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Abstract. For models in the KPZ universality class, such as the zero temperature model of planar
last passage-percolation (LPP) and the positive temperature model of directed polymers, the upper
tail behavior has been a topic of recent interest, with particular focus on the associated path measures
(i.e., geodesics or polymers). For Exponential LPP, diffusive fluctuation had been established in
[BG23]. In the directed landscape, the continuum limit of LPP, the limiting Gaussianity at one
point, as well as of related finite-dimensional distributions of the KPZ fixed point, were established in
[Liu22b, LW22] using exact formulas. It was further conjectured in these works that the limit of the
corresponding geodesic should be a Brownian bridge. We prove this in both zero as well as positive
temperatures; for the latter, neither the one-point limit nor the scale of fluctuations was previously
known. Instead of relying on formulas (which are still missing in the positive temperature literature),
our arguments are geometric and probabilistic, using results on the shape of the weight and free
energy profiles under the upper tail from [GH22] as a starting point. Another key ingredient involves
novel coalescence estimates, developed using the recently discovered shift-invariance [BGW22] in
these models. Finally, our proof also yields insight into the structure of the polymer measure
under the upper tail conditioning, establishing a quenched localization exponent around a random
backbone.
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1. Introduction

Planar last passage percolation (LPP) models are paradigm examples of models of random planar
geometry. In such models, one studies the weight and geometry of the maximum weight directed
path (termed as the geodesic) between two far away points in a 2D i.i.d. random field, such as Z2

with i.i.d. random variables at each vertex, or a homogeneous Poisson point process in R2. The
geodesic weight is often also termed as the last passage time between the corresponding endpoints.
A handful of such models, when the underlying noise is given by i.i.d Exponentials, a Poisson point
process (connected to the problem of the longest increasing subsequence in a random permutation)
or Brownian motions, admit exact-solvability. Pioneered by the seminal work of Baik, Deift and
Johansson [BDK99], for these models exact formulae stemming from algebraic combinatorics and
representation theory have been employed to rigorously deduce the predicted KPZ behaviors: the
weight of a geodesic between points with Euclidean separation n fluctuates by n1/3 while the geodesic
itself deviates from the straight line joining the endpoints by n2/3 (leading to the well-known 1 : 2 : 3

scaling of KPZ). Moreover, the geodesic weight scaled by n1/3 is known to converge to the GUE
Tracy-Widom distribution. More recently, in a breakthrough work [DOV22], a continuum object
known as the directed landscape was constructed as the scaling limit of Brownian LPP, and further
in [DV21b] it was shown that all the known exactly solvable LPP models indeed converge to it under
the KPZ scaling.
A particularly important topic of study has been tail estimates of the last passage time. Beyond the
above mentioned Tracy-Widom limit, a line of work has emerged relying on moderate deviations
estimates [LR10, LM01, LMR02] that have proved to be the key in the study of several central
problems. This includes, for instance, the solution of the slow bond problem of TASEP [BSS14, SSZ21]
and the study of the correlation structure in KPZ [BG21, BGZ21, CGH21]. An important tool
featuring in many of these works is the geometry of geodesics. Some recent work focusing on the
study of geodesics include [BHS22, BBS20] which rules out bi-infinite geodesics in LPP as well as
the study of local statistics around geodesics [MSZ21]. An approach using geometric ideas to obtain
tail estimates was also developed in [GH23].
Going beyond moderate deviation estimates, various attempts have been directed towards the
understanding of the large deviation behavior of passage time. The study in the setting of exactly
solvable LPPs appears across the papers [LS77, Sep98a, Sep98b, DZ99, Joh00], using a range of
methods. More recently there has been significant progress in studying the large deviations behavior
of the entire passage time profile extending the one point results [OT19, QT21, GH22].
While the above results primarily considered the last passage time values, in another line of work
the object of focus has been the distribution of the geodesic under the large deviation conditioning.
The behavior of the geodesic differs starkly across the upper and lower tail regimes. This is
already manifested in the disparity between the upper and lower tail behaviors of the Tracy-Widom
distribution (which has upper and lower tail exponents of 3

2 and 3 respectively). This stems from the
basic reasoning that the upper tail event simply requires an atypically large weighted path while the
lower tail event stipulates that all paths must have low weights, leading to a more global event and
consequently a much lower probability. In the large deviation scale, for two points with Euclidean
distance n, the logarithm of the probability for the geodesic weight to be δn larger (resp. smaller)
than its expectation is of order n (resp. n2).
Such a discrepancy between the upper and lower tails has been noted in the rigorous literature even
beyond exactly-solvable models going back to Kesten [Kes86] who studied the problem in the context
of first passage percolation (FPP) (see also [BGS21] for a more recent result about the existence of
a rate function in this context).
Significantly more has been established for exactly solvable models. Under upper tail large deviation
(i.e., the rate n tail), in [DZ99] it was shown that the transversal fluctuation for the geodesic still stays
o(n) for Poissonian LPP. This was improved significantly in [BG23] where the geodesic fluctuation
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exponent was shown to decrease from 2
3 to 1

2 . Under the lower tail large deviation of LPP (i.e., the
rate n2 tail) for LPP models for a large class of weight distributions, including and going beyond
exactly-solvable models, it was shown in [BGS19] that the transversal fluctuation of the geodesic
becomes order n, i.e. the transversal fluctuation exponent equals 1 and hence the geodesic becomes
fully delocalized.

The exponents 1
2 and 1 could be attributed, at least heuristically, to the fact that the upper tail

event entails local changes effected by picking a uniformly random directed path connecting the
endpoints and making its weight large, whereas the lower tail event forces every path to have a small
weight; this makes even paths with large transversal fluctuations competitive.

This reasoning suggests in particular that LPP geodesics in the upper tail large deviation regime
should scale to a Brownian bridge. Evidence in this direction was provided in [LW22], where it was
shown that in the directed landscape, if the weight between two points is conditioned to be > L,
for a process that one expects to be close to the geodesic, as L → ∞, the multi-point distribution
converge to a joint Gaussian with correlation structure matching that of a Brownian bridge; we also
mention [Liu22b], which proves the one-point convergence for the geodesic itself. These results led
Liu and Wang to conjecture the Brownian bridge limit for the geodesic. Such a statement was also
previously posed as a question in the prior work [BG23] in the context of Exponential LPP.

Proving this conjecture is the main focus of this article.

We consider this problem in both the zero and the positive temperature settings. In the former case,
the pre-limiting geodesics in exactly-solvable LPP were shown in [DOV22] and [DV21b] to converge
to their scaling limits, which may be termed as geodesics in the directed landscape. This is the first
object that we will work with. For these processes various properties have been established, such
as being 2

3

−-Hölder regular and possessing a finite 3
2 -variation in [DSV22]. Associated local time

processes were constructed and shown to be 1
3

−-Hölder regular in [GZ22]. Finally, an explicit, albeit
somewhat complicated, expression for the one point distribution of the geodesic was established in
[Liu22a] relying on exact formulae.

The positive temperature case describes the more general directed polymer models, where one
still has a 2D i.i.d. random field, but where one now considers a Gibbs measure parametrized by
temperature on the space of all directed paths between two points. More precisely, the probability
density of a path γ is proportional to exp(βH(γ)), where β > 0 is the inverse temperature and H(γ)
is the weight of the path in the random field. We henceforth refer to the random path under this
measure as the polymer (between the two points). At least formally, when β → ∞, the polymer
degenerates into the corresponding geodesic, which can therefore be viewed as the zero-temperature
polymer.

Certain integrable features persist even for positive temperature models, such as the log-gamma
polymer and the O’Connell-Yor polymer [OY01, Sep12]. Exploiting such special properties, KPZ
behavior has also been established, at least to some degree, for these examples as well. In particular,
for the KPZ equation from the original paper of Kardar, Parisi, and Zhang [KPZ86], the Cole-Hopf
solution turns out to be the free energy of the continuum directed random polymer (CDRP) model
[AKQ14], and the KPZ scaling convergence to the directed landscape has been established in a series
of recent works [QS23, DM21, Wu21, Wu23]. The polymer measure in the CDRP is the second
object we work with.

The tail probabilities of these positive temperature models have also been studied. In particular,
there have been extensive works on tails of the KPZ equation: its one-point upper tail probability is
similar to that of the Tracy-Widom distribution, as established in [KKX17, CG20a, DT21, GH22];
the lower tail probability is much more involved with a cross-over behavior, as has been shown in
[CG20b, CG20a, CC22, Tsa22]. The behavior of the profile under large deviations has also been
studied [LT23, LT22, GH22]. Besides the KPZ equation, estimates on both tails have also been
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obtained for the O’Connell-Yor polymer in [LS22], adapting zero temperature techniques from
[GH23] to the polymer setting, as well as the log gamma model [BCD21, RASS23].
The decision behind working with the directed landscape and the CDRP is guided by the various
symmetries and scaling invariance properties that are absent in the pre-limit, which help make our
arguments more transparent. However, we emphasize that we rely on probabilistic and geometric
arguments rather than exact formulae, in contrast to [LW22] and [Liu22b]. In particular, our
proofs primarily rely on the line ensemble representation through the RSK and geometric RSK
correspondences, and hence should be adaptable to any pre-limiting exact-solvable LPP or polymer
models, where similar line ensembles given by different Brownian motions or random walks are
available [DNV23].
We now move on to the main results of this paper which prove the full Brownian bridge conjecture
for both the directed landscape (zero temperature) and the continuum directed random polymer
(positive temperature). Further, in the latter case, our results also establish a quenched localization
phenomenon, where the polymer localizes around a random backbone, the law of the latter being a
Brownian bridge.

1.1. Main results. We start by defining some of the key objects to help set up the framework to
state our main results. The directed landscape L, constructed in [DOV22], is a continuous random
function from the parameter space

R4
↑ =

{
(x, s; y, t) ∈ R4 : s < t

}
to R; (x, s) and (y, t) should be thought of as specifying a pair of space-time coordinates. It satisfies
the composition law

L(x, r; z, t) = max
y

L(x, r; y, s) + L(y, s; z, t) (1.1)

for any r < s < t, yielding the ‘reverse triangle inequality’ L(x, r; z, t) ≥ L(x, r; y, s) + L(y, s; z, t)
and thus making it a ‘directed metric’.
We next describe the ‘directed geometry’ induced by L and record some facts about it, following
[DOV22, Section 12]. For any s < t, and x, y, a path from (x, s) to (y, t) is a continuous function
π : [s, t] → R with π(s) = x and π(t) = y; and its length is given by

∥π∥L = inf
k∈N

inf
s=t0<t1<...<tk=t

k∑
i=1

L(π(ti−1), ti−1;π(ti), ti).

A path π is a geodesic if ∥π∥L is maximal among all paths with the same start and endpoints.
Equivalently, a geodesic between (x, s) and (y, t) is any path π with ∥π∥L = L(x, s; y, t). Almost
surely, geodesics exist between every pair (x, s), (y, t) with s < t, and we use π(x,s;y,t) to denote
any such a geodesic. Moreover, there is almost surely a unique geodesic between any fixed pair
(x, s), (y, t). Let π0 : [0, 1] → R denote the geodesic from (0, 0) to (0, 1).
We now arrive at our first main result concerning its limit, under the upper tail event.

Theorem 1.1. As L → ∞, 2L1/4π0 conditioned on L(0, 0; 0, 1) > L converges to a standard
Brownian bridge, weakly in the topology of uniform convergence.

While the source of the exponent 1
4 will be reviewed shortly in the upcoming idea of proofs section,

momentarily we switch to our positive temperature (β = 1) model of the continuum directed random
polymer (CDRP).

For (x, s; y, t) ∈ R↑
4, let (x, s; y, t) 7→ Z(x, s; y, t) be the (mild) solution to the multiplicative stochastic

heat equation (SHE) defined by requiring, for all x, s ∈ R,{
∂tZ(x, s; y, t) = 1

4∂yyZ(x, s; y, t) + Z(x, s; y, t)ξ(x, s; y, t) s < t

Z(x, s; ·, s) = δx,
(1.2)
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where ξ is a space-time white noise (which is the same for all choices of initial coordinates (x, s)) and
δx is the delta mass at x. The initial condition is understood in the weak sense, i.e., with probability
one limt→s

∫
f(y)Z(x, s; y, t) dy = f(x) for all smooth functions f of compact support.

This random field was constructed in [AKQ14, Theorem 3.1] and is a continuous process. (More
precisely, the field constructed in [AKQ14] satisfies (1.2) with coefficient 1

2 in place of 1
4 , but this is

related to our solution by a simple scaling by constants; we will discuss this a bit more in Section 2.
We adopt this variant of the SHE in order to match more closely with the directed landscape.)
The KPZ equation is the stochastic PDE

∂tH(x, t) = 1
4(∂xH(x, t))2 + 1

4∂xxH(x, t) + ξ(x, t)

(again we have adopted coefficients of 1
4 in place of the more standard 1

2). It is related to the SHE by
the Cole-Hopf transform: the solution H to the KPZ equation is defined to be logZ; this solution,
which corresponds to delta initial conditions for the SHE, is called the narrow-wedge solution.
A key property of Z, allowing one to define the CDRP, is the following semi-group property, which
can be understood as a positive temperature analogue of the composition law (1.1): almost surely,
for any x, y ∈ R and s < r < t,

Z(x, s; y, t) =

∫
Z(x, s; z, r)Z(z, r; y, t) dz (1.3)

(see e.g. [AJRAS22, Theorem 2.6(v)]). As in [AKQ14], conditional on Z we can define the random
polymer from (x, s) to (y, t) (for any s < t), as the continuous random function Γ : [s, t] → R, such
that for any k ∈ N and s = s0 < s1 < · · · < sk < sk+1 = t, and x = x0, x1, . . . , xk, xk+1 = y, the
probability density for Γ(s1) = x1, . . . ,Γ(sk) = xk is proportional to

k∏
i=0

Z(xi, si;xi+1, si+1). (1.4)

We will use P to denote the (quenched) measure of the polymer. Thus Z is the partition function of
this polymer model and H is the free energy.
Letting Γ0 denote the (annealed) random polymer from (0, 0) to (0, 1), the counterpart of Theorem 1.1
in the setting of the CDRP is the following.

Theorem 1.2. As L → ∞, 2L1/4Γ0 conditioned on logZ(0, 0; 0, 1) > L converges to a standard
Brownian bridge, weakly in the topology of uniform convergence.

Further, our proof will show that in this case a further exponent arises in the form of a quenched
structural result. More precisely, under the upper tail event and conditional on the environment,
the polymer fluctuates on a scale L−1/2 (up to logarithmic factors), which is much smaller than
L−1/4, around a random path which we call the random backbone. The latter when scaled by L−1/4,
converges to a Brownian bridge. We postpone a further discussion of this to later in the article, once
the relevant arguments have already been presented (see Remark 8.3).
Our arguments involve several ingredients which we now provide an overview of. Due to the length
of the paper and the technical nature of some of the arguments, we have chosen to give a reasonably
detailed discussion.

