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Abstract

We study the formation of derivative prices in equilibrium between
risk-neutral agents with heterogeneous beliefs about the dynamics of
the underlying. Under the condition that short-selling is limited, we
prove the existence of a unique equilibrium price and show that it
incorporates the speculative value of possibly reselling the derivative.
This value typically leads to a bubble; that is, the price exceeds the
autonomous valuation of any given agent. Mathematically, the equi-
librium price operator is of the same nonlinear form that is obtained in
single-agent settings with strong aversion against model uncertainty.
Thus, our equilibrium leads to a novel interpretation of this price.

Keywords Heterogeneous Beliefs, Equilibrium, Derivative Price Bubble, Uncertain
Volatility Model, Nonlinear Expectation
AMS 2010 Subject Classification 91B51; 91G20; 93E20

1 Introduction

Starting with [2, 41], robust option pricing considers a class of plausible
models for the underlying security and seeks strategies that hedge against
the model risk. As a result, the associated pricing operator is apparently
linked to extreme caution, making it difficult to explain how trades can
be initiated at such quotes. In the Uncertain Volatility Model of [2, 41],
this price corresponds to a model that selects the worst-case volatility from
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a given range of volatility models at any point in time, thus leading to a
Black–Scholes–Barenblatt pricing equation. The non-Markovian version of
this pricing operator is known as the G-expectation [50, 51]. More recently,
a rich literature considering a variety of hedging instruments and underlying
models has emerged; see, among many others, [1, 3, 9, 10, 23, 45] for models
in discrete time and [8, 13, 15, 16, 18, 19, 22, 25, 26, 27, 29, 31, 32, 43, 46]
for continuous-time models. We refer to [30, 48] for surveys.

In this paper, we show that the same prices also arise as unique equilibria
for agents that worry neither about risk nor uncertainty, but instead disagree
about the dynamics of the underlying. Thus, in our model, trades occur
naturally at prices of the uncertain volatility type. From our point of view,
the nonlinearity in the price reflects a speculative component that is added
to the fundamental value of the derivative: the agents take into account that
they may sell the derivative to an agent with different beliefs at a later point
in time. This possibility is known as the “resale option” in the Economics
literature.

The basic idea is that if a security exists in finite supply and cannot
be shorted, equilibrium prices will reflect the most optimistic belief and
therefore have an upward bias. This can be traced back to the static model
of [42]. In a dynamic model, the relative optimism or pessimism of the agents
changes over time, giving rise to the resale option and causing the agents to
trade. This insight is already present in the discrete-time model of [24],
where agents disagree about the probability distribution of dividends paid
by an asset, and is worked out very elegantly in the continuous-time model
of [53] where utility-maximizing agents disagree about the drift rate of an
asset; see also [4] for a finite-horizon version of this model. We refer to [54]
for a comprehensive survey of this literature on “speculative bubbles.” In the
present paper, we adapt these ideas to study how heterogeneity can affect
derivative prices when agents have different beliefs about the dynamics of
the underlying. In order to allow for the case of zero net supply, our model
incorporates a limited amount of short-selling, and we show that the broad
insights related to the resale option still apply in such a setting. Moreover,
we show that the resulting prices are robust with respect to the specification
of the short-selling restriction as well as the exogenous supply.

Before detailing our model, let us discuss a complementary strand of
literature which starts from an exogenous description of prices rather than
equilibrium considerations. Bubbles then correspond to strict local martin-
gale dynamics for which the current market price exceeds the expectation
of future payoffs. In this context, [14, 28, 34, 37, 40, 49] study the pricing
of derivatives and exhibit that several surprising features such as the failure
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of put-call-parity may arise. A related work is [11], where the Föllmer mea-
sure is used to construct a pricing operator that restores put-call-parity for
complete models where the exchange rate is driven by a strict local martin-
gale. Further examples include [7], where bubbles in defaultable claims are
studied, and [6, 17], who focus on the interplay between bubbles and insider
information as well as model uncertainty, respectively. Surveys of this large
and growing literature can be found in [33, 52]. As succinctly summarized
in [5], these papers “make no attempt to contribute to a deeper economic
understanding of bubbles on the side of price formation” and “instead focus
on the perception of the fundamental value”. In contrast, the present paper
contributes to the “challenge in explaining how such bubbles are generated
at the microeconomic level by the interaction of market participants” [5].

