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Models and main results



The colored ASEP

Fix q ∈ [0, 1) and place a particle of “color” –k at location k for every k ∈ Z.

–3–2–10123

j i i j

rate 1

rate q

i < j

Particles attempt to swap positions to the left and right with rates q and 1,
respectively. Swaps succeed if the initiating particle is of higher color.
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Individual particle behavior

The particles lie in a rarefaction fan parametrized by speed α ∈ (–1, 1).
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The colored height function

The colored ASEP height function hASEP is

hASEP(x, 0; y, t) := # particles of initial position ≤ x to right of y at time t.

A lot is known about y 7→ hASEP(0, 0; y, t) in the t→ ∞ limit: e.g., after
rescaling,

• hASEP(0, 0; 0, t) converges to the GUE Tracy-Widom distribution of RMT
[Tracy-Widom ’09]

• y 7→ hASEP(0, 0; y, t) converges to the parabolic Airy2 process
[Quastel-Sarkar ’22]

We are interested in the joint limit (x, y) 7→ hASEP(x, 0; y, t).
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The limiting object: The Airy sheet

Aity sheet S arises as the limit of a model of a random directed metric:
Brownian last passage percolation (LPP) [Dauvergne-Ortmann-Virág].

With B = (B1, . . . ,Bn) i.i.d. Brownian motions,

B[(x,n)→ (y, 1)] = sup
γ
B[γ],

where the weight B[γ] of a directed path γ is the integral of B over γ, i.e., sum
of increments along the Bi.
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The scaling exponents 1
3 and

2
3 are characteristic of the Kardar-Parisi-Zhang

universality class.
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Main result: Colored ASEP to Airy sheet

Recall

hASEP(x, 0; y, t) = # particles of initial position ≤ x to right of y at time t.

Theorem (Aggarwal-Corwin-H.)
Fix q ∈ [0, 1) and α = 0. The rescaled colored ASEP height function

ε1/3
(
ε–1 + 2(x – y)ε–2/3 – 2hASEP(2ε–2/3x, 0; 2ε–2/3y, 2ε–1(1 – q)–1)

)
converges in distribution, as ε → 0, to the Airy sheet S(x, y) as continuous
functions on R2 uniformly on compact sets.

The case of general α ∈ (–1, 1) holds too, with explicit α-dependent scaling
coefficients.
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Colored S6V model

Introduced by [Jimbo ’86], [Bazhanov ’85], [Gwa-Spohn ’93], [Kuniba-
-Mangazeev-Maruyama-Okado ’16], [Borodin-Wheeler ’22].

Quantum parameter q ∈ [0, 1), spectral parameter z ∈ (0, 1). At most one
arrow per edge.
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Simulation by Leo Petrov
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Main result: Colored S6V to Airy sheet

The colored S6V height function hS6V(x, 0; y, t) is the number of arrows of
color ≥ x exiting horizontally from vertical line t at height y or higher.

Theorem (Aggarwal-Corwin-H.)

Fix q ∈ [0, 1), z ∈ (0, 1), α ∈ (z, z–1). For explicit scaling coefficients µ, σ and β

(depending on α), the rescaled colored S6V height function

σ–1ε1/3
(
hS6V(βε–2/3x, 0;αε–1 + βε–2/3y, ε–1) – µε–1 – µ′β(y – x)ε–2/3 + βxε–2/3

)
converges in distribution, as ε → 0, to the Airy sheet S(x, y) as continuous
functions on R2 uniformly on compact sets.
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Proof ingredients



Definition of the Airy sheet

The Airy line ensemble P = (P1,P2, . . .) is an N-indexed collection of random
non-intersecting curves on R [Prähofer-Spohn ’02, Corwin-Hammond ’14]:

...
It arises as the edge scaling limit of Dyson Brownian motion.

S was defined by Dauvergne-Ortmann-Virág via an infinite LPP problem in P .
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The path from Brownian LPP to the Airy sheet

Br LPP

RSK

Dyson BM

edge
scaling

...

Parabolic Airy line ensemble

infinite LPP

Airy sheet

RSK isn’t applicable to S6V or ASEP.
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The colored q-Boson model

The colored q-Boson model is a colored vertex model on a semi-infinite
strip of fixed height. It allows arbitrarily many arrows on vertical edges.

i i

1 (1 – qAi )qA[i+1,N] 1

i j j i i

(1 – qAj )qA[j+1,N] 0 qA[i+1,N]

· · ·

Arrows enter at –∞ and travel straight except for finitely many columns.
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The Yang-Baxter equation

The colored q-Boson model and the colored S6V model are related via the
Yang-Baxter equation.

∑
b1 ,j1∈J0,NK,
K∈ZN≥0

i1

j1
j2

a1

b1 b2

I

J

K =
∑

b1 ,j1∈J0,NK,
K∈ZN≥0

i1 j1

j2
a1

b1

b2

I

J

K

Gives a way to manipulate vertex models graphically while preserving
partition functions/distributions, and is the source of “integrability.”
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A matching via Yang-Baxter

· · ·R1 R2
=

frozen, trivial weight

· · ·
R1

R2

frozen, trivial weight

So the colored S6V height function is distributed as colored arrow counts in
the last column of q-Boson.