1.2. Idea of proofs: zero temperature. We start by outlining our proof for Theorem 1.1, and
then move on in Section 1.3 to the extra ingredients involved in proving the positive temperature
case, Theorem 1.2.
The arguments consist of two components: (i) tightness of the paths and (ii) the convergence of the
finite dimensional distributions to that of the Brownian bridge. But we start off by introducing a
phenomenon that is the driving force of many of the arguments.
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1.2.1. The tent picture. The basic perspective of our proof relies on a result recently proved by the
first two authors in [GH22] on the shape of the profile L(0, 0; ·, 1) conditional on L(0, 0; 0, 1) > L.
First we recall that x 7→ L(0, 0;x, 1) + x2 is stationary, so when there is no conditioning L(0, 0;x, 1)
fluctuates around the parabola −x2. (This is a consequence of the mentioned shear invariance of L,
and a fuller form of this invariance will play a crucial role in our arguments; we expand on it in the
next subsection.)
In short, the result in [GH22] says that the conditioned profile adopts a tent-like shape (see Figure 1)
on the interval [−L1/2, L1/2] (which is determined by locating the points of tangency of the tangent
lines to −x2 which pass through (0, L)). Further, the fluctuations of the profile around the tent are
essentially Brownian, in particular with a fluctuation scale of L1/4.
This description then allows to produce sharp upper tail asymptotics; while the one-point estimate in
the zero temperature case that we will need was already known, [GH22] also provides these estimates
for the KPZ equation.

(0, L)

(−L1/2,−L) (L1/2,−L)

Figure 1. An illustration of the profile L(0, 0; ·, 1) conditional on it equaling L at 0,
and the parabola −x2 that it fluctuates around when there is no conditioning.

A guiding principle in many of our arguments will be that the conditioning L(0, 0; 0, 1) > L
corresponds to the existence (at some location at height s for any fixed s) of such a peak of height
approximately sL.

1.2.2. Tightness. We prove tightness of π0, conditioned on the upper tail at depth L of the path
weight/free energy and as a family of continuous random functions on [0, 1] indexed by L, using the
Kolmogorov-Chentsov criterion for tightness (e.g. [Kal22, Theorem 23.7]). This reduces the task to
estimating the transversal fluctuation (on the L−1/4 scale) at two points. More precisely, we will
prove an upper bound on the probability that |π0(s)− π0(t)|(t− s)−1/2L1/4 > M , conditional on
L(0, 0; 0, 1) > L, that is uniform in L and 0 < s < t < 1.
The strategy uses a fuller form of the earlier mentioned shear invariance property of the L field in a
crucial way. The event under consideration implies that there exist some x, y such that

|x− y| > M(t− s)1/2L−1/4 and L(0, 0;x, s) + L(x, s; y, t) + L(y, t; 0, 1) > L.

By doing a trivial bound on the conditional probability, we must show that the unconditional
probability of this event is much smaller than the probability of L(0, 0; 0, 1) > L. Shear invariance
of L says that, for any fixed z ∈ R

L(x, s; y, t) d
= L(x, s; y + z, t) +

(y + z − x)2

t− s
− (y − x)2

t− s

as processes in (x, s; y, t) (see Section 2.1 below). Using this, the probability of the displayed event
can be reduced to that of L(0, 0; 0, 1) > L+ (M(t−s)1/2L−1/4)2

t−s = L+M2L−1/2. So, essentially, shear
invariance yields that the geodesic moving out by an amount ε between times s and t corresponds to
a loss in weight of ε2/(t− s) for any ε > 0 and s < t, which must be made up in order to achieve
the upper tail conditioning.
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To implement this strategy, we must obtain a relatively sharp comparison of the probabilities of
L(0, 0; 0, 1) > L+ δ and that of L(0, 0; 0, 1) > L for δ > 0. The distribution of L(0, 0; 0, 1) is the
same as that of the GUE Tracy-Widom distribution, for which extremely precise tail asymptotics
are available using the exact formulas it is described by: indeed, for instance, it is known that
P(L(0, 0; 0, 1) > L) = (32π)−1L−3/2 exp(−4

3L
3/2+O(L−3/2)) ([BBD08, eq. (25)]) which immediately

implies that P(L(0, 0; 0, 1) > L+ δ) = exp(−2δL1/2 +O(L−1/2))P(L(0, 0; 0, 1) > L).
However, our proof must also work for the positive temperature case, and there such precise
asymptotics are not available (the discussion above using shear invariance will not apply verbatim
to the KPZ equation as we will explain in Section 1.3, but we will still need a tail comparison
statement). Indeed, the sharpest upper tail asymptotics currently available for H(0, 1) are from
[GH22] and state that P(H(0, 1) > L) = exp(−4

3L
3/2 +O(L3/4)); the error term is too large to see

that the ratio is exp(−2δL1/2 + o(L1/2)). However, the methods from [GH22] can be used to couple
together the tent pictures coming from the events L(0, 0; 0, 1) > L+ δ and the same with δ = 0 to
directly obtain a bound on the ratio which also holds for the positive temperature case:

Theorem 1.3. Let L ≥ 2 and 0 < δ < L1/4. Then
P (L(0, 0; 0, 1) > L+ δ)

P (L(0, 0; 0, 1) > L)
= exp

(
−2δL1/2 +O(δL−1/4 logL)

)
,

and the same bound also holds in the positive temperature case of the KPZ equation.

This theorem is restated and proven in a more precise and quantified form as Theorem 4.1 in
Section 4.
Applying this ratio estimate with δ = M2L−1/2 thus yields the desired transversal fluctuation bound
with a tail of exp(−2M2) (which we note matches the upper tail asymptotic of 1

2(s(1− s))−1/2B(s)),
which more than suffices to invoke the Kolmogorov-Chentsov criterion.
Thus in our argument, the fluctuation scale of L−1/4 of the geodesic is obtained as a consequence
of the shear invariance of L and the precise one-point upper tail asymptotics. However, the
implicit source of the exponent 1

4 is the underlying Brownian behavior of the passage time profiles.
Ignoring s-dependent constants, from the tent picture, L(0, 0; ·, s) + L(·, s; 0, 1) is essentially a sum
of independent rate two Brownian bridges on [−L1/2, L1/2] which reach order L above their starting
points, and we are interested in the maximizer of the sum. The maximizer density at x is essentially
the density that L will be reached at x (ignoring fluctuations above L). Doing a Taylor expansion,
we see that at x (where the variance is (L1/2 + x)(L1/2 − x)/L1/2 = L1/2 − x2L−1/2), the one-point
density is proportional to

exp

(
−c

L2

L1/2 − x2L−1/2

)
= exp

(
−cL3/2 − cx2L1/2 +O(L−1/2)

)
.

The first term is the same for all x and gets removed in the normalization, and thus we see that the
distribution of the maximizer is on scale L−1/4.
However, we do not use this intuition explicitly in our arguments. The details of our argument
will be given in Section 5. The argument in the positive temperature case is substantially more
complicated, and we will discuss it in Section 1.3 below.
For the moment we turn to proving the Gaussianity of the finite dimensional distributions. We
proceed by setting up the primary tool we rely on in this endeavor.

1.2.3. Line ensembles. First, consider the one point distribution, say π0(
1
2). Observe that it is

precisely the argmax of x 7→ L(0, 0;x, 12) + L(x, 12 ; 0, 1), whereas the conditioning of L(0, 0; 0, 1) > L

is precisely maxx L(0, 0;x, 12) + L(x, 12 ; 0, 1) > L. The two processes L(0, 0; ·, 12) and L(·, 12 ; 0, 1)
(without conditioning on the upper tail) are independent, and up to a rescaling each has the
distribution of the (parabolic) Airy2 process (see [QR14] for a survey about it). For us an important
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property of the parabolic Airy2 process is the earlier mentioned fact that it is equal to a stationary
process minus a parabola x2.
This process is also the top (or lowest indexed) line of the Airy line ensemble, a N-indexed family of
continuous non-intersecting processes on R constructed by Corwin and Hammond [CH14] who also
showed that it admits a crucial resampling invariance property which they termed as the Brownian
Gibbs property. Essentially, this states that, for any fixed interval [a, b], conditional on the second line
of the Airy line ensemble and the values of the Airy2 process at the boundary points of this interval,
inside [a, b] the distribution of the process is that of a (rate two) Brownian bridge conditioned to
stay above the second line (which can be thought of as the negative parabola −x2 for the purposes
of this discussion, ignoring the stationary fluctuations of it around the parabola).
It is using this tool that [GH22] deduces the tent description of the shape of the top curve conditioned
on the upper tail mentioned in Section 1.2.1, which we recall briefly. Conditional on the Airy2
process at 0 equaling h for some large value h, the process on either side of 0 behaves like two
independent Brownian bridges, one each on [−h1/2, 0] and [0, h1/2], with values −h (plus a random
fluctuation term of lower order) at ±h1/2 (see Figure 1). In particular, the slope of the lines around
which the Brownian bridges fluctuate are respectively ±h1/2 to first order. By stationarity, there is
a similar picture when the Airy2 process is conditioned to be large at any other point.
In the positive temperature case, the narrow wedge solution to the KPZ equation (the logarithm of
(1.2)) can also be embedded as the lowest indexed curve in an N-indexed family of continuous curves
(though they are no longer non-intersecting) known as the KPZ line ensemble. This ensemble too has
a resampling property in terms of a rate two Brownian bridge, though instead of being conditioned
to not intersect the next curve, it is reweighted by an energetic penalization for intersection with the
lower curve (see (2.6)). The arguments in [GH22] also established such a tent picture in the setting
of the KPZ line ensemble, which was then further used as a key input to prove the mentioned sharp
upper tail estimates for the KPZ equation.

1.2.4. One-point Gaussianity. Discretizing space using a fine mesh, and considering the closest mesh
point to the geodesic, leads to the following simplified form of the basic idea which drives this
argument. For any s > 0, the conditioning that L(0, 0; 0, 1) > L can be realized as a union of the
events that L(0, 0;x, s) = h1,L(x, s; 0, 1) = h2 over a fine mesh of points x and a collection of heights
h1 and h2 (which we will often refer to as peak heights in the discussion) such that their sum is close
to L and they are approximately proportionate, i.e., h1 ≈ sL and h2 ≈ (1− s)L. Conditioning on
one of the latter events where x, h1, h2 are fixed then allows us to make use of the just described
tent picture. We also note that the tent picture for L(0, 0; ·s) corresponds to a rescaled parabolic
Airy2 process such that the parabola is −x2/s, and thus the tangent lines under L(0, 0; ·, s) = h1
will have slope ±s−1/2h

1/2
1 (1 + o(1)); so if h1 ≈ sL, the slope is to first order ±L1/2 independent of

s, and similarly for the time interval [s, 1].
With this idea in mind, we want to use the tent picture to understand the distribution of
argmaxx L(0, 0;x, 12) +L(x, 12 ; 0, 1), conditional on L(0, 0;x∗, 1/2) = h1 and L(x∗, 1/2; 0, 1) = h2, for
given h1, h2 and x∗. Then we would like to average over h1 and h2 such that h1 + h2 > L to obtain
the distribution of π0(12). However, in the above strategy, the tent picture will only be useful if h1 and

...
Figure 2. A depiction of the parabolic Airy line ensemble.
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h2 are such that π0(
1
2), with high probability, lands in the mesh interval adjacent to x∗. Even then,

this as just described is technically very delicate; indeed, apart from obtaining the correct expression
in the exponent for the density of L1/4π0(s) as L → ∞, one also needs to obtain the correct constant
prefactor of (2π0 · 1

4s(1− s))−1/2 (as we are trying to prove L1/4π0(s)
d→ 1

2B(s) = N(0, 14s(1− s))).
To obtain such sharp estimates, instead of directly obtaining probability bounds, we instead study
the ratio of the probability that L1/4π0(s) is close to x∗ vs that it is close to y∗. In this approach,
we simply need to obtain the correct expression in the exponent, since the constant pre-factor then
gets determined by normalization considerations. By a decomposition based on the location and
height of the tent, we essentially must compare the two probabilities

P
(
π0(s) ≈ z,L(0, 0; 0, 1) > L,L(0, 0; z, s) ≈ h1,L(z, s; 0, 1) ≈ h2

)
(1.5)

with z = x∗L−1/4 or y∗L−1/4 and hi in a nice set. By shear invariance of L, it holds that

L(0, 0;x∗L−1/4, s)
d
= L(0, 0; y∗L−1/4, s) +

(
y2∗
s

− x2∗
s

)
L−1/2

L(x∗L−1/4, s; 0, 1)
d
= L(y∗L−1/4, s; 0, 1) +

(
y2∗

1− s
− x2∗

1− s

)
L−1/2.

Thus by Theorem 1.3 and the independence of L across disjoint temporal strips, it holds that

P
(
L(0, 0;x∗L−1/4, s) ≈ h1,L(x∗L−1/4, s; 0, 1) ≈ h2

)
= exp

(
−2

y2∗ − x2∗
s(1− s)

+ o(1)

)
· P
(
L(0, 0; y∗L−1/4, s) ≈ h1,L(y∗L−1/4, s; 0, 1) ≈ h2

)
.

So to complete the comparison of the probabilities in (1.5), by a Bayes’ argument, it remains to
show that

P
(
π0(s) ≈ z,L(0, 0; 0, 1) > L

∣∣∣ L(0, 0; z, s) ≈ h1,L(z, s; 0, 1) ≈ h2

)
is the same up to a 1+o(1) factor for z = x∗L−1/4 and y∗L−1/4 for hi in a nice set. Towards this, the
tent description tells us that conditional on L(0, 0; z, s) ≈ h1 and if h1 ≈ sL, L(0, 0; ·, s) is essentially
a pair of independent Brownian bridges with slope ±2L1/2 on either side of 0 (shifting coordinates
so that the new origin corresponds to z). The event π0(s) ≈ z,L(0, 0; 0, 1) > L is that the sum of
these Brownian bridges has maximizer near 0 and maximum at least L. Now, a Brownian bridge
with slope −L1/2 drops by order L−1/2 in a neighborhood of order L−1, which is the same order
as its fluctuations on the interval; this means that such a Brownian bridge typically achieves its
maximum in an order L−1 neighbourhood of zero, and its maximum is greater than the value at
zero by O(L−1/2).

The effect of z = x∗L−1/4 vs y∗L−1/4 is manifest by an O(L1/4) perturbation of the endpoint value
of the Brownian bridge at the tangency locations at location ±Θ(L1/2) which does not significantly
affect the distribution of the bridges on the size L−1 size interval. This essentially establishes that
the comparison in (1.5) is exactly the ratio of Gaussian densities.
To make these arguments precise is actually a somewhat delicate task, particularly due to complexities
introduced in the positive temperature case (that we discuss shortly). It is done in Sections 11
and 12.