To the best of our knowledge, this is the first study of heterogeneous
beliefs as a reason for bubbles in derivatives. In this context, the paradigm
of risk-neutral pricing provides a clear definition of fundamental value and
therefore of a bubble. Moreover, risk-neutrality results in a great deal of
tractability which will allow us to give a simple description of the agents’
trading strategies for general models and derivative payoffs.

In the remainder of this introduction, we sketch the main ideas of our
approach in a simple case with two agents that use local volatility models
for a tradable underlying. In the body of the paper, we shall derive our
results for n agents with general Markov models for an underlying that is
not necessarily tradable.

Our starting point is an underlying security that can be traded without
friction. While its price X is determined exogenously, the agents have dif-
ferent views on the future dynamics of X. Our goal is to find an equilibrium
price at time t = 0 for a derivative written on X, with payoff f(X(T )) at
maturity T . The derivative exists in an exogenous supply of s0 ≥ 0 units and
can be traded in continuous time by two agents i ∈ {1, 2}. Thus, if s0 = 0,
the entire supply is generated endogenously by one of the agents, whereas
s0 > 0 corresponds to a model with an issuer exogenous to the equilibrium.
A zero net supply is natural in the context of equity options, for example. A
positive exogenous supply is well-suited to situations where there is a natural
separation between the issuers and the speculative market where the deriva-
tive is eventually traded. A typical example would be speculation in CDOs,
where the issuers that bundle individual loans are clearly separated from the
market where speculators trade them based on their individual estimates of
the underlying default probabilities. We assume that short positions in the
derivative are limited to k ≥ 0 units (see also Remark 2.6 for a possible
variant). Each agent is risk-neutral, has their own stochastic model for the
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dynamics of X, and maximizes the P&L from trading in the underlying and
the derivative. Specifically, agent i uses a local volatility model Qi for X
under which

dX(t) = σi(t,X(t)) dWi(t), X(0) = x,

for some Brownian motion Wi. Given a price process Z for the deriva-
tive, agent i chooses trading strategies Gi and Hi in the underlying and the
derivative to maximize the corresponding expected P&L. However, due to
the martingale property, trading in the underlying does not contribute to
the expected P&L:

Ei

[∫ T

0
(Gi(t) dX(t) +Hi(t) dZ(t))

]
= Ei

[∫ T

0
Hi(t) dZ(t)

]
.

Thus, we henceforth focus on trading in the derivative alone. An alternative
interpretation is that the underlying is not available for trading, as it is the
case for credit derivatives, for example. For that reason, our general model
also allows for a drift in the dynamics of X.

The process Z is an equilibrium price if Z(T ) = f(X(T )) matches the
value of the derivative at the maturity and there exist strategiesH1, H2 which
are optimal for the agents and clear the market: H1 + H2 = s0. Note that
this notion of equilibrium is “partial” in that the dynamics of the underlying
are specified exogenously whereas the dynamics of the derivative price are
determined endogenously within the model as in, e.g., [12, 35]. This means
that the trades of the speculative agents are assumed to have a substantial
effect on the formation of the derivative price, but are less important for the
larger market in which the underlying is traded.

In this setting, each agent’s model is complete, so they both have a
well-defined notion of a fundamental price. Indeed, agent i’s fundamental
valuation is the Qi-expectation Ei[f(X(T ))] of the claim which can be found
via the solution vi of the linear PDE

∂tv(t, x) +
1

2
σ2
i (t, x)∂xxv(t, x) = 0, v(T, ·) = f.

If the derivative can be traded only at the initial time t = 0, the equilibrium
price is the larger value max{v1(0, x), v2(0, x)} of the agents’ valuations, since
at this price it is optimal for the agent with the higher valuation to hold all
available units of the derivative and, in view of the short-selling constraint,
holding −k units is optimal for the more pessimistic agent.

