverse). It is now apparent from (22)
that A also has rational entries.

9Specifically, let S′ ⊂ extΠN be the set of extreme points of ΠN that are contained in F ′, or equivalently
are contained in rbdHα∗ . Note that all of extΠN is contained in Hα∗ as Φ(α∗) = 1. As extΠN is a finite set
and α 7→ Hα is continuous, there exists ϵ > 0 such that (extΠN \S′) ⊂ Hα∩ΠN for all α ∈ (α∗−ϵ, α∗)∩ [0, 1].
We choose such an ϵ. If α ∈ (α∗ − ϵ, α∗)∩ [0, 1], then as Φ(α) = 0, we know that extΠN ̸⊂ Hα, and it follows
that S′ ̸⊂ Hα; i.e., F ′ ̸⊂ Hα.
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