1.2.5. Multi-point: coalescence of geodesics. We next discuss the two-point joint distribution of
π0, namely that of π0(s) and π0(t), which are the argmax of (x, y) 7→ L(0, 0;x, s) + L(x, s; y, t) +
L(y, t; 0, 1). Even without conditioning on the upper tail, in contrast to the one-point distribution
of π0 which can be described as the argmax of the sum of two independent scaled Airy2 processes,
the two-point joint distribution does not have such a simple or accessible description. The reason is
that there is no exact formula for the two-variable process L(·, s; ·, t). However, in the upper tail
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regime, we manage to decouple the argmax problem, i.e., we are able to write L(·, s; ·, t) as a sum of
two one-argument processes, using a strong coalescence phenomenon which is brought about by the
upper tail conditioning that we explain next

A key observation we make is that, assuming L(0, 0; 0, 1) > L for a large L, all the geodesics from
(x, s) to (y, t) for any |x|, |y| of order smaller than L1/2 would tend to coalesce (see the left panel of
Figure 3); that the window of coalescence is an interval of size of order L1/2 is closely related to the
fact that the tent profile under the upper tail holds on an interval with size of the same order, as can
be seen in the proof in Section 3. The coalescence phenomenon can be described via the following
quadrangle equality (see also the right panel of Figure 3 as well as Lemma 2.4 below): with high
probability it holds that

L(x, s; y, t) = L(x′, s; y, t) + L(x, s; y′, t)− L(x′, s; y′, t), (1.6)

for all |x|, |y| and |x′|, |y′| that are of order smaller than L1/2. Such a quantitative description of
coalescence can also be generalized to the positive temperature setting of CDRP, to be discussed
shortly. Therefore, to have π0(s) = x∗ and π0(t) = y∗, roughly one just needs to ensure that

x∗ = argmax
x

L(0, 0;x, s) + L(x, s; 0, t), y∗ = argmax
y

L(0, s; y, t) + L(y, t; 0, 1).

We further have that these two events are nearly independent. This is again owing to the above
mentioned coalescence which ensures that when x and y are varied, the changes in L(x, s; 0, t) and
L(0, s; y, t) respectively are local and hence are determined by disjoint parts of the environment and
the argmax only depends on the changes in the processes. We can then estimate the ratio of the
probabilities of these events using the same arguments as the one-point case above.

The proof of coalescence and the induced independence is proven using tools such as the multi-
point passage times (which in the setting of the directed landscape is studied in [DZ21]) and a
shift-invariance symmetry of the directed landscape from [BGW22] (see also [Gal21, Dau22, Zha23]).
The details are presented in Section 3.

An analogous analysis can also be done for the multi-point joint distributions. This accounts for a
significant part of the technical effort, particularly in the positive temperature case. The last two
sections of this paper are devoted to them.

(0, 0)

(0, 1)

1
3

2
3

x x′

y y′

Figure 3. Left: An illustration of the coalescence phenomenon in time [13 ,
2
3 ], under

upper tail. The geodesic from (0, 0) to (0, 1) is shown in brown except for the portion
common to all the paths, which is in dark green. Right: a depiction of how coalescence
implies equality in the quadrangle inequality. It is clear that under coalescence the
points covered by the geodesics from x to y and from x′ to y′ equals (with multiplicity)
those covered by the geodesics from x to y′ and x′ to y.

10



1.3. Complications in positive temperature. As has been mentioned several times, the positive
temperature case introduces several significant complications. We explain the key differences in the
proof of Theorem 1.2 (versus Theorem 1.1) next.
We will work with the free energy landscape defined by Lβ(x, s; y, t) = logZ(x, s; y, t) + (t− s)/12.
While it should be thought of as largely the same as the directed landscape L in terms of properties
such as shear invariance and independence in disjoint temporal strips, a significant difficulty already
appears in the first step regarding tightness, which we discuss next.

1.3.1. Tightness and polymer concentration. The first difficulty can be seen by the fact that the
zero temperature path measure, conditional on the environment and at any given height, is a delta
mass. In contrast, a priori we have no non-trivial concentration of the quenched polymer measure.
For this reason, though the shear invariance argument described above also applies in the positive
temperature case, it only yields a bound on the transversal fluctuations of the polymer Γ0 of order 1,
not order L−1/4 as in the zero temperature case.
The key new idea to obtain the correct scale L−1/4 of fluctuations is to show that the quenched
polymer measure in fact concentrates on an interval of size of lower order than L−1/4, which is the
quenched localization result mentioned after Theorem 1.2.
More specifically, the polymer measure concentrates in an order L−1/2 (up to a logL factor) window
around a random backbone, which is π(s) := argmaxx Lβ(0, 0;x, s) + Lβ(x, s; 0, 1) at level s:

Proposition 1.4. There exists M0 > 0 such that for any L ≥ 2, M > M0 and s ∈ (0, 1),

P
(
P
(
|Γ0(s)− π(s)| > ML−1/2 logL

)
> L−2M

∣∣∣ Lβ(0, 0; 0, 1) > L
)
< C exp(−c(log(L))2).

We have not been careful with the quantifiers on s in this statement as we are stating it for illustration;
the technically precise statement that we will actually prove and use is given as Proposition 7.1.
The exponent of −1

2 is due to the fact that, away from π(s) and by the tent picture, the free energy
profile Lβ(0, 0; ·, s)+Lβ(·, s; 0, 1) decays with a slope of order L1/2. Then the window of order L−1/2

around π(s) is precisely where the free energy profile is within order one of its maximum, and so the
polymer measure density (defined via the partition function, i.e., the exponential of the free energy)
is uniformly positive there.
The complete proof of this concentration result will be given in Section 7, with preparations in
the two sections before that. This concentration of the polymer measure will allow us to upgrade
the crude bounds coming from shear invariance in Section 5 to tightness in Section 8; for technical
reasons, we only bound |Γ0(s)− Γ0(t)| by order (t− s)1/11L−1/4 (rather than (t− s)1/2L−1/4 in the
zero temperature setting).

1.3.2. Quantitative coalescence. A second difficulty working with polymers is establishing the co-
alescence phenomenon, which we need to obtain the multi-point distributions. Indeed, unlike
geodesics with different yet close by end points, which actually coalesce with high probability, the
notion of coalescence for the CDRP certainly has to be qualified with an associated coupling of
the corresponding Gibbs measures. For instance, independent samples of polymers with different
endpoints will in fact stay disjoint for almost all of their journey.
And indeed, while there have been a number of works studying coalescence in zero temperature
(e.g. [Pim16, Zha20, BSS19, SS20, BF22]), there has been only one previous studies on polymer
coalescence in the positive temperature setting, namely [RASS23].
However, ultimately the zero temperature arguments outlined above only use coalescence by way of
its effect on the weight profile, i.e., in the sense of (1.6) holding with high probability. Fortunately,
this relation has the potential to be generalized more directly to positive temperature. In fact, we
show that it still holds up to a error term which is exponentially small in L, as captured in the
following statement.
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Proposition 1.5. There exists C, c such that for any L > 0 and with δ = 10−6, conditionally on
Lβ(0, 0; 0, 1) > L, it holds with probability at least 1− C exp(−cL3/2) that

sup
|x|,|y|≤δL1/2

∣∣∣Lβ(x, 0; y, 1)−
(
Lβ(x, 0; 0, 1) + Lβ(0, 0; y, 1)− Lβ(0, 0; 0, 1)

)∣∣∣ < C exp(−cL).

This is proven in a more technically flexible form as Proposition 3.4, and suffices for the remaining
arguments go through. (Note however that the conditioning and the coalescence is for free energies
between heights 0 and 1, while we will need it for intermediate temporal intervals; Proposition 3.4
allows this flexibility and we obtain the conditioning on the intermediate free energies using the
decomposition into tents with proportional peak heights mentioned above.)

In proving this coalescence, we make connections to multi-point partition functions of CDRP (analogs
of the mentioned above multi-point passage times, studied in e.g. [OW16, Nic21]), and use geometric
arguments of performing surgeries on the polymers. We note that such surgery techniques have
appeared several times in zero temperature settings (in e.g. [Ham16]), but do not seem to have been
introduced in positive temperature settings.

1.3.3. Multi-point Gaussianity. The CDRP setting also faces extra complexities in computing the
joint multi-point Gaussian limit. From the concentration result, it suffices to deduce the joint
multi-point Gaussian limit of the backbone π.

As in the zero temperature setting, the upper tail conditioning on Lβ(0, 0; 0, 1) shall be realized as
conditioning on tents of certain height and certain locations, and we then show that these peaks are
close to the random backbone π (and this is implemented in Section 10).

Both tasks of changing the conditioning and deducing the closeness would require more careful
treatment in the CDRP setting. There are two basic sources of complication. The first is that
entropy effects must be taken into account, since in positive temperature we must take integrals
over partition function profiles instead of maximums as in the zero temperature setting. The second
is that in positive temperature the tent picture obtained by decomposing into peaks at different
locations is not fully accurate on certain small scales.

The complication from entropy is simple to see: in zero temperature, the peak heights of the tents
were essentially such that their sum was at least L, but in positive temperature there is an extra
correction term of order logL which must be added. This is because, by the tent picture, the slopes
around the peak locations are ±2L1/2, which means almost all the contribution to the integral in
the composition formula (1.3) comes from an interval of order L−1/2 around the peak. On taking
logarithms, the small size of the interval leads to a loss of order logL which must be made up by the
peak heights.

The inaccuracy of the tent picture on small scales (in fact, on scale L−1/2) is slightly more subtle.
Recall that the integral of the free energy profile Lβ(0, 0; ·, s)+Lβ(·, s; 0, 1) has dominant contributions
on scale L−1/2 around the peak location (due to the fact that that the slopes in the tent picture
are of order L1/2). Further, as in zero temperature and from Theorem 1.3, the integral (i.e., the
total free energy) has fluctuations of order L−1/2. However, though the latter fluctuation scale
matches with zero temperature, the fact that the integral is on a O(L−1/2) window and a Brownian
computation indicate that a significant contribution to the partition function instead comes from
the event of the Brownian bridges atypically rising up by O(1) on a L−1/2 window, with the peak
heights being slightly lower by O(1). Therefore, conditional on the total free energy upper tail, the
Brownian bridges should exhibit behaviors of probability exp(−cL1/2); thus the tents are flat in an
order L−1/2 interval around the peak location. This is in contrast to zero temperature where under
the analogous conditioning the free energy profiles to the left and right of the peak location are with
high probability independent Brownian bridges, and thus are flat only on order L−1 intervals (where
Brownian fluctuations match with slope loss).
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Remark 1.6. To make our proofs as short as possible, we will use notation which allows us to unify
the positive temperature and zero temperature arguments as much as possible.

Organization of the remaining text. In Section 2 we give the formal setup and quote existing
tools and estimates that we will use. Section 3 establishes coalescence under the upper tail, and
Section 4 proves the estimate on the ratio of upper tail probabilities. The next four sections prove
the tightness; in particular, the zero temperature tightness is done in Section 5, while the positive
temperature tightness is much more involved and is proved in Section 8, along with the localization
around a random backbone. The last four sections are devoted to proving the finite-point Gaussian
limit.

Acknowledgement. SG was partially supported by NSF grant DMS-1855688, NSF CAREER
grant DMS-1945172, and a Sloan Research Fellowship. MH is partially supported by NSF grant
DMS-1937254. LZ is supported by the Miller Institute for Basic Research in Science, at the University
of California, Berkeley, and NSF grant DMS-2246664. The authors are grateful to Zhipeng Liu for
many useful discussions and explaining the ideas in [Liu22b, LW22].

2. Preliminaries

Notations. Throughout this paper, we will use C, c > 0 to denote large and small constants, whose
values may and often change from line to line. We will also use the Bachmann-Landau notations:
for A > 0, O(A) denotes a number B such that |B| < CA, and Ω(A) denotes a number B such that
B > cA. For any x, y ∈ R ∪ {−∞,∞}, x ≤ y, we denote [[x, y]] = [x, y] ∩ Z.

For any m ∈ N, we introduce the following simplexes,

Λm = {(x1, · · · , xm) : x1 ≤ · · · ≤ xm},

and for any a < b,
Λm([a, b]) = {(x1, · · · , xm) : a ≤ x1 ≤ · · · ≤ xm ≤ b}.

We use Λ̊m and Λ̊m([a, b]) to denote the interiors of Λm and Λm([a, b]), respectively. For any
x = (x1, · · · , xm) ∈ Λm, let ∆(x) =

∏
i<j(xi − xj).

For any µ and σ, we let N (µ, σ2) denote the normal distribution with mean µ and variance σ2.

For any topological space X, we use C(X,R) to denote the space of real continuous functions on X
with the uniform topology.

We will occasionally use notation such as P(· | X ∈ (K,K + dK)) for a random variable X and real
number K to denote the conditional probability distribution given that X = K. The precise meaning
of this is to consider the regular conditional distribution P(· | X) (which exists when conditioning on
real random variables by well-known abstract results such as [Kal22, Theorem 8.5]) and evaluate the
associated probability kernel at K.

Similarly the notation P(X ∈ (K,K + dK))/dK is simply the density of the random variable X
with respect to Lebesgue measure, evaluated at K. It is well-known that the one-point distributions
of objects such as L and Lβ have densities, e.g. from the Brownian Gibbs properties [CH14, CH16].

We next move on to some properties of the directed landscapes and the associated geodesics therein
which will appear in our arguments repeatedly.

2.1. The directed landscape and geodesics. The directed landscape L, which is a random
continuous function on R4

↑, is shift, shear, reflection, and 1 : 2 : 3 scaling invariant. More precisely,
we have the following:

Lemma 2.1 (Lemma 10.2, [DOV22]). L has the same distribution as
13



• (Shift and shear) (x, s; y, t) 7→ L(x+ νs+ α, s+ η; y + νt+ α, t+ η) + 2ν(y − x) + ν2(t− s),
for any ν, α, η ∈ R;

• (Reflection) (x, s; y, t) 7→ L(−x, s;−y, t), and (x, s; y, t) 7→ L(y,−t;x,−s);
• (Scaling) (x, s; y, t) 7→ wL(w−2x,w−3s;w−2y, w−3t), for any w > 0.

Further, for any disjoint time intervals {(si, ti)}ki=1, the functions L(·, si; ·, ti) are independent.