In our dynamic model, however, the role of the relative optimist may
change depending on the state (t, x), which gives rise to the resale option.
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We shall show that the equilibrium price is given by the nonlinear PDE

∂tv(t, x) + sup
i=1,2

1

2
σ2
i (t, x)∂xxv(t, x) = 0 (1.1)

which corresponds to choosing the more optimistic volatility at any state
(t, x); i.e., the volatility that achieves the supremum in (1.1). Since this may
change between the agents along a trajectory (t,X(t)) of the underlying, for
instance if the functions σi are not ordered or if the function f is not concave
or convex, the equilibrium price is typically higher than both fundamental
valuations—the difference is the value of the resale option or the speculative
bubble, since it can be attributed to the possibility of future trading. It
is worth noting that the bubble arises in a finite horizon setting where the
agents agree about the value f(X(T )) at maturity, and despite symmetric
information. Moreover, in contrast to the theory of strict local martingales,
it is possible to obtain a bubble with bounded prices.

We observe that the PDE (1.1) coincides with the Black–Scholes–Baren-
blatt PDE for an uncertain volatility model with a range [σ, σ] of volatilities,
where

σ(t, x) = min{σ1(t, x), σ2(t, x)}, σ(t, x) = max{σ1(t, x), σ2(t, x)},

because

sup
i=1,2

1

2
σ2
i (t, x)∂xxv(t, x) = sup

a∈[σ2(t,x),σ2(t,x)]

1

2
a∂xxv(t, x)

are the very same operator. Alternately, this is the G-expectation if σi are
constant, and the random G-expectation [44, 47] in the general case. In the
uncertain volatility setting, the PDE is interpreted as choosing the worst-
case volatility within the interval [σ, σ] at any state. In our setting, one
may think of an imaginary agent that has the more optimistic view among
i ∈ {1, 2} at any state. Our risk-neutral setting is particularly tractable in
that the trades correspond directly to the volatility; indeed, we shall see that
the strategies Hi(t) = hi(t,X(t)) are optimal, where

hi(t, x) =


s0 + k, if i is the unique maximizer in (1.1),
s0/2, if both j = 1 and j = 2 are maximizers,
−k, else.

(We have chosen a symmetric splitting when both volatilities are maximiz-
ers, but any splitting rule will do.) Thus, we see that in any state (t, x),
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all available units of the derivative are held by the more optimistic agent.
Or, if we introduced the above imaginary agent in the market, it would be
optimal for that agent to hold all units at all times. Therefore, it is nat-
ural that this agent’s valuation becomes the effective pricing mechanism in
equilibrium. The mechanism of this price formation rests on the fact that as
a consequence of risk-neutrality, the most optimistic agent is invariant with
respect to the size of their portfolio. This is confirmed by the observation
that the equilibrium price is independent of the constraint k and the exoge-
nous supply s0. The form of hi also shows that trades happen whenever the
beliefs “cross;” i.e., the maximizer in (1.1) changes. In view of the diffusive
properties of X, our model thus captures the volatile trading that can be
observed during asset price bubbles.

The remainder of the article is organized as follows. In Section 2, the
above theory is established for n agents using general, multidimensional
Markovian models. Theorem 2.3 identifies equilibrium prices with solutions
of a PDE, whereas Proposition 2.4 interprets the PDE as a control prob-
lem and, in particular, shows uniqueness. Corollary 2.5 presents regular-
ity conditions under which existence and uniqueness can be deduced easily
from general PDE results. In Section 3, we present a solvable example with
stochastic volatility models of Heston-type where the trading strategies can
be described explicitly. The strategies provide some intuition for the agents’
resale options and show that trading does indeed occur even for derivatives
with convex payoffs, in all but the simplest models.