The uncolored case was shown in [Borodin-Bufetov-Wheeler ’16], and the
colored case in [Aggarwal-Borodin ’24].

13



A matching via Yang-Baxter

· · ·R1 R2
=

frozen, trivial weight

· · ·
R1

R2

frozen, trivial weight

So the colored S6V height function is distributed as colored arrow counts in
the last column of q-Boson.

The uncolored case was shown in [Borodin-Bufetov-Wheeler ’16], and the
colored case in [Aggarwal-Borodin ’24].

13



A matching via Yang-Baxter

· · ·R1 R2
=

frozen, trivial weight

· · ·
R1

R2

frozen, trivial weight

So the colored S6V height function is distributed as colored arrow counts in
the last column of q-Boson.

The uncolored case was shown in [Borodin-Bufetov-Wheeler ’16], and the
colored case in [Aggarwal-Borodin ’24].

13



The colored Hall-Littlewood line ensemble from the colored q-Boson model

· · · –4 –3 –2 –11
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Colored line ensemble Lcol = (L(1), . . . , L(N)), with L(k) = (L(k)1 , L(k)2 , . . .) a line
ensemble defined by

L(k)i (y) = #
{
y′ > y : color exiting horizontally from (–i, y′) is ≥ k

}
.

Yang-Baxter: L(k)1 is distributed as the color k height function hS6V(k, 0; ·, t).
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Two main ingredients

Recall that S is represented as a last passage percolation (LPP) problem in
the parabolic Airy line ensemble P .

Proving convergence to the Airy sheet comes down to two main components:

1. Show colored height function (i.e., L(k)1 ) is approximately LPP in L(1).

2. Show convergence of L(1) to P .

The colored and uncolored line ensembles each have Gibbs properties.
Colored Gibbs is the tool for (1) and uncolored Gibbs the tool for (2).
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An approximate LPP representation
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, L(k)
0

1
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L(k)1

L(k)2

L(k)3
Given L(1)

L(1)1

L(1)2

L(1)3

satisfies a (colored Hall-Littlewood) Gibbs property. Can be represented in
terms of a variational problem: when q = 0, it holds that

L(k)i = PT
(
L(1)i , L

(k)
i+1

)
, PT

(
f, g

)
(x) = f(x) + max

0≤y≤x

(
g(y) – f(y)

)
,

and for q > 0,

P
(
max
y

∣∣∣L(k)i (y) – PT
(
L(1)i , L

(k)
i+1

)
(y)

∣∣∣ ≥ m
)

≤ qcm
2
.
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The (uncolored) Hall-Littlewood Gibbs property of L(1)

...

P has Brownian Gibbs property: given by non-intersecting Brownian bridges.
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The (uncolored) Hall-Littlewood Gibbs property of L(1)

L(1)’s Gibbs property is more complicated.

∆0(x + 1) = 2

∆1(x) = 1

Law of top k curves of L(1) on [a,b] is a collection of non-crossing Bernoulli
random walk bridges, reweighted by a RN derivative

k∏
i=0

b∏
x=a+1

(
1 – q∆i(x–1)1∆i(x)=∆i(x–1)–1

)
,

where ∆i(x) is separation of (i – 1)st and ith curve at x [Corwin-Dimitrov ’18].
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Convergence of L(1) to P and a lack of monotonicity

Showing L(1) → P comes down to establishing

1. tightness of L(1) at the edge, and
2. showing all subsequential limits have Brownian Gibbs.

Then can use [Aggarwal-Huang ’23] which characterizes P as the unique law
among Brownian Gibbsian line ensembles with parabolic decay of –x2.

Many works have proved tightness of line ensembles, but all rely heavily on
monotone coupling properties of the line ensembles.

These do not exist for the Hall-Littlewood line ensemble!

We give a new proof framework for tightness using only “weak monotonicity”
of partition functions [Corwin-Dimitrov ’18].
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Next directions

• Including time in the scaling limit (✓ for ASEP and S6V)
• Scaling limit under general initial conditions (✓ for ASEP)
• Extend to other models
• Use to investigate other phenomena, e.g. mixing times, stationary
measures, scaling limits of particle trajectories...
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Summary
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• Colored ASEP and colored S6V height functions converge to the Airy
sheet, directed landscape, KPZ fixed point.

• Use Yang-Baxter to relate colored height functions with colored line
ensembles defined via the colored q-Boson model.

• Colored Gibbs property→ approximate LPP representation:

P
(
max
y

∣∣∣L(k)i (y) – PT
(
L(1)i , L

(k)
i+1

)
(y)

∣∣∣ ≥ m
)

≤ qcm
2
.

• Line ensemble tightness via only uncolored Gibbs & weak monotonicity.

Thank you!
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