We next describe the multi-point passage times, studied in [DZ21]. For any k ∈ N, x = (x1, · · · , xk) ∈
Λk, y = (y1, · · · , yk) ∈ Λk, and s < t, we define

L(x, s;y, t) = sup
π1,...,πk

k∑
i=1

∥πi∥L,

where the supremum is over all k-tuples of paths π = (π1, . . . , πk) where each πi is a path from (xi, s)
to (yi, t), satisfying the disjointness condition πi(r) < πj(r) for all i < j and r ∈ (s, t). It is shown
(in [DZ21, Theorem 1.7]) that, almost surely, for every set of endpoints the supremum is achieved by
some paths satisfying the disjointness condition. Therefore the following statement holds.

Lemma 2.2 ([DZ21, Corollary 1.11]). Almost surely the following holds. For any k ∈ N, x =
(x1, · · · , xk),y = (y1, · · · , yk) ∈ Λk, and s < t, we have

L(x, s;y, t) =
k∑

i=1

L(xi, s; yi, t),

if and only if there exist geodesics π1, . . . , πk, where πi is from (xi, s) to (yi, t), satisfying πi(r) <
πi+1(r) for each 1 ≤ i < k and r ∈ (s, t).

For any s < t and x, y, we also denote

Lk(x, s; y, t) = L(x1k, s; y1k, t),
where 1k ∈ Rk is the vector with each coordinate equal 1.
A key property of the directed landscape is the following inequality due to planarity.

Lemma 2.3 ([DZ21, Lemma 5.7]). The following holds almost surely. Take any k ∈ N and
x,y,x′,y′ ∈ Λk. Define xℓ,yℓ,xr,yr ∈ Λk by setting xℓi = xi ∧ x′i, y

ℓ
i = yi ∧ y′i, and xri = xi ∨ x′i,

yri = yi ∨ y′i, for each 1 ≤ i ≤ k. Take any s < t. Then we have

L(xℓ, s;yℓ, t) + L(xr, s;yr, t) ≥ L(x, s;y, t) + L(x′, s;y′, t).

In the case of k = 1, this is the quadrangle inequality: for any s < t, x1 < x2, y1 < y2, we have

L(x1, s; y1, t) + L(x2, s; y2, t) ≥ L(x1, s; y2, t) + L(x2, s; y1, t). (2.1)

See e.g. [DOV22, Lemma 9.1]. Besides, the strict inequality is known to be equivalent to the
disjointness of geodesics.

Lemma 2.4 ([GZ22, Lemma 3.15]). For any fixed s < t, x1 < x2, y1 < y2, almost surely the
inequality

L(x1, s; y1, t) + L(x2, s; y2, t) > L(x1, s; y2, t) + L(x2, s; y1, t)
is equivalent to that the geodesics π(x1,s;y1,t) and π(x2,s;y2,t) are disjoint; i.e., π(x1,s;y1,t)(r) < π(x2,s;y2,t)(r),
∀r ∈ [s, t].

Another degeneration of Lemma 2.3 is the following inequality which will be used later. For any x
and y1 ≤ y2 ≤ y3, and s < t, we have almost surely,

L((x, x), s; (y1, y3), t) + L(x, s; y2, t) ≥ L((x, x), s; (y1, y2), t) + L(x, s; y3, t). (2.2)

We note that by the reflection symmetry of L, this also holds for y1 ≥ y2 ≥ y3.
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Proof of (2.2). We take z < x ∧ y1 and apply Lemma 2.3 with k = 2, x = (x, x), x′ = (z, x),
y = (y1, y2), y′ = (z, y3), to get

L((x, x), s; (y1, y3), t) + L((z, x), s; (z, y2), t) ≥ L((x, x), s; (y1, y2), t) + L((z, x), s; (z, y3), t). (2.3)

We note that by Lemma 2.2, and the fact that any geodesic is almost surely continuous (therefore
bounded), as well as from the stationarity of L (so that the geodesic from (z, s) to (z, t) has the
same distribution as that from (0, s) to (0, t), shifted by z), we have

lim
z→−∞

P
(
L(x, s; y2, t) = L((z, x), s; (z, y2), t)− L(z, s; z, t)

)
= 1,

lim
z→−∞

P
(
L(x, s; y3, t) = L((z, x), s; (z, y3), t)− L(z, s; z, t)

)
= 1.

Plugging these into (2.3) we get (2.2). □

2.2. Continuum directed random polymer. We define the multi-line continuum partition
functions through the chaos expansion, as done in [OW16]. For CDRP, we take the inverse
temperature β = 1 throughout this paper for simplicity of notations, while our arguments go through
verbatim for any fixed β.

2.2.1. Partition function. Let W be a cylindrical Brownian motion on L2(R), and Ẇ be the space-
time white noise associated with W . Denote

pt(x) =
1√
2πt

exp(−x2/2t).

For any s < t, x, y ∈ R, and k ∈ Z+, we let Z̃k(x, s; y, t) be defined by

pt−s(y − x)k

(
1 +

∞∑
m=1

∫
Λm([s,t])

∫
Rm

R((x1, t1), . . . , (xm, tm))W (dt1, dx1) · · ·W (dtm, dxm)

)
,

where R denotes the m point correlation function for a collection of k non-intersecting Brownian
bridges which all start at x at time s and end at y at time t. We write Z̃ = Z̃1, which, historically,
was introduced as the solution to the multiplicative stochastic heat equation (SHE) with Dirac delta
initial condition, via the Feynman-Kac representation. Specifically, ũ(x, t) = Z̃(0, 0;x, t) satisfies

∂tũ =
1

2
∂2
xũ+ ũẆ ,

with ũ(·, 0) being the delta mass at 0.

In what sense is Z̃k(x, s; y, t) defined? In [OW16] this is defined for any fixed k and x, s, y, t, by
proving the L2(W ) convergence of the chaos expansion. In [Nic21], it is shown that

(y, k) 7→ log(Z̃k(0, 0; y, t)/Z̃k−1(0, 0; y, t))

is a (scaled) KPZt line ensemble, as defined in [CH16, Theorem 2.15]; therefore Z̃k(x, s; y, t) can be
thought of as a continuous function of y, for any fixed k and x, s, t (see [Nic21, Corollary 1.9, 1.11]).
In [LW20], it is further shown that (y, t) 7→ Z̃k(x, s; y, t) can be defined as a continuous function, for
any fixed k, x, s.

Moreover, Z̃ can be defined as a four-parameter random continuous function. It is also shift, shear,
and reflection invariant (in distribution), as recorded ahead in Lemma 2.5.

Scaling. Under certain limiting transitions (either t → ∞ or β → ∞) and appropriate scaling,
the logarithm of Z̃, which can be understood as a solution to the KPZ equation, converges to the
directed landscape [QS23, Wu23]. While we do not actually use this convergence in this paper,
in light of the scaling involved in this limit transition, and for the purposes of being consistent
with the directed landscape setting and reducing notations (which will be clear shortly), we denote
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Zk(x, s; y, t) = 2kZ̃k(2x, 2s; 2y, 2t) and Z = Z1.1 Now Z satisfies the SHE of (1.2). For the shift,
shear, and reflection invariances of Z, we have the following.

Lemma 2.5 (Theorem 3.1, [AKQ14] or Proposition 2.3, [AJRAS22]). Z has the same distribution
as

• (Shift and shear) (x, s; y, t) 7→ Z(x+νs+α, s+η; y+νt+α, t+η) exp(ν2(t− s)+2ν(y−x)),
for any ν, α, η ∈ R;

• (Reflection) (x, s; y, t) 7→ Z(−x, s;−y, t), and (x, s; y, t) 7→ Z(y,−t;x,−s).

Further, for any disjoint time intervals {(si, ti)}ki=1, the functions Z(·, si; ·, ti) are independent. Also,
with probability one Z(x, s; y, t) > 0 for all x, y ∈ R and 0 < s < t

As already mentioned in the introduction, for any s < t and x, y, in [AKQ14] a measure (denoted by
P) on C([s, t],R) is defined and gives the random polymer from (x, s) to (y, t), with finite-dimensional
distribution given by (1.4).

2.2.2. Multi-point partition function with distinct endpoints. For any x = (x1, · · · , xk),y = (y1, · · · , yk) ∈
Λ̊k, and s < t, we define

M(x, s;y, t) = det[Z(xi, s; yj , t)]
k
i,j=1∆(x)−1∆(y)−1

where recall ∆(x) =
∏

i<j(xi − xj). Then from the continuity of Z = Z1, we have that M(x, s;y, t)
is almost surely continuous in all the variables.

Positivity and implications. Using the Karlin-McGregor theorem, it is straightforward to deduce
that M is non-negative, as shown in [OW16, Proposition 5.5]. The simultaneous strict inequality is
proved in [LW20, Theorem 1.4], and also in [AJRAS22, Theorem 2.17] with a different method.

Lemma 2.6. Almost surely, for any s < t, k ∈ N, and x,y ∈ Λ̊k, there is M(x, s;y, t) > 0.

The case of Lemma 2.6 where k = 2 can be viewed as an analog to Equation (2.1); namely, for any
s < t, x1 < x2, y1 < y2, we have

Z(x1, s; y1, t)Z(x2, s; y2, t) > Z(x1, s; y2, t)Z(x2, s; y1, t). (2.4)

Another useful statement that can be deduced from Lemma 2.6 is the following monotonicity.

Lemma 2.7. Almost surely the following is true. For any s < t, x1 < x2 < x3 and y1 < y2 < y3,
we have

(y3 − y1)M((x1, x3), s; (y1, y3), t)Z(x2, s; y2, t)

> (y2 − y1)M((x1, x3), s; (y1, y2), t)Z(x2, s; y3, t)

+ (y3 − y2)M((x1, x3), s; (y2, y3), t)Z(x2, s; y1, t).

Proof. This is equivalent to M((x1, x2, x3), s; (y1, y2, y3), t) > 0, which holds by Lemma 2.6. □

Composition. There is also a composition law of M, which can be obtained from (1.3) and the
Cauchy-Binet formula: almost surely, for any k ∈ N, x,y ∈ Λ̊k and s < r < t, we have

M(x, s;y, t) =

∫
Λ̊k

M(x, s; z, r)M(z, r;y, t)∆(z)2dz. (2.5)

Continuous extension. The function M is connected to the multi-layer partition function, through
the following extension of M to the boundary of Λk × Λk.

1The reason for the outside factor of 2 in Z(x, s; y, t) = 2Z̃(2x, 2s; 2y, 2t) is to ensure that indeed Z(x, s; ·, t) → δx
as t → s in the weak sense.
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Lemma 2.8 ([OW16, Lemma 6.1]). For any s < t and k ∈ N, the function x,y 7→ M(x, s;y, t)
extends continuously in L2(W ) to Λk × Λk, and the extension satisfies

2−k(k−1)/2(t− s)k(k−1)/2
k−1∏
i=1

i!M(x1, s; y1, t) = Zk(x, s; y, t),

where 1 is the vector in Rk where each entry equals 1.

2.3. Line ensembles and Gibbs properties. As already indicated, a tool widely used in the
study of the directed landscape is the Airy line ensemble constructed in [CH14]. Analogously, a tool
widely used in the study of the KPZ equation and the free energy of the CDRP is the related KPZt

line ensemble from [CH16], and its Gibbs property. To be concise, instead of giving the complete
line ensemble setups, we quote some useful results from these connections.
For any t > 0, x ∈ R, we denote

hβ=1
t,1 (x) = logZ(0, 0;x, t) + t/12, hβ=1

t,2 (x) = log(Z2(0, 0;x, t)/Z(0, 0;x, t)) + t/12,

and
hβ=∞
t,1 (x) = L(0, 0;x, t), hβ=∞

t,2 (x) = L2(0, 0;x, t)− L(0, 0;x, t).

We note that H(x, t) = hβ=1
t,1 (x) solves the KPZ equation

∂tH = 1
4∂

2
xH+ 1

4(∂xH)2 + Ẇ .

(Recall that Ẇ is the space-time white noise.)
Thanks to the scaling in defining Z, hβ=1

t,1 has the same parabolic decay of −x2/t as hβ=∞
t,1 . More

precisely, hβt,1(x) + x2/t for both β = 1 and ∞ are stationary (which can be deduced from the shear
invariance of Z and L). We also denote

ĥβt,1(x) := t−1/3hβt,1(t
2/3x), ĥβt,2(x) := t−1/3hβt,2(t

2/3x).

As will be clear later on, using ĥβt,1 and ĥβt,2 instead of hβt,1 and hβt,2 will reduce some notation, since
ĥβt,1 and ĥβt,2 have the parabolic decay of −x2 independent of t.
Another consequence of the scaling in defining Z is that hβ=1

t,1 is locally absolutely continuous with
respect to a rate 2 Brownian bridge, which is also true for hβ=∞

t,1 . To be more precise, we quote
the following Gibbs properties of hβt,1 given hβt,2. For any a < b, denote by Fext([a, b]) the σ-algebra
generated by hβt,1 in R \ (a, b), and hβt,2.

Lemma 2.9. Take any a < b and t > 0. Conditional on Fext([a, b]), for (1) law of hβt,1 in [a, b], (2)
the rate 2 Brownian bridge connecting hβt,1(a) and hβt,1(b), the former is absolutely continuous with
respect to the latter, with Radon-Nikodym derivative (for a path B) proportional to W (B, hβt,2), where

W (f, g) =

{
exp

(
− 2

∫ b
a exp(f(x)− g(x))dx

)
when β = 1,

1[g(x) ≤ f(x),∀x ∈ [a, b]] when β = ∞.
(2.6)

For the case where β = ∞ (the Airy line ensemble setting), this was established in [CH14]. For
β = 1 (the KPZt line ensemble setting), such a Gibbs property was first introduced in [CH16]; and
the connection between the KPZt line ensemble and CDRP was formally established in [Nic21]. The
form of the Gibbs property presented here is from [GH22, Proposition 2.6, Theorem 2.8].
A useful consequence of the Gibbs property is the monotonicity recorded below.

Lemma 2.10 (Monotonicity in boundary data). Fix a < b, real numbers w∗, z∗ ∈ R and measurable
functions g∗ : [a, b] → R ∪ {−∞} for ∗ ∈ {↑, ↓} such that w↓ ≤ w↑, z↓ ≤ z↑, and, for all s ∈ (a, b),
g↓(s) ≤ g↑(s).
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For ∗ ∈ {↑, ↓}, let Q∗ be a process on [a, b] such that Q∗(a) = w∗ and Q∗(b) = z∗, with Radon-
Nikodym derivative with respect to Brownian bridge given by W (Q∗, g) for β = 1. Then there exists
a coupling of the laws of Q↑ and Q↓ such that almost surely Q↓(s) ≤ Q↑

j (s) for all s ∈ (a, b).
The same is true in the β = ∞ (zero-temperature) case if additionally w∗ > g∗(a) and z∗ > g∗(b),
for ∗ ∈ {↑ ↓}.