2 General Model and Main Result

Departing slightly from the above notation, we consider n ≥ 1 agents and a
d-dimensional underlying X. The components of X represent quantities that
may or may not be tradable, and thus it is meaningful to allow for non-zero
drift.1 Specifically, let X be the canonical process on Ω = C([0, T ],Rd) for
some time horizon T > 0, where Ω is equipped with the canonical filtration
and σ-field. For each 1 ≤ i ≤ n, we are given a probability Qi on Ω under
which

dX(t) = bi(t,X(t)) dt+ σi(t,X(t)) dWi(t), X(0) = x, (2.1)
1As mentioned in the Introduction, the fact that we do not explicitly model trading

in the underlying is equivalent to the assumption that any tradable component of X is a
martingale.
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where Wi is a Brownian motion of (possibly different) dimension d′. We as-
sume that the d-dimensional vector bi and the d×d′ matrix σi are continuous
functions of (t, x) ∈ [0, T ]×Rd which are Lipschitz continuous (and hence of
linear growth) in x, uniformly in t. As a result, the SDE (2.1) has a unique
solution and

Ei

[
sup
t≤T
|X(t)|p

]
<∞, p ≥ 0, (2.2)

where Ei[ · ] denotes the expectation operator under Qi. See [38, Section 2.5]
for these facts.

Definition 2.1. We fix a constant k ≥ 0, the shorting constraint. An admis-
sible strategy H is a bounded, predictable process saisfying H ≥ −k, and we
write A for the collection of all these strategies. Given a semimartingale Z
under Qi (to be thought of as the price process of the derivative), a strategy
Hi ∈ A is optimal for agent i if

Ei

[∫ T

0
H(t) dZ(t)

]
≤ Ei

[∫ T

0
Hi(t) dZ(t)

]
<∞ for all H ∈ A.

Here and in what follows, we use the convention that Ei[Y ] := −∞
whenever Ei[Y −] =∞, for any random variable Y .

Definition 2.2. Fix a constant s0 ≥ 0, the exogenous supply. Given a
function f : Rd → R, a process Z is an equilibrium price for the derivative
f(X(T )) if Z is a semimartingale with Z(T ) = f(X(T )) a.s. under Qi for
all i and there exist admissible strategies Hi which are optimal and clear the
market; i.e.,

n∑
i=1

Hi(t) = s0, t ∈ [0, T ].

For a market to exist, we assume throughout that s0 + k > 0; that is,
either the exogenous supply is positive or shorting (issuing) is allowed. To
state the main result, let us write

C1,2
p := C1,2([0, T )× Rd) ∩ Cp([0, T ]× Rd)

for the set of continuous functions u : [0, T ]×Rd → R that satisfy the poly-
nomial growth condition |u(t, x)| ≤ c(1 + |x|p) for some c, p ≥ 0 and admit
continuous partial derivatives ∂tu, ∂xiu, ∂xixju on [0, T )×Rd. Moreover, we
set

S =
d⋂
i=1

Si, Si =
{

(t, x) ∈ [0, T )× Rd : x ∈ suppQi
X(t)

}
,
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where suppQi
X(t) is the topological support of X(t) under Qi, and let S

denote the closure in [0, T ) × Rd. Similarly, ST = ∩i suppQi
X(T ); this set

is already closed.
We fix a payoff function f ∈ Cp(Rd) for the remainder of this section. Our

main result identifies equilibrium prices for f with solutions of a PDE; exis-
tence and uniqueness will be addressed subsequently. Financially, it shows
that the price is determined by the most optimistic view at any time and
state; that is, by the maximizer i in (2.3). The levels of the exogenous sup-
ply and the shorting constraint do not influence the price. Regarding the
allocations, the most optimistic agents always hold the entire market; i.e.,
the exogenous supply plus short positions of other agents, if any.

Theorem 2.3. (i) Suppose that the PDE

∂tv(t, x) + sup
i∈{1,...,n}

{
bi∂xv(t, x) +

1

2
Tr[σiσ

>
i (t, x)∂xxv(t, x)]

}
= 0 (2.3)

with terminal condition v(T, ·) = f has a solution v ∈ C1,2
p . Then, an

equilibrium price is given by Z(t) = v(t,X(t)). Moreover, the strategies given
by Hi(t) = hi(t,X(t)) are optimal, where

hi(t, x) =


s0+k(n−m)

m ,
if i is a maximizer in (2.3)
and m is the total number of maximizers,

−k, otherwise.