The positive temperature (β = 1) statements are Lemmas 2.6 and 2.7 of [CH16]. The zero temperature
(β = ∞) statements are Lemmas 2.6 and 2.7 of [CH14]. See also [DM21] and [Dim22] for more
detailed proofs of the respective cases.
The following two correlation inequalities can be deduced using the monotonicity property. They are
contained in [GH22, Theorem 2.8], and their proofs can be found in [GH22, Appendix A].

Lemma 2.11. For any t > 0, a < b, β = 1 or ∞, and any pair of increasing events A and B in the
space of all real continuous functions on [a, b],

P(hβt,1|[a,b] ∈ A, hβt,1|[a,b] ∈ B) ≥ P(hβt,1|[a,b] ∈ A) · P(hβt,1|[a,b] ∈ B).

This is the FKG inequality for hβt,1|[a,b]; and for discrete models such as the exponential LPP, such a
result follows from the classical FKG inequality.
For any a < b, an event A in the space of all real continuous functions on [a, b] is called ‘increasing’,
if for any f ∈ A and f ≤ g point-wisely, there is also g ∈ A.

Lemma 2.12. For any t > 0, a < b, β = 1 or ∞, and any increasing event A in the space of all
real continuous functions on [a, b],

P
(
hβt,2|[a,b] ∈ A | hβt,1|[a,b]

)
≤ P

(
hβt,1|[a,b] ∈ A

)
.

This is also called the BK inequality for (reweighted) Brownian bridge ensemble, due to the connection
between line ensembles and disjoint paths through the RSK correspondence (see also the footnote in
[GH22, Page 14]).

2.4. Existing estimates. In this subsection, we list some existing estimates of the line ensembles,
which hold in both zero and positive temperature settings. For the convenience of notations, we
state them in terms of the scaled version ĥβt,1 and ĥβt,2.

We next state the one-point upper- and lower-tails for ĥβt,1. We fix arbitrary ε > 0 in this subsection.

Theorem 2.13 ([GH22, Theorem 1 and Proposition 9.5]). There exists L0 > 0 such that, for any
t > 0 and L > (t−1/3−ε ∨ 1)L0,

exp
(
− 4

3L
3/2 − CL3/4

)
< P

(
ĥβt,1(0) ∈ (L,L+ dL)

)
/dL < exp

(
− 4

3L
3/2 + CL3/4

)
.

In [GH22] this estimate is actually proved for t bounded away from zero. This is because the
arguments in [GH22] take as input a priori tail estimates from [CG20a], which hold for t > t0 and
L > L0 with L0 possibly depending on t0. However, analogous estimates are also available for
arbitrary t > 0 from [DG23], namely Theorems 1.4 (upper bound on upper tail) and 1.7 (upper
bound on lower tail) there. Using these inputs the tail estimate in [GH22] can be upgraded to cover
small t > 0. More details will be given in Appendix C.
Using Theorem 2.13 and stochastic domination, one can deduce an upper-tail bound for one-point
distribution of ĥβt,2, which will be useful later.

Lemma 2.14. There exists L0 > 0 such that, for any t > 0 and L > (t−1/3−ε ∨ 1)L0,

P
(
ĥβt,1(0) > L, ĥβt,1(0) + ĥβt,2(0) > 2L

)
< exp

(
− 8

3L
3/2 + CL3/4

)
.
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Proof. We can write the left-hand side as∫ ∞

L
P
(
ĥβt,2(0) > 2L− ϑ | ĥβt,1(0) ∈ (ϑ, ϑ+ dϑ)

)
P
(
ĥβt,1(0) ∈ (ϑ, ϑ+ dϑ)

)
.

By Lemma 2.12, this is upper bounded by∫ ∞

L
P
(
ĥβt,1(0) > 2L− ϑ

)
P
(
ĥβt,1(0) ∈ (ϑ, ϑ+ dϑ)

)
.

Then the conclusion follows by using Theorem 2.13. □

We have the following estimate on the one-point lower tail of ĥβt,1.

Theorem 2.15. There exists L0 > 0 such that, for any 0 < t ≤ 1 and L > (t−1/6 ∨ 1)L0,

P
(
ĥβt,1(0) < −L

)
≤ exp(−cL2t1/6).

If we instead assume t > t0 for some t0 > 0, and L > L0, then

P
(
ĥβt,1(0) < −L

)
< exp(−cL5/2),

with the constant c depending on t0.

For β = 1 these two estimates can be deduced from [DG23, Theorem 1.7] and [CG20b, Theorem 1]
respectively. For β = ∞, ĥβ=∞

t,1 (0) has GUE Tracy-Widom distribution, whose lower tail is more
classical (see e.g., [TW94] or [CG20b, Proposition 5.1])

The process ĥβt,1 is also 1/2-Hölder.

Proposition 2.16. There exists L0 > 0 such that, for any t > 0 and M2 > (t−1/6 ∨ 1)L0, and
0 < d ≤ 1, we have

P
(

sup
x∈[0,d]

|ĥβt,1(x)− ĥβt,1(0)| > Md1/2
)
< C exp(−cM2).

For β = ∞ this is proved in [DV21a, Lemma 6.1] and [Dau23, Lemma 3.4], and their arguments
carry over to the β = 1 setting. We omit the details here.

We next quote the following tent behavior of ĥβt,1, under the one-point upper-tail event.

Theorem 2.17 ([GH22, Theorem 9]). There exists L0 > 0, such that for any t > 0 and L >

(t−1/3−ε ∨ 1)L0, we have

P

(
sup

x∈[−L1/2,L1/2]

∣∣∣ĥβt,1(x)− L+ 2L1/2|x|
∣∣∣ > ML1/4

∣∣∣ ĥβt,1(0) ∈ (L,L+ dL)

)
< exp(−cM2),

for any 0 < M < cL3/4. The same is true under the conditioning ĥβt,1(0) > L.

As Theorem 2.13, in [GH22] this is proved for t bounded away from zero, and we will give explanations
on how to upgrade it in Appendix C.

A version of this tent behavior with the conditioning replaced by ĥβt,1(0) > L also holds, and we will
only need that for t bounded away from zero.

Lemma 2.18. For any t0 > 0, there exists L0 > 0, such that for any t > t0 and L > L0, we have

P

(
sup

x∈[−L1/2,L1/2]

∣∣∣ĥβt,1(x)− L+ 2L1/2|x|
∣∣∣ > ML1/4

∣∣∣ ĥβt,1(0) > L

)
< exp(−cM2),

for any 0 < M < cL3/4. Here the constant c can depend on t0.
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We will give a proof of this result in Appendix B.

We next give a more precise comparison of the tent with Brownian bridges.

Lemma 2.19. For t and L as in Theorem 2.17, the following is true. Consider the following
processes, each defined on [0, L1/2/2],

x 7→ ĥβt,1(x)− L, x 7→ ĥβt,1(−x)− L,

conditional on ĥβt,1(0) ∈ (L,L + dL). Also, consider the processes (each defined on [0, L1/2/2] as
well)

x 7→ B1(x) + 2xL−1/2(ĥβt,1(L
1/2/2)− L), x 7→ B2(x) + 2xL−1/2(ĥβt,1(−L1/2/2)− L,

also conditional on ĥβt,1(0) ∈ (L,L+ dL), where B1, B2 are rate 2 Brownian bridges in [0, L1/2/2],
independent of each other and independent of ĥβt,1. They can be coupled so that under an event with
probability > 1− C exp(−cL3/2) for both, their Radon-Nikodym derivative is 1 +O(exp(−ct1/3L)).

The proof of this as well as the following lemma will be given in Appendix B.

Lemma 2.20. For t and L as in Theorem 2.17, any I ⊆ [−1
2L

1/2, 12L
1/2] and σI = supx∈I |x|1/2,

and 0 < M < L3/4,

P
(
sup
x∈I

|ĥβt,1(x)− (L− 2L1/2|x|)| > MσI

∣∣∣ ĥβt,1(0) ∈ (L,L+ dL)

)
< C exp(−cM2).

If we in addition assume t > t0 for some t0 > 0, then we have

P
(
sup
x∈I

|ĥβt,1(x)− (L− 2L1/2|x|)| > MσI

∣∣∣ ĥβt,1(0) > L

)
< C exp

(
−c(M2 ∧MσIL

1/2)
)
,

with the constant c depending on t0.

The estimates above quickly lead to the following.

Corollary 2.21. For t and L as in Theorem 2.17, for any 0 < M < L3/4, and any a > 0, we have

P

(
sup

|x|≤L1/2

∣∣∣ĥβt,1(x)− (L− 2L1/2|x|)
∣∣∣ (| log(|x|/a)|+ 1)−1|x|−1/2 > M

∣∣∣ ĥβt,1(0) ∈ (L,L+ dL)

)
< C exp(−cM2).

This estimate is obtained via a union bound over dyadic scales, using Theorem 2.17 or Lemma 2.20
at each scale. The parameter a represents the scale of x at which the logarithm becomes of constant
order, which will provide some convenient flexibility in applications.

2.5. Gaussian estimate. Here we recall a standard bound on the tail of centered Gaussian random
variables.

Lemma 2.22. For σ > 0 and x > 0,

1√
2π

· σ
x

(
1− σ2

x2

)
exp

(
− x2

2σ2

)
≤ P

(
N (0, σ2) ≥ x

)
≤ 1√

2π
· σ
x
exp

(
− x2

2σ2

)
.

Proof. We set σ = 1 without loss of generality. Now we write P
(
N (0, σ2) ≥ x

)
as an integral of

the normal density and obtain the claimed bounds by doing integration by parts one for the upper
bound and again for the lower bound. □
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3. Coalescence and Brownian bridge comparison under upper tail

This section develops the key coalescence estimates that our analysis relies on. It will be convenient
to denote (within this section)

Sβ=1
t (x, y) = t−1/3(logZ(t2/3x, 0; t2/3y, t) + t/12),

for any t > 0. One may interpret this as a ‘rescaled KPZ sheet’. The zero temperature analog, that
is the Airy sheet, will be denoted by

Sβ=∞
t (x, y) = t−1/3L(t2/3x, 0; t2/3y, 1).

Note that actually the law of Sβ=∞
t is the same for any t > 0.

From these definitions, we see that for any t > 0 and β = 1,∞, we have Sβ
t (0, x) = ĥβt,1(x) =

t−1/3hβt,1(t
2/3x). By the shear, shift, and reflection invariance properties of L and Z (introduced in

Section 2.1 and Section 2.2.1), we have that Sβ
t has the same law as

(x, y) 7→ Sβ
t (x+ a, y + b) + (x+ a− y − b)2 − (x− y)2, (x, y) 7→ Sβ

t (−x,−y), (x, y) 7→ Sβ
t (y, x).

We next deduce two uniform bounds of Sβ
t , which are for both β = 1,∞ and any t > 0. The first is

an Hölder estimate.

Lemma 3.1. There exists L0 > 0 such that, for any t > 0 and M2 > (t−1/6 ∨ 1)L0, and 0 < d ≤ 1,
we have

P

(
sup

x,y∈[0,d]
|Sβ

t (x, y)− Sβ
t (0, 0)| > Md1/2

)
< C exp(−cM2).

Proof. Using (2.1) or (2.4), for any x, y ∈ [0, d], we have

−Sβ
t (0, 0) + Sβ

t (0, y) + Sβ
t (x, 0) ≤ Sβ

t (x, y) ≤ −Sβ
t (d, 0) + Sβ

t (d, y) + Sβ
t (x, 0).

By Proposition 2.16, and symmetries of Sβ
t , we have

P

(
sup

x∈[0,d]
|Sβ

t (0, x)− Sβ
t (0, 0)| > Md1/2

)
,P

(
sup

x∈[0,d]
|Sβ

t (x, 0)− Sβ
t (0, 0)| > Md1/2

)
< C exp(−cM2),

and

P

(
sup

x∈[0,d]
|Sβ

t (d, x)− Sβ
t (d, 0)| > Md1/2

)
< C exp(−cM2);

therefore the conclusion holds. □

Lemma 3.2. Fix ε > 0. There exist M0 > 0 and a random variable H > 0, such that P(H > M) <

C exp(−cM3/2) for any M > (t−1/3+ε ∨ 1)M0, and

|Sβ
t (x, y) + (x− y)2| < H + log(|x|+ |y|+ 2), ∀x, y ∈ R.

Proof. It suffices to show that, for any M > 0,

P

(
sup

x,y∈[0,1]
|Sβ

t (x, y) + (x− y)2| > M

)
< C exp(−cM3/2). (3.1)

Then the conclusion follows by splitting R into intervals of length 1, using the shear and shift
invariance properties of Sβ

t , and taking a union bound.

As for (3.1), we just apply Lemma 3.1 for d = 1, and use that P(|Sβ
t (0, 0)| > M) < C exp(−cM3/2),

which can be obtained from Theorems 2.13 and 2.15. □
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Figure 4. An illustration of the shift-invariance: the joint distributions of the three
passage times/partition functions in the left and right panels are the same, under the
condition that both endpoints of each path are shifted by the same amount, and the
endpoints and shifts are such that the paths are all forced by planarity to intersect
both before and after the shift.

The following remarkable shift-invariance property (illustrated in Figure 4) proved in [BGW22] will
also be a key input. It follows from [BGW22, Theorems 7.8, 7.10] immediately.

Lemma 3.3. Take any m ∈ N, and x1 ≤ · · · ≤ xm, y1 ≥ · · · ≥ ym, and x′1 ≤ · · · ≤ x′m,
y′1 ≥ · · · ≥ y′m, such that xi−yi = x′i−y′i for any i ∈ [[1,m]]. Then {Sβ

t (xi, yi)}mi=1 and {Sβ
t (x

′
i, y

′
i)}mi=1

are equal in distribution.

We next give the behavior of Sβ
t under upper tail events. To be concise, for the rest of this section

we fix t > 0. All the constants (including all C, c > 0) are allowed to depend on t. And β is taken to
equal either 1 or ∞.

3.1. Coalescence and independent tents with Brownian bridges. We now give our main
coalescence estimate, in the form of stating that the quadrangle inequalities from (2.1) and (2.4) are
sharp under the upper tail. Its proof will be given in Section 3.2.

Proposition 3.4. Take any L > 0 and L+ > L+exp(−0.001L3/2) (including L+ = ∞), and denote
H = 10−6L1/2. When β = ∞,

P
(
Sβ
t (x, y) = Sβ

t (x, 0) + Sβ
t (0, y)− Sβ

t (0, 0), ∀|x|, |y| ≤ H
∣∣∣ L < Sβ

t (0, 0) < L+
)
> 1−C exp(−cL3/2).

When β = 1, the same bound holds when the event is replaced by

|Sβ
t (x, y)− (Sβ

t (x, 0) + Sβ
t (0, y)− Sβ

t (0, 0))| < C exp(−cL), |x|, |y| ≤ H.

The lower bound on L+ above is to ensure a lower bound on P(L < Sβ
t (0, 0) < L+) which will be

needed in the proof.
The connection between the above estimate and coalescence is that, at zero temperature (β = ∞),
the equality is equivalent to the coalescence of a family of geodesics, according to Lemma 2.4. At
positive temperature, almost surely the quadrangle inequality is strict (see (2.4)), so the equality is
replaced by an upper bound of C exp(−cL), which is roughly the probability for the corresponding
polymers to be disjoint given the field Z.
As we have seen from e.g. Theorem 2.17, there are tent behaviors under the upper tail event. The
following proposition states that conditional on the upper tail event, the two tents seen from both
positive and negative directions are roughly independent, and are close to Brownian bridges. It is a
two-sided version of Lemma 2.19.

Proposition 3.5. Take any L > 0 and L+ > L + exp(−0.001L3/2) (including L+ = ∞). Let
H = 10−6L1/2. Consider the following processes, each defined on [0, H],

x 7→ Sβ
t (0, x)− Sβ

t (0, 0), x 7→ Sβ
t (0,−x)− Sβ

t (0, 0),
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x 7→ Sβ
t (x, 0)− Sβ

t (0, 0), x 7→ Sβ
t (−x, 0)− Sβ

t (0, 0),

conditional on L < Sβ
t (0, 0) < L+. Further, also consider the processes (each defined on [0, H] as

well)

x 7→ B1(x) + x(Sβ
t (0, H)− Sβ

t (0, 0))/H, x 7→ B2(x) + x(Sβ
t (0,−H)− Sβ

t (0, 0))/H,

x 7→ B3(x) + x(Sβ
t (H, 0)− Sβ

t (0, 0))/H, x 7→ B4(x) + x(Sβ
t (−H, 0)− Sβ

t (0, 0))/H,

also conditional on L < Sβ
t (0, 0) < L+, where B1, B2, B3, B4 are four rate 2 Brownian bridges in

[0, H], independent of each other and independent of Sβ
t .

There is another measure on C([0, H],R)4, such that, with probability > 1− C exp(−cL3/2), (1) its
Radon-Nikodym derivative over the first set of processes is 1+O(exp(−cL)) and (2) it can be coupled
with the second set of processes such that, the L∞ distance between them is < C exp(−cL).

The proof of Proposition 3.5 involves reducing it to the following statement, using the shift-invariance
of Lemma 3.3 and Proposition 3.4.

Lemma 3.6. Take any L > 0 and denote H = 10−6L1/2. Consider the following processes, each
defined on [0, H],

x 7→ Sβ
t (0, x)− Sβ

t (0, 0), x 7→ Sβ
t (0,−x)− Sβ

t (0, 0),

x 7→ Sβ
t (0,−x−H)− Sβ

t (0,−H), x 7→ Sβ
t (0, x+H)− Sβ

t (0, H),

conditional on Sβ
t (0, 0) ∈ (L,L+ dL). Also, consider the processes (each defined on [0, H] as well)

x 7→ B1(x) + x(Sβ
t (0, H)− Sβ

t (0, 0))/H, x 7→ B2(x) + x(Sβ
t (0,−H)− Sβ

t (0, 0))/H,

x 7→ B3(x) + x(Sβ
t (0,−2H)− Sβ

t (0,−H))/H, x 7→ B4(x) + x(Sβ
t (0, 2H)− Sβ

t (0, H))/H,

also conditional on Sβ
t (0, 0) ∈ (L,L+ dL), where B1, B2, B3, B4 are four rate 2 Brownian bridges in

[0, H], independent of each other and independent of Sβ
t . They can be coupled so that under an event

with probability > 1− C exp(−cL3/2) for both, their Radon-Nikodym derivative is 1 +O(exp(−cL)).

This lemma directly follows from Lemma 2.19, and we omit the details. We now prove Proposition 3.5
assuming Proposition 3.4 and Lemma 3.6.

0

0−t2/3H t2/3H

−2t2/3H 2t2/3H

0

0−t2/3H t2/3H

−t2/3H t2/3H t2/3H−t2/3H

t2/3H−t2/3H 0

0

Figure 5. An illustration of transforming the weights of varying one side (left panel)
into varying both sides (middle panel) using shift-invariance, then to two tents (right
panel) by coalescence.

Proof of Proposition 3.5. By shift-invariance (Lemma 3.3), in Lemma 3.6 we can replace Sβ
t (0, x+H)

by Sβ
t (−x,H) and Sβ

t (0,−x−H) by Sβ
t (x,−H) (see Figure 5). Note that Lemma 3.3 is stated in

terms of finitely many points, but we can do the replacement for each x ∈ [0, H] simultaneously
since Sβ

t is continuous. Therefore we get the following statement. Consider the processes

x 7→ Sβ
t (0, x)− Sβ

t (0, 0), x 7→ Sβ
t (0,−x)− Sβ

t (0, 0),

x 7→ Sβ
t (x,−H)− Sβ

t (0,−H), x 7→ Sβ
t (−x,H)− Sβ

t (0, H), (3.2)
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on [0, H], conditional on L < Sβ
t (0, 0) < L+; and the processes (also on [0, H])

x 7→ B1(x) + x(Sβ
t (0, H)− Sβ

t (0, 0))/H, x 7→ B2(x) + x(Sβ
t (0,−H)− Sβ

t (0, 0))/H,

x 7→ B3(x) + x(Sβ
t (H,−H)− Sβ

t (0,−H))/H, x 7→ B4(x) + x(Sβ
t (−H,H)− Sβ

t (0, H))/H, (3.3)

conditional on L < Sβ
t (0, 0) < L+, where B1, B2, B3, B4 are four rate 2 Brownian bridges in [0, H],

independent of each other and independent of Sβ
t . They can be coupled so that under an event with

probability > 1− C exp(−cL3/2) for both, their Radon-Nikodym derivative is 1 +O(exp(−cL)).

By Proposition 3.4, with probability > 1− C exp(−cL3/2), we have

|(Sβ
t (x,−H)− Sβ

t (0,−H))− (Sβ
t (x, 0)− Sβ

t (0, 0))| < C exp(−cL),

|(Sβ
t (−x,H)− Sβ

t (0, H))− (Sβ
t (−x, 0)− Sβ

t (0, 0))| < C exp(−cL),

for any x ∈ [0, H]; in particular,

|(Sβ
t (H,−H)− Sβ

t (0,−H))− (Sβ
t (H, 0)− Sβ

t (0, 0))| < C exp(−cL),

|(Sβ
t (−H,H)− Sβ

t (0, H))− (Sβ
t (−H, 0)− Sβ

t (0, 0))| < C exp(−cL).

By plugging these estimates into (3.2) and (3.3) respectively, we get the conclusion. □

It remains to prove Proposition 3.4, which we accomplish in the next subsection.

3.2. Coalescence of polymers. Using the quadrangle inequalities (2.1) and (2.4), Proposition 3.4
can be reduced to the following lemma.

Lemma 3.7. Take any L > 0 and L+ > L+ exp(−0.001L3/2), and denote H = 10−6L1/2. Then
when β = ∞, we have

P
(
Sβ
t (−H,−H) + Sβ

t (H,H) > Sβ
t (−H,H) + Sβ

t (H,−H) | L < Sβ
t (0, 0) < L+

)
< C exp(−cL3/2).

And when β = 1, the same estimate holds with the event replaced by

Sβ
t (−H,−H) + Sβ

t (H,H)− Sβ
t (−H,H)− Sβ

t (H,−H) > C exp(−cL).

In the β = ∞ setting, in light of Lemma 2.4, the event whose probability we wish to bound is
equivalent to that (in the directed landscape) the geodesic from (−t2/3H, 0) to (−t2/3H, t) and the
geodesic from (t2/3H, 0) to (t2/3H, t) are disjoint. Such disjointness is unlikely to happen under the
upper large since then geodesics tend to merge into the geodesic from (0, 0) to (0, t), shortly away
from the endpoints. When β = 1, the event is instead interpreted as that the multi-point partition
function from the spatial coordinates −t2/3H and t2/3H at time 0 to −t2/3H and t2/3H at time t is
comparable to the product of the two individual ones. This can be then understood as a positive
temperature form of disjointness.

For multi-point passage times and multi-point partition functions of size 2, we can only estimate
them when each side of the endpoints is at a single point, using Lemma 2.14. In the proof of
Lemma 3.7 we will need to upper bound those from −t2/3H, t2/3H at time 0 to −t2/3H, t2/3H at
time t. Our strategy is to do surgeries around time 0 and time 1 (see Figure 6): we instead upper
bound those from 0, 0 at time −εt to 0, 0 at time (1 + ε)t. Here ε > 0 is a small constant. Then we
use the composition laws and lower bound various passage times and partition functions between
time −εt and 0, and time t and (1 + ε)t. We note that such surgery arguments have appeared in the
directed landscape and LPP models, see e.g. [Ham20].

We now give the details. For concreteness, we take ε = 10−6 in the rest of this section. First, we note
that by taking C large and c small, it suffices to prove Lemma 3.7 for large enough L. By Lemma 3.3,

24



(0,−εt)

(0, (1 + ε)t)

(−t2/3H, 0) (t2/3H, 0)

(−t2/3H, t) (t2/3H, t)

Figure 6. An illustration of the surgery, bringing the endpoints of multi-point
passage times and multi-point partition functions together.

Sβ
t (−H,H) + Sβ

t (H,−H) and Sβ
t (0, 0) have the same joint distribution as Sβ

t (0, 2H) + Sβ
t (0,−2H)

and Sβ
t (0, 0). Then by Theorem 2.17 we have

P
(
Sβ
t (−H,H) + Sβ

t (H,−H) < (2− 0.001)L− 8L1/2H | L < Sβ
t (0, 0) < L+

)
< exp(−cL3/2).

(3.4)
Also by Theorem 2.13, for large L we have

P
(
L < Sβ

t (0, 0) < L+
)
> c exp(−(4/3 + 0.005)L3/2). (3.5)

3.2.1. Directed landscape (β = ∞) setting. In this case, we can assume t = 1 since the law of Sβ=∞
t

is independent of t. Recall that Sβ=∞
1 = L(·, 0; ·, 1). On the event in Lemma 3.7 whose probability

we wish to bound, Lemma 2.2 and Lemma 2.4 imply that

L(−H, 0;H, 1) + L(H, 0;−H, 1) < L(−H, 0;−H, 1) + L(H, 0;H, 1) = L((−H,H), 0; (−H,H), 1).

Therefore, since we have lower bounded the LHS in (3.4), to prove Lemma 3.7 it suffices to prove
the following estimate.

Lemma 3.8. For L > 0 large enough and H = 10−6L1/2, we have

P
[
L((−H,H), 0; (−H,H), 1) > 1.99L

]
< C exp

(
− (4/3 + 0.01)L3/2

)
.

Using this lemma and (3.5), we can bound the probability of the same event conditional on L <

Sβ
t (0, 0) < L+, by C exp(−0.005L3/2). Then by (3.4), and noting that (2−0.001)L−8L1/2H > 1.99L,

we get Lemma 3.7.

Proof of Lemma 3.8. By using (2.2) twice (first with y1 = −H, y2 = 0, y3 = H and then with
y1 = y2 = 0 and y3 = −H), we have

L((0, 0),−ε; (−H,H), 0) ≥ L((0, 0),−ε; (0, 0), 0)+L(0,−ε;−H, 0)+L(0,−ε;H, 0)−2L(0,−ε; 0, 0).

Denote w := P(L((0, 0),−ε; (0, 0), 0) > 0). There exists c∗ > 0, such that

P
(
L(0,−ε;−H, 0)+H2/ε < −c∗

)
, P
(
L(0,−ε;H, 0)+H2/ε < −c∗

)
, P
(
L(0,−ε; 0, 0) > c∗

)
< w/4.

We note that w, c∗ are independent of L. Therefore

P
(
L((0, 0),−ε; (−H,H), 0) > −2H2/ε− 4c∗

)
> w/4.

Similarly,
P
(
L((−H,H), 1; (0, 0), 1 + ε) > −2H2/ε− 4c∗

)
> w/4.

Note that

L2(0,−ε; 0, 1 + ε)
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≥ L((0, 0),−ε; (−H,H), 0) + L((−H,H), 0; (−H,H), 1) + L((−H,H), 1; (0, 0), 1 + ε).

So we have

P
(
L2(0,−ε; 0, 1 + ε) > 1.99L− 4H2/ε− 8c∗

)
≥ P

(
L((−H,H), 0; (−H,H), 1) > 1.99L

)
w2/16.

Using Lemma 2.14 and the fact that L2(0,−ε; 0, 1 + ε) ≤ 2L(0,−ε; 0, 1 + ε) almost surely, we can
bound the left-hand side by exp

(
− (4/3 + 0.01)L3/2

)
. Thus the conclusion follows. □

3.2.2. Positive temperature (β = 1) setting. Recall from Section 2.2.2 the notation M for multi-point
partition functions. We can then write

exp
(
t1/3(Sβ

t (−H,−H) + Sβ
t (H,H)− Sβ

t (−H,H)− Sβ
t (H,−H))

)
− 1

=
(2t2/3H)2M((−t2/3H, t2/3H), 0; (−t2/3H, t2/3H), t)

exp
(
t1/3(Sβ

t (−H,H) + Sβ
t (H,−H))− t/6

) . (3.6)

Therefore, to prove Lemma 3.7, the main task is to prove the following estimate.

Lemma 3.9. For L > 0 large enough and H = 10−6L1/2, we have

P
(
M
(
(−t2/3H, t2/3H), 0; (−t2/3H, t2/3H), t)

)
> exp

(
t1/3 · 1.99L

))
< C exp

(
− (4/3 + 0.01)L3/2

)
.

Using this lemma and (3.5), we can bound the probability of the same event conditional on
L < Sβ

t (0, 0) < L+, by C exp(−0.005L3/2). Then by (3.4), conditional on L < Sβ
t (0, 0) < L+, with

probability > 1− C exp(−cL3/2) the expression (3.6) is upper bounded by

(2t2/3H)2 exp
(
t1/3 · 1.99L

)
exp

(
t1/3 · (2L− 8L1/2H − 0.001L)− t/6

) < C exp(−cL).

Thus we get Lemma 3.7.
The rest of this section is devoted to proving Lemma 3.9. We let E denote the event whose probability
we wish to bound, in the statement of Lemma 3.9. By Lemma 2.14, we have

P
(
Z(0,−εt; 0, (1 + ε)t) > exp

(
t1/3 · 0.98L

)
, Z2(0,−εt; 0, (1 + ε)t) > exp

(
t1/3 · 1.96L

))
< C exp

(
− (8/3− 0.1)L3/2

)
.