(ii) Conversely, let v ∈ C1,2
p and suppose that Z(t) = v(t,X(t)) is an

equilibrium price. Then, v solves the PDE (2.3) on S and satisfies the ter-
minal condition v(T, ·) = f on ST .

Deferring the proof of Theorem 2.3 to the end of this section, we observe
that the PDE (2.3) suggests the following control problem. On a given
filtered probability space carrying a d′-dimensional Brownian motion W , let
Θ be the set of all predictable processes with values in {1, . . . , n}. For each
θ ∈ Θ, let Xt,x

θ (s), s ∈ [t, T ] be the solution of the controlled SDE

dX(s) = bθ(s)(s,X(s)) ds+ σθ(s)(s,X(s)) dW (s), X(t) = x.

It follows from the assumptions on the coefficients bi, σi that this SDE with
random coefficients indeed has a unique strong solution which again satis-
fies (2.2); cf. [38, Section 2.5]. Therefore, we may consider the stochastic
control problem

V (t, x) = sup
θ∈Θ

E[f(Xt,x
θ (T ))], (t, x) ∈ [0, T ]× Rd. (2.4)
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Standard arguments of stochastic control show that V ∈ Cp([0, T ]×Rd) and
that V is a viscosity solution of the PDE (2.3) with terminal condition f .
However, V need not be smooth in general, and differentiability is relevant
in the context of Theorem 2.3 in order to define the agents’ strategies and
thus, an equilibrium.

Proposition 2.4. Let v ∈ C1,2
p be a solution of the PDE (2.3) with terminal

condition v(T, ·) = f . Then, v coincides with the value function V of the
control problem (2.4) and any (measurable) selector

θ(s, x) ∈ arg max
i∈{1,...,n}

{
bi∂xv(t, x) +

1

2
Tr[σiσ

>
i (t, x)∂xxv(t, x)]

}
defines an optimal control in feedback form. In particular, uniqueness holds
for the solution of (2.3) in the class C1,2

p .

Proof. Since {1, . . . , n} is a finite set, the arg max is nonempty and we may
find a semicontinuous (thus measurable) selector, for instance by choosing
the smallest index i in the arg max. Thus, the claim follows by a standard
verification argument; cf. [20, Theorem IV.3.1, p. 157].

The proposition gives an interpretation for the equilibrium in Theo-
rem 2.3: the same price would be found by an imaginary agent who prices by
taking expectations under a model Q that uses, infinitesimally at any point
in time, the drift and volatility coefficients bi, σi that lead to the highest
price among the given models {1, . . . , n}.

Let us now establish existence (and uniqueness) when the inputs are
sufficiently smooth. We write C1,2

b for the set of u ∈ C1,2([0, T ) × Rd) ∩
C([0, T ]×Rd) such that u, ∂tu, ∂xu, ∂xxu are bounded. Moreover, we recall
that a function y 7→ A(y) with values in the set of d× d positive symmetric
matrices is called uniformly elliptic if there exists a constant c > 0 such that
ξ>A(y)ξ ≥ c|ξ|2 for all ξ ∈ Rd and all y.

Corollary 2.5. Suppose that f is bounded, that bi, σi ∈ C1,2
b and that σiσ>i

is uniformly elliptic for 1 ≤ i ≤ n. Then S = [0, T )× Rd, ST = Rd and the
PDE (2.3) has a unique solution v ∈ C1,2

p with terminal condition f .
In particular, there exists a unique equilibrium price Z(t) = v(t,X(t))

with v ∈ C1,2
p .

Proof. Since bi is bounded and σiσ
>
i is uniformly elliptic, the support of

Qi in Ω is the set of all paths ω ∈ C([0, T ],Rd) with ω(0) = x; see [55,
Theorem 3.1]. The claims regarding S are a direct consequence.
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Turning to the PDE, it follows from [39, Theorem 6.4.3, p. 301] that (2.3)
with terminal condition f has a (bounded) solution v ∈ C1,2

p ; the conditions
in the cited theorem can be verified along the lines of [39, Example 6.1.4,
p. 279]. Uniqueness of the solution was already noted in Proposition 2.4, and
now the last assertion follows from Theorem 2.3.

Remark 2.6. While it is necessary to limit shorting in order to avoid infi-
nite positions, the equilibrium price is robust with respect to the details of
the specification. Indeed, Theorem 2.3 already shows that the level of the
inventory constraint k does not affect the price, but one could also, say, let
k be agent and state dependent, or impose a quadratic instantaneous cost
instead of a hard constraint. The financial mechanism remains unchanged
and leads to the same PDE (2.3). We have chosen the more stringent con-
straint for this paper because its optimal strategies create a clearer analogy
to the Uncertain Volatility Model. In a similar vein, we may observe that
the exogenous supply does not affect the price.

Proof of Theorem 2.3. (i) We have Hi ∈ A, the market clears and Z(T ) =
f(X(T )). Thus, we fix i and show that Hi is optimal. In view of v ∈ C1,2

and Itô’s formula, the process Z admits an Itô decomposition

dZ(t) = dAi(t)+dMi(t) = µi(t,X(t)) dt+∂xv(t,Xt)σi(t,X(t)) dWi(t) (2.5)

for t ∈ [0, T ), where

µi(t, x) = ∂tv(t, x) + bi∂xv(t, x) +
1

2
Tr[σiσ

>
i (t, x)∂xxv(t, x)]. (2.6)

As v solves the PDE (2.3), we deduce that µi(t, x) ≤ 0. In particular, Z
is a local supermartingale. As v ∈ Cp([0, T ] × Rd), the existence of the
moments (2.2) yields that Z∗ := supt∈[0,T ] |Z(t)| ∈ L1(Qi). In particular, Z
is of class D and and thus its (Doob–Meyer) decomposition satisfies |Ai(T )| =
A∗i ∈ L1(Qi); cf. [36, Theorem 1.4.10, p. 24]. As a consequence, dropping
the index i for brevity,

E[M∗] ≤ |Z(0)|+ E[Z∗] + E[A∗] <∞.

The BDG inequalities [36, Theorem 3.3.28, p. 166] now show that for any
bounded predictable process H,

E[(H •M)∗] � E[(H2 • 〈M〉)(T )1/2] � E[〈M〉(T )1/2] � E[M∗] <∞,
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where � denotes inequality up to a constant and • denotes integration. As
a result, H •M is a true martingale and thus

Ei

[∫ T

0
H(t) dZ(t)

]
= Ei

[∫ T

0
H(t)µi(t,X(t)) dt

]
. (2.7)

The right-hand side is maximized over A if and only if H(t)µi(t,X(t)) is
maximized (Qi×dt)-a.e., and as µi(t, x) ≤ 0, the latter is achieved whenever
H(t) = −k on {µi(t,X(t)) < 0}. In particular, Hi ∈ A is optimal and the
proof of (i) is complete.

(ii) Let v ∈ C1,2
p and suppose that Z(t) = v(t,X(t)) is an equilibrium

price. Then, as Z(T ) = f(T,X(T )) Qi-a.s. for all i, the terminal condition
v(T, ·) = f holds on ST .

Under Qi, Z again admits a decomposition (2.5)–(2.6), and our first goal
is to show that βi(t) := µi(t,X(t)) ≤ 0 Qi-a.s. Suppose for contradiction
that Qi{βi(t) > 0} > 0 for some t. Then, we can find stopping times τ1 ≤ τ2

such that βi > 0 on [τ1, τ2] and Qi{τ1 < τ2} > 0, for instance by setting

τ1 = inf{t ≥ 0 : βi(t) ≥ ε} ∧ T, τ2 = inf{t ≥ τ1 : βi(t) ≤ ε/2} ∧ T

for small enough ε > 0 and noting that βi has continuous paths. Moreover,
if (τk) is a localizing sequence for the local martingaleM , the stopping times
τ1 ∧ τk and τ2 ∧ τk still have the desired properties for large enough k, so we
may assume that the stopped process M(· ∧ τ2) is a true martingale. As a
result, the strategy defined by Hλ(t) = λ1]τ1,τ2] for λ > 0 is admissible for
agent i and satisfies

Ei

[∫ T

0
Hλ(t) dZ(t)

]
= λEi

[∫ T

0
H1(t)βi(t) dt

]
> 0.