By the continuity of M (Lemma 2.8), we have almost surely

2−1(1 + 2ε)tM((−δ, δ),−εt; (−δ, δ), (1 + ε)t) → Z2(0,−εt; 0, (1 + ε)t),

as δ → 0 from the right. Then there exists small enough δL > 0, such that P(E+) < C exp
(
− (8/3−

0.1)L3/2
)
, with E+ being the event where

Z(0,−εt; 0, (1 + ε)t) > exp
(
t1/3 · 0.98L

)
,

M
(
(−δL, δL),−εt; (−δL, δL), (1 + ε)t

)
> exp

(
t1/3 · 1.98L

)
.

We will show that conditional on E , with positive probability (independent of L), E+ holds. For this,
we define the following events.
By Lemma 2.8, there exists a small number w > 0, such that

P (M((−x, x),−εt; (−w,w), 0) > w) > w

for any |x| ≤ w. We let E1 be the event where

M
(
(−δL, δL),−εt; (−w,w), 0

)
> w, M

(
(−w,w), t; (−δL, δL, (1 + ε)t

)
> w.

Then P(E1) > w2.
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We let E2 be the event where for any x, y ∈ R,∣∣∣(εt)−1/3(logZ((εt)2/3x,−εt; (εt)2/3y, 0) + εt/12) + (x− y)2
∣∣∣ < 10−3L+ log(|x− y|+ 2),

and∣∣∣(εt)−1/3(logZ((εt)2/3x, t; (εt)2/3y, (1 + ε)t) + εt/12) + (x− y)2
∣∣∣ < 10−3L+ log(|x− y|+ 2).

Then by Lemma 3.2, we have P(E2) > 1− C exp(−cL3/2).
By Lemma 3.1 and the shift invariance of Z, we have P(E∗) > 1−C exp(−cL2), for E∗ denoting the
event where

sup
x,y∈[−H−1,−H]

∣∣Sβ
t (x, y)− Sβ

t (−H,−H)
∣∣, sup

x,y∈[H,H+1]

∣∣Sβ
t (x, y)− Sβ

t (H,H)
∣∣ < 10−10L.

Lemma 3.10. We have E1 ∩ E2 ∩ E∗ ∩ E ⊂ E+.

Proof. In this proof we always take

x, x′ ∈ [−t2/3(H + 1),−t2/3H], y, y′ ∈ [t2/3H, t2/3(H + 1)].

We will use E1 ∩ E2 to lower bound M((−δL, δL),−εt; (x, y), 0) and M((x′, y′), t; (−δL, δL), (1 +
ε)t), and Z(0,−εt;x, 0), Z(x′, t; 0, (1 + ε)t); then we will lower bound M((x, y), 0; (x′, y′), t) and
Z(x, 0;x′, t) for these x, x′, y, y′, using E ∩ E∗. Then using the composition laws (1.3) and (2.5), we
obtain E+.
Step 1. Using Lemma 2.7, we have that

(y − x)M((−δL, δL),−εt; (x, y), 0) > 2wM((−δL, δL),−εt; (−w,w), 0)

× Z(−δL,−εt;x, 0)Z(δL,−εt; y, 0)

Z(−δL,−εt;−w, 0)Z(δL,−εt;w, 0)
.

Under E1, the first factor in the right-hand side is > 2w2; and under E2, the second factor in the
right hand side is > exp(−t1/310−3L), when L is large enough. Therefore, we have

M((−δL, δL),−εt; (x, y), 0) > c exp(−t1/310−3L). (3.7)

By symmetry, the same lower bound holds for M((x′, y′), t; (−δL, δL), (1 + ε)t).
The event E2 also implies that

Z(0,−εt;x, 0),Z(x′, 2t; 0, (2 + ε)t) > exp(−t1/310−3L). (3.8)

Step 2. Using Lemma 2.7, we have that

2M((x, y), 0; (x′, y′), t) > M((−t2/3H, t2/3H), 0; (−t2/3H, t2/3H), t)

× Z(x′, 0;x, t)Z(y′,−0; y, t)

Z(−t2/3H, 0;−t2/3H, t)Z(t2/3H,−0; t2/3H, t)
.

By E , the first factor in the right-hand side is > exp(t1/3 · 1.99L); and by E∗, the second factor in
the right-hand side is > exp(−t1/310−9L). Therefore we have

M((x, y), 0; (x′, y′), t) > c exp(t1/3 · (1.99− 10−9)L). (3.9)

From E , we also have that

Z(−t2/3H, 0;−t2/3H, t) ∨ Z(t2/3H, 0; t2/3H, t) > exp(t1/3 · 0.99L).
Without loss of generality, we assume that

Z(−t2/3H, 0;−t2/3H, t) > exp(t1/3 · 0.99L).
Then by E∗, we have

Z(x, 0;x′, t) > exp(t1/3 · (0.99− 10−9)L). (3.10)
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Step 3. By the composition law (2.5), and (3.7), (3.9), we have

M((−δL, δL),−εt; (−δL, δL), (1 + ε)t) > c exp(t1/3 · (1.99− 2 · 10−3 − 10−9)L).

By the composition law (1.3), and (3.8), (3.10), we have

Z(0,−εt; 0, (1 + ε)t) > c exp(t1/3 · (0.99− 2 · 10−3 − 10−9)L).

These imply the event E+. □

Proof of Lemma 3.9. By Lemma 3.10, and the fact that E1, E2 are independent of E∗, E , we have
P(E1 ∩ E2)P(E∗ ∩ E) ≤ P(E+). Then by the bounds on P(E1), P(E2), P(E∗), P(E), and P(E+), we
have that

P(E) ≤ C exp
(
− (8/3− 0.1)L3/2

)
(w2 − C exp(−cL3/2))−1 − C exp(−cL2),

and this is bounded by C exp
(
− (4/3 + 0.01)L3/2

)
for L large enough. □

4. Tail comparison estimates

To reduce notations, in the rest of this paper we denote

Lβ=1(x, s; y, t) = logZ(x, s; y, t) + (t− s)/12, Lβ=∞(x, s; y, t) = L(x, s; y, t).

We take β = 1 or ∞ systematically unless otherwise noted. From the above definition we have
hβt,1(x) = Lβ(0, 0;x, t).

In this section, t is taken to be any t > t0, where t0 is an arbitrary positive number. All the constants
may depend on t0, but are uniform in t.

As indicated in Section 1.2, the following tail ratio estimate would be central in much of our analysis.

Theorem 4.1. For any L ≥ 2, and 0 < δ < L1/4,

P
(
ĥβt,1(0) > L+ δ

)
P(ĥβt,1(0) > L)

= exp(−2δL1/2 +O(δL−1/4 log(L) + L−3/2)). (4.1)

For δ ≥ L1/4, the same ratio equals exp(−Ω(δL1/2)).

The main term exp(−2δL1/2) comes from the following: from the tent behavior, one considers a
Brownian bridge in [−L−1/2, L1/2] that equals −L at the two ends; then the ratio is roughly the
probability that it is > L+ δ at 0 versus the probability that it is > L at 0. As mentioned in the
idea of proofs Section 1.2, it can also be understood by Taylor expanding 4

3x
3/2 around x = L.

The general strategy will be to use the Gibbs property (Lemma 2.9) to resample ĥβt,1 in an interval
[−L1/2 +M,L1/2 −M ], with some M large but much smaller than L1/2. The choice of M is such
that, conditioned on the upper tail large deviation event, ĥβt,1 in the interval [−L1/2 +M,L1/2 −M ]
is not much affected by the second line ĥβt,2 since, by the tent behavior, it will have obtained some
separation from the second line by that time. Thus ĥβt,1 can be analyzed as a Brownian bridge on
that interval. For this, we need the following estimate of ĥβt,1 at the end point −L1/2 +M (and also
for L1/2 −M by symmetry).

Lemma 4.2. For any 0 < M < L1/2 and L ≥ 2,

P
(
ĥβt,1(−L1/2 +M) ≤ −(L1/2 −M)2 + 1

2M
2
∣∣∣ ĥβt,1(0) > L

)
< C exp(−cM5/2).
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By the tent behavior, we expect the expectation of ĥβt,1(±(L1/2 −M)) to be around −L+ 2ML1/2,
with a Gaussian fluctuation of order M1/2. This estimate bounds the probability that it is order M2

smaller than its mean. The reason the upper bound is exp(−cM5/2) rather than exp(−c(M2)2/M) =
exp(−cM3) is due to interactions with ĥβt,2.

In the following proof we will use the notation EF [·] := E[ · | F ] and PF (·) := P(· | F) for a σ-algebra
F . The existence of the regular conditional distribution is justified by the fact that the σ-algebras
we consider will be generated by random variables taking values in Borel spaces and then invoking
abstract existence results such as [Kal22, Theorem 8.5].

Proof of Lemma 4.2. Let F = Fext([−t2/3L1/2, 0]) (recall the definition of Fext from Section 2.3)
and LM = (L1/2 −M)2. Then we can write the probability of the complement of the event in the
LHS in the statement of the lemma as

E
[
PF
(
ĥβt,1(−L

1/2
M ) > −LM + 1

2M
2
)
1
ĥβt,1(0)>L

]
P(ĥβt,1(0) > L)

. (4.2)

Let us focus on the conditional probability in the numerator. Let B̃ be a Brownian bridge from
(−L1/2, ĥβt,1(−L1/2)) to (0, ĥβt,1(0)), such that x 7→ t1/3B̃(t−2/3x) in [−t2/3L1/2, 0] interacts with hβt,2
by the Radon Nikodym derivative reweighting (2.6). Then the Brownian Gibbs property says that
the conditional probability in the previous display equals

PF
(
B̃(−L

1/2
M ) > −LM + 1

2M
2
)
. (4.3)

Next let B be a Brownian bridge from (−L1/2,−L−M) to (0, L) (with no lower boundary condi-
tioning). Then, on the F-measurable event

A(L,M) =
{
ĥβt,1(−L1/2) > −L−M, ĥβt,1(0) > L

}
, (4.4)

it holds that B̃ dominates B by monotonicity (Lemma 2.10), so (4.3) is lower bounded by

PF
(
B(−L

1/2
M ) > −LM + 1

2M
2
)
1A(L,M). (4.5)

Now B(−L
1/2
M ) is distributed as a normal random variable with mean

−L−M +M · L− (−L−M)

L1/2
= −L−M + 2L1/2M +M2L−1/2

and variance σ2 = 2M(L1/2−M)

L1/2 ≤ 2M . Since −LM = −(L1/2 −M)2 = −L+ 2L1/2M −M2, we see
that (4.5) equals, on A(L,M),

P
(
N (0, σ2) > −M2(12 + L−1/2) +M

)
≥ 1− exp

(
−cM3

)
using standard tail bounds for the normal distribution (Lemma 2.22). Putting this back in (4.2) and
recalling the definition (4.4) of A(L,M) , we see that the LHS in the lemma is upper bounded by

1− (1− exp(−cM3))P
(
ĥβt,1(−L1/2) > −L−M

∣∣∣ ĥβt,1(0) > L
)
.

By the FKG inequality (Lemma 2.11) and Theorem 2.15, we have

P
(
ĥβt,1(−L1/2) > −L−M

∣∣∣ ĥβt,1(0) > L
)
> 1− exp(−cM5/2)).

This completes the proof. □
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Proof of Theorem 4.1. We can assume that L is large since otherwise the conclusion follows from
Theorem 2.13. For some constant C0 sufficiently large, the case of δ > C0L

1/4 also follows from
Theorem 2.13. In the remainder of the proof, we prove (4.1) for δ < C0L

1/4.

Denote M = log(L). It suffices to show that

P
(
ĥβt,1(0) > L+ δ

)
P(ĥβt,1(0) > L)

· exp(2δL1/2) < (1 + CL−3/2) exp(CδML−1/4) and

P
(
ĥβt,1(0) > L+ δ

)
P(ĥβt,1(0) > L)

· exp(2δL1/2) > (1− CL−3/2) exp(−CδML−1/4).

We let LM = (L1/2 −M)2, and F = Fext([−t2/3L
1/2
M , t2/3L

1/2
M ]). We start by considering the ratio

of conditional probabilities

PF
(
ĥβt,1(0) > L+ δ

)
PF
(
ĥβt,1(0) > L

) .

We adopt the notation B for the law of a Brownian bridge B from (−t2/3L
1/2
M , hβt,1(−t2/3L

1/2
M )) to

(t2/3L
1/2
M , hβt,1(t

2/3L
1/2
M )), as well as the associated expectation. With this notation, by the Brownian

Gibbs property, the previous display equals

B
(
1B(0)>t1/3(L+δ)W (B, hβt,2)

)
B
(
1B(0)>t1/3LW (B, hβt,2)

) =
B
(
B(0) > t1/3(L+ δ)

)
B
(
B(0) > t1/3L

) ·
B
(
W (B, hβt,2) | B(0) > t1/3(L+ δ)

)
B
(
W (B, hβt,2) | B(0) > t1/3L

) ,

where W (B, hβt,2) is the weight factor from (2.6). Now the second ratio of terms in the previous
display is lower bounded by 1 using stochastic monotonicity properties of Brownian bridges and
that W is increasing in B. To upper bound the second ratio, we note that, since W (B, hβt,2) ≤ 1, it
suffices to lower bound the denominator B

(
W (B, hβt,2) | B(0) > t1/3L

)
. To do this we consider the

F-measurable event BdyCtrl = BdyCtrl(L,M) defined by

{
ĥβt,1(±L

1/2
M ) ≥ −LM + 1

2M
2
}
∩

M−1L
1/2
M⋂

i=0

 sup
|x|∈[L1/2

M −iM,L
1/2
M −(i+1)M ]

ĥβt,2(x) + x2 ≤ (i+ 1)M

 .

By Lemma 4.2, the BK inequality (Lemma 2.12), and the upper bound on sup ĥβt,1 (following from
Theorem 2.13 and Proposition 2.16), we have

P
(
BdyCtrlc | ĥβt,1(0) > L+ δ

)
≤ C exp(−cM5/2) +

M−1L
1/2
M∑

i=0

C exp
(
−ci3/2M3/2

)
< C exp(−cM3/2).

(4.6)

Let ℓ− be the line joining (−L
1/2
M ,−LM + 1

4M
2) and (0, L− 1

4M
2), ℓ+ be the line joining (0, L− 1

4M
2)

and (L
1/2
M ,−LM + 1

4M
2), and ℓ be their concatenation. Consider the high corridor event

HighCorr =
{
t−1/3B(t2/3x) ≥ ℓ(x)− L

1/2
M + |x| for all x ∈ [−L

1/2
M , L

1/2
M ]
}
;

it is easy to obtain by standard Brownian bridge estimates that, on BdyCtrl, B[HighCorr | B(0) >

t1/3L] > 1− C exp(−cM2).
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Now on HighCorr and BdyCtrl, we have t−1/3B(t2/3x) ≥ ĥβt,2(x)+
1
4M

2−M ; and it is easy to check
with the formula (2.6) that

W (B, hβt,2) > 1− Ct2/3L
1/2
M exp(−ct1/3M2) > 1− C exp(−cM2).