The left-hand side can be made arbitrarily large by increasing λ, a contra-
diction to our assumption that Z is an equilibrium price. We have therefore
shown that βi(t) ≤ 0 Qi-a.s. for all t < T , and hence µi ≤ 0 on S, by
continuity.

In particular, as in (i), Z is a supermartingale and (2.7) holds for all
H ∈ A. In view of (2.7) and H = 0 being an admissible choice, the optimal
strategy Hi of agent i must (dt×Qi)-a.e. satisfy

Hi(t)µi(t,X(t)) ≥ 0, {Hi(t) = −k} on {µi(t,X(t)) < 0}. (2.8)

Market clearing implies that at any time and state, at least one agent must
hold a nonnegative position. Thus, if k > 0, the second part of (2.8) and
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µi ≤ 0 yield that
sup
i
µi = 0 on S, (2.9)

where we have again used that the functions µi are continuous. In view
of (2.6), this is precisely the claimed PDE on S, and it extends to S by
continuity. In the case k = 0, we have assumed that s0 > 0, so that at any
time and state, at least one agent must hold a strictly positive position, and
then the first part of (2.8) implies (2.9). We conclude as above.

3 Example with Stochastic Volatility

In this section, we solve an example where two agents use stochastic volatility
models of Heston-type and disagree about the speed of mean reversion in the
volatility process. Classical rational expectations models with homogeneous
beliefs typically lead to no-trade equilibria, as surveyed in [54, Section 4]. In
the present context, the simplest example where each agent believes in a dif-
ferent Bachelier (or Black–Scholes) model with constant volatility, also leads
to a no-trade equilibrium for a convex option payoff f , because the agent
expecting the highest volatility will then hold the derivative at all times. The
example presented here illustrates that this pathology typically disappears in
more complex models. Indeed, we shall see that, with heterogeneous beliefs
about the mean-reversion speed of the volatility, a derivative with convex
payoff is traded whenever the volatility process crosses the mean reversion
level—which happens with positive probability on any time interval.

Using the customary notation (S, Y ) instead of X = (X1, X2), we con-
sider the two-dimensional SDE

dS(t) = α(Y (t)) dW (t), S(0) = s,

dY (t) = λi(Ȳ − Y (t)) dt+ β(Y (t)) dW ′(t), Y (0) = y,

where S represents the spot price of the underlying and Y is the non-tradable
process driving the volatility of S. Here, W and W ′ are independent Brown-
ian motions and the positive functions α, β are such that α2, β2 are Lipschitz-
continuous and uniformly bounded away from zero; moreover, α is increas-
ing. The mean-reversion level Ȳ ∈ R is common to both agents, whereas the
speed of mean reversion λi > 0 depends on the agent i ∈ {1, 2}; for concrete-
ness, we suppose that λ1 > λ2. Finally, the option is given by f(S(T )) for a
convex payoff function s 7→ f(s) of polynomial growth; a typical example is
a call or put option. If the writer of the option is not modeled, we consider
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the option to be in exogenous supply s0 = 1 and the two agents are specu-
lators, e.g., with long-only positions (k = 0). Alternately, if the two agents
can issue the option, we can take s0 = 0 to be the net supply and k = 1, say.
In either scenario, the resulting price is the same.

Proposition 3.1. In the stated model, there exists a unique equilibrium price
Z(t) = v(t, S(t), Y (t)) with v ∈ C1,2,2

p , and the strategies given by

H1(t) =


s0 + k, Y (t) < Ȳ ,

s0/2, Y (t) = Ȳ ,

−k, Y (t) > Ȳ

and H2(t) = s0 −H1(t) are optimal. That is, the agent with faster (slower)
mean reversion holds the option whenever Y is below (above) the level of
mean reversion.

This result confirms the intuition that at any given time, the agent ex-
pecting a higher future volatility will hold the derivative: when Y (t) < Ȳ ,
a faster mean reversion indeed corresponds to a higher expectation about
the future volatility, and vice versa. As a result, the derivative is traded
whenever Y crosses the level Ȳ .

Proof of Proposition 3.1. The PDE (2.3) for this example reads

∂tv +
α2

2
∂ssv +

β2

2
∂yyv + sup

λ∈{λ1,λ2}

{
λ(Ȳ − y)∂yv

}
= 0. (3.1)

We show in Lemma 3.2 below that this equation has a solution v ∈ C1,2,2
p with

∂yv ≥ 0. Then, it follows from Theorem 2.3 (i) that Z(t) = v(t, S(t), Y (t)) is
an equilibrium price and that the indicated strategies are optimal. Moreover,
Proposition 2.4 shows that v is the unique solution in C1,2,2

p . As in the proof
of Corollary 2.5, uniform ellipticity implies that S = [0, T )×R2 and ST = R2,
and now Theorem 2.3 (ii) implies the uniqueness of the equilibrium.

The following result was used in the preceding proof.

Lemma 3.2. The PDE (3.1) with terminal condition f admits a solution
v ∈ C1,2,2

p with ∂yv ≥ 0.

Proof. We first consider the linear equation

∂tv +
α2

2
∂ssv +

β2

2
∂yyv + γ∂yv = 0, v(T, ·) = f, (3.2)

13



where the coefficient γ is given by

γ(y) =

{
λ1(Ȳ − y), y ≤ Ȳ ,
λ2(Ȳ − y), y > Ȳ .

We shall prove below that (3.2) has a solution v ∈ C1,2,2
p with ∂yv ≥ 0. It

then follows that v is also a solution of (3.1), as desired. To this end, define
a function v by

v(t, s, y) = E[f(S′(T ))], (3.3)

where S′ is the first component of the solution to the SDE

dS′(r) = α(Y ′(r)) dW (r),

dY ′(r) = γ(Y ′(r)) dr + β(Y ′(r)) dW ′(r)

with initial value (s, y) at time t ≤ T . Since f ∈ Cp(R), we have that
v ∈ Cp([0, T ]× R2); cf. [38, Theorem 3.1.5, p. 132].

To see that v ∈ C1,2,2, consider the PDE (3.2) on the bounded domain
D = [0, T ) × (−N,N)2 for N > 0 and use the function v as boundary con-
dition on the parabolic boundary of D. This initial-boundary value problem
has a unique solution ṽ ∈ C1,2,2(D)∩C0(D); cf. [21, Theorem 6.3.6, p. 138].
Moreover, by the Markov property, the Feynman–Kac representation of ṽ
on D shows that ṽ = v on D, and in particular that v is differentiable as
desired.

It remains to show that ∂yv ≥ 0. By the independence of the Brownian
motions W and W ′, the expectation (3.3) can be computed by first inte-
grating the payoff f against the conditional distribution of S′(T ) given the
path (Y ′(r))r∈[t,T ] of the volatility process and then integrating with respect
to the law of Y ′. This conditional distribution is Gaussian; more precisely,
the conditional expectation given (Y ′(r))r∈[t,T ] and the initial conditions
S′(t) = s, Y ′(t) = y is

∫ ∞
−∞

f

s+ z

√∫ T

t
α2(Y ′(r)) dr

φ(z) dz, (3.4)

where φ denotes the density function of the standard normal distribution.
Since f is convex, this quantity is increasing with respect to the variance pa-
rameter

∫ T
t α2(Y ′(r)) dr. This parameter, in turn, is increasing with respect

to y because α is an increasing function and Y ′(r) is a.s. increasing in the
initial value y of Y ′ by the comparison theorem for SDEs; cf. [36, Proposi-
tion 5.2.18]. As a result, the conditional option price (3.4) is increasing in y,

14



and then by monotonicity of the expectation operator, the same holds for
the unconditional option price v(t, s, y), so that ∂yv ≥ 0 as posited. This
completes the proof.
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