Thus, these bounds on W (B, hβt,2) and B(HighCorr | B(0) > t1/3L) yield that, on BdyCtrl,

B
(
W (B, hβt,2) | B(0) > t1/3L

)
> 1− C exp(−cM2).

So we see that, on BdyCtrl(L,M),

PF
(
ĥβt,1(0) > L+ δ

)
PF
(
ĥβt,1(0) > L

) = (1 +O(e−cM2
)) ·

B
(
B(0) > t1/3(L+ δ)

)
B
(
B(0) > t1/3L

) . (4.7)

Let µ = 1
2(ĥ

β
t,1(−L

1/2
M ) + ĥβt,1(L

1/2
M )), and observe that B(0) under B is distributed as a normal

random variable with mean t1/3µ and variance t2/3L
1/2
M . Consider the F-measurable event

MeanCtrl(L) =
{
µ ∈ [−L+ 2L1/2M −ML1/4,−L+ 2L1/2M +ML1/4]

}
.

We know from Theorem 2.17 that

P(MeanCtrl(L)c | ĥβt,1(0) > L+ δ) < exp(−cM2). (4.8)

Using standard bounds on the tail of the normal distribution (Lemma 2.22), on MeanCtrl(L) (and
on BdyCtrl(L,M) as we are assuming throughout), the RHS of (4.7) equals

(1 +O(e−cM2
))(1 +O(L−3/2)) · L− µ

L+ δ − µ
· exp

(
− 1

2L
1/2
M

[
(L+ δ − µ)2 − (L− µ)2

])
and the last factor can be further written as

exp

(
−2δ(L− µ) + δ2

2L
1/2
M

)
= exp

(
−2δ(L+ L− 2L1/2M +O(ML1/4)) + δ2

2L
1/2
M

)
= exp

(
−2δL1/2 +O(δML−1/4)

)
.

Overall, we have at this point established that, on BdyCtrl(L,M) ∩MeanCtrl(L),

PF
(
ĥβt,1(0) > L+ δ

)
PF
(
ĥβt,1(0) > L

) = (1 +O(e−cM2
))(1 +O(L−3/2)) · L− µ

L+ δ − µ
exp

(
−2δL1/2 +O(δML−1/4)

)
.

(4.9)

We next convert this into upper and lower bounds on P(ĥβt,1(0) > L+ δ), respectively.

Upper bound. We see from (4.9) that

PF
(
ĥβt,1(0) > L+ δ

)
= PF

(
ĥβt,1(0) > L+ δ

) (
1BdyCtrl(L,M)∩MeanCtrl(L) + 1(BdyCtrl(L,M)∩MeanCtrl(L))c

)
≤ (1 + Ce−cM2

)(1 + CL−3/2) exp
(
−2δL1/2 + CδML−1/4

)
PF
(
ĥβt,1(0) > L

)
+ PF

(
ĥβt,1(0) > L+ δ

)
1(BdyCtrl(L,M)∩MeanCtrl(L))c ,

so that, by taking expectations,

P
(
ĥβt,1(0) > L+ δ

)
≤ (1 + Ce−cM2

)(1 + CL−3/2) exp
(
−2δL1/2 + CδML−1/4

)
P
(
ĥβt,1(0) > L

)
+ P

({
ĥβt,1(0) > L+ δ

}
∩
(
BdyCtrl(L,M) ∩MeanCtrl(L)

)c)
.
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We focus on the last term. It equals

P
(
ĥβt,1(0) > L+ δ

)
· P
((

BdyCtrl(L,M) ∩MeanCtrl(L)
)c ∣∣∣ ĥβt,1(0) > L+ δ

)
.

If we can show that the second factor is small, we will be done. By a union bound, it is at most

P(BdyCtrl(L,M)c | ĥβt,1(0) > L+ δ) + P(MeanCtrl(L)c | ĥβt,1(0) > L+ δ),

which, from (4.6) and (4.8), is upper bounded by C exp(−cM3/2) + exp(−cM2). This completes the
proof of the upper bound on P(ĥβt,1(0) > L+ δ).

Lower bound. We observe that, on MeanCtrl, L−µ
L+δ−µ = 2L+O(ML1/2)

2L+O(ML1/2)+δ
> 1 − CδL−1. Then we

have, using (4.9),

PF (ĥ
β
t,1(0) > L+ δ)

≥ PF (ĥ
β
t,1(0) > L+ δ) · 1BdyCtrl(L,M)∩MeanCtrl(L)

≥ (1− Ce−cM2
)(1− CL−3/2) exp

(
−2δL1/2 − CδML−1/4

)
PF (ĥ

β
t,1(0) > L) · 1BdyCtrl(L,M)∩MeanCtrl(L),

absorbing the factor of 1− CδL−1 into exp(−CδML−1/4). Taking expectations yields

P
(
ĥβt,1(0) > L+ δ

)
≥ (1− Ce−cM2

)(1− CL−3/2) exp
(
−2δL1/2 − CδML−1/4

)
× P

(
ĥβt,1(0) > L,BdyCtrl(L,M),MeanCtrl(L)

)
≥ (1− Ce−cM2

)(1− CL−3/2) exp
(
−2δL1/2 − CδML−1/4

)
× P

(
BdyCtrl(L,M),MeanCtrl(L) | ĥβt,1(0) > L

)
· P
(
ĥβt,1(0) > L

)
.

As we saw above, the latter conditional probability is lower bounded by 1− C exp(−cM3/2), thus
completing the proof of the lower bound. □

5. Tightness as continuous functions: geodesics and bounds for polymers

We next establish the following tightness of the relevant path measures.

As in Theorems 1.1 and 1.2, let π0 be the geodesic from (0, 0) to (0, 1), in the directed landscape
Lβ=∞; and Γ0 be sampled from the annealed polymer measure from (0, 0) to (0, 1), under Lβ=1.

Proposition 5.1 (Tightness). As random elements in C([0, 1],R), L1/4π0 or L1/4Γ0 conditional on
Lβ(0, 0; 0, 1) > L for all L ≥ 2 are tight.

As mentioned in Section 1.2, to prove this requires tail bounds on two-point deviations, which rely
on shear invariance of the directed landscape and the CDRP free energy field. The proof in zero
temperature is much simpler than in positive temperature as in the former shear invariance alone
suffices to give tightness on the L−1/4 scale. In positive temperature, the analogous argument only
yields tightness on the O(1) scale, and additional arguments are needed to obtain the correct scale.
The reason is that in zero temperature, given the environment, the path location at a given height is
determined; while in positive temperature there is no a priori concentration of the polymer location.

In this section, we give the zero temperature proof and some rough bounds for the transversal
fluctuation of polymers. The positive temperature part of Proposition 5.1 will be proved in Section 8.
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5.1. Geodesic tightness. We start with a one-point estimate and later give the two-point estimate.

Lemma 5.2. For all K > 0, L ≥ 2, and s ∈ (0, 1),

P
(
|π0(s)| > K(s(1− s))1/2L−1/4

∣∣∣ L(0, 0; 0, 1) > L
)
< C exp

(
−cK2

)
.

In fact, for K up to L1/2 we will obtain a tail of exp(−2K2) (via the first case of the comparison
statement Theorem 4.1). Note that it exactly corresponds to our ultimate goal, namely that
L−1/4π0(s) converges to 1

2N(0, s(1− s)), which on scale (s(1− s))1/2 would have a tail at depth x

that satisfies the approximate asymptotics of exp(−2x2).

Proof of Lemma 5.2. Observe that, for any K, P(|π0(s)| > K | L(0, 0; 0, 1) > L) is upper bounded
by

P

(
sup
|x|>K

(
L(0, 0;x, s) + L(x, s; 0, 1)

)
> L

∣∣∣ L(0, 0; 0, 1) > L

)

≤ 2 · P
(
sup
x>K

(
L(0, 0;x, s) + L(x, s; 0, 1)

)
> L

∣∣∣ L(0, 0; 0, 1) > L

)

≤ 2 ·
P
(
supx>K

(
L(0, 0;x, s) + L(x, s; 0, 1)

)
> L

)
P(L(0, 0; 0, 1) > L)

, (5.1)

the factor of 2 coming from a union bound and using the distributional symmetry of L(0, 0;x, s)
and L(x, s; 0, 1) under x 7→ −x from Lemma 2.1 (as well as the independence of the two processes)
to remove the absolute value in the condition under the supremum. Then using the shear invariance
and independence properties of L and that x > K for the inequality in the second line,

L(0, 0;x, s) + L(x, s; 0, 1) d
= L(0, 0;x−K, s) + L(x−K, s; 0, 1) + (s(1− s))−1

[
(x−K)2 − x2

]
≤ L(0, 0;x−K, s) + L(x−K, s; 0, 1)− (s(1− s))−1K2

as a process in x. Thus we see that the RHS of (5.1) is upper bounded by

P
(
supx>0

(
L(0, 0;x, s) + L(x, s; 0, 1)

)
> L+ (s(1− s))−1K2

)
P(L(0, 0; 0, 1) > L)

.

Now using that L(0, 0; 0, 1) = supx∈R
(
L(0, 0;x, s) + L(x, s; 0, 1)

)
from (1.1), it follows that the

previous display is upper bounded by

P
(
L(0, 0; 0, 1) > L+ (s(1− s))−1K2

)
P(L(0, 0; 0, 1) > L)

.

Applying Theorem 4.1 now bounds the previous display by

C exp
(
−cK2(s(1− s))−1L1/2

)
.

Replacing K by K(s(1− s))1/2L−1/4 completes the proof. □

We next give a two-point estimate. Combining it with the Kolmogorov-Chentsov criterion for
tightness (see e.g. [Kal22, Theorem 23.7]), the β = ∞ case of Proposition 5.1 follows.

Proposition 5.3. For all K > 0, L ≥ 2, and 0 < s < t < 1,

P
(
|π0(s)− π0(t)| > K(t− s)1/2L−1/4 | L(0, 0; 0, 1) > L

)
≤ C exp(−cK2).
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Proof. We give the proof under the assumption that t − s ∈ (0, 12). The case where t − s ∈ [12 , 1]
follows from Lemma 5.2 easily.
Similar to the previous proof, the LHS of the display in the lemma is upper bounded by

P

(
sup

|x−y|>K

(
L(0, 0;x, s) + L(x, s; y, t) + L(y, t; 0, 1)

)
> L

∣∣∣ L(0, 0; 0, 1) > L

)

≤ 2 · P

(
sup

x−y>K

(
L(0, 0;x, s) + L(x, s; y, t) + L(y, t; 0, 1)

)
> L

∣∣∣ L(0, 0; 0, 1) > L

)

≤ 2 ·
P
(
supx−y>K

(
L(0, 0;x, s) + L(x, s; y, t) + L(y, t; 0, 1)

)
> L

)
P (L(0, 0; 0, 1) > L)

. (5.2)

Now, using the stationarity (and independence) properties of L,

L(0, 0;x, s) + L(x, s; y, t) + L(y, t; 0, 1)
d
= L(−K, 0;x−K, s) + L(x−K, s; y, t) + L(y, t; 0, 1) + (t− s)−1

[
(x− y −K)2 − (x− y)2

]
as a process in (x, y). Since x− y > K, we have that

(t− s)−1
[
(x− y −K)2 − (x− y)2

]
< −(t− s)−1K2.

Thus we see that the RHS of (5.2) is upper bounded by

2 ·
P
(
supx−y>K

(
L(−K, 0;x−K, s) + L(x−K, s; y, t) + L(y, t; 0, 1)

)
> L+ (t− s)−1K2

)
P (L(0, 0; 0, 1) > L)

Now using that L(−K, 0; 0, 1) = supx,y∈R
(
L(−K, 0;x, s) + L(x, s; y, t) + L(y, t; 0, 1)

)
, and that

L(−K, 0; 0, 1)
d
= L(0, 0; 0, 1)−K2, it follows that the previous display is upper bounded by

P
(
L(−K, 0; 0, 1) > L+ (t− s)−1K2

)
P(L(0, 0; 0, 1) > L)

=
P
(
L(0, 0; 0, 1) > L+ ((t− s)−1 + 1)K2

)
P(L(0, 0; 0, 1) > L)

.

By Theorem 4.1, this is upper bounded by

C exp
(
−c(t− s)−1K2L1/2

)
.

Replacing K by K(t− s)1/2L−1/4 completes the proof. □

5.2. Polymer transversal estimates. We now adapt the zero temperature arguments above to
the positive temperature setting. Although the bounds in this subsection are not sufficient to derive
the β = 1 case of Proposition 5.1, they will be used in the proof to be given in Section 8.
We start with the positive temperature analog of Lemma 5.2.

Lemma 5.4. For all K > 0, L ≥ 2 and s ∈ (0, 1),

P
(
P
[
|Γ0(s)| ≥ K(s(1− s))1/2

]
> exp(−1

2K
2)
∣∣∣ Lβ(0, 0; 0, 1) > L

)
< C exp(−cK2L1/2).

Remark 5.5. Unlike the zero-temperature case, here the concentration is on an O(1) scale. Some
more work is needed to obtain an L−1/4 scale concentration, and we will turn to that shortly.

Proof of Lemma 5.4. By the convolution formula, for any K > 0 and ε > 0,

P
(
P [|Γ0(s)| ≥ K] > ε | Lβ(0, 0; 0, 1) > L

)
= P

(∫
|x|≥K

Z(0, 0;x, s)Z(x, s; 0, 1) dx > εZ(0, 0; 0, 1)
∣∣∣ Lβ(0, 0; 0, 1) > L

)
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≤
P
(∫

|x|≥K Z(0, 0;x, s)Z(x, s; 0, 1) dx > εeL−1/12
)

P (Lβ(0, 0; 0, 1) > L)

≤
2 · P

(∫
x≥K Z(0, 0;x, s)Z(x, s; 0, 1) dx > 1

2εe
L−1/12

)
P (Lβ(0, 0; 0, 1) > L)

, (5.3)

where the last inequality uses the reflection symmetry of Z(0, 0; ·, s) and Z(·, s; 0, 1) and their
independence. By the shear invariance and independence of the same two processes, we have that
the following distributional equality holds as processes in x for every fixed s:

Z(0, 0;x, s)Z(x, s; 0, 1)
d
= Z(0, 0;x−K, s)Z(x−K, s; 0, 1)e(s(1−s))−1[(x−K)2−x2]

≤ Z(0, 0;x−K, s)Z(x−K, s; 0, 1)e−(s(1−s))−1K2
,

where the inequality is due to that x ≥ K. Substituting this into (5.3) yields that

P
(
P [|Γ0(s)| ≥ K] > ε | Lβ(0, 0; 0, 1) > L

)
≤

2 · P
(∫

x≥0Z(0, 0;x, s)Z(x, s; 0, 1) dx > 1
2εe

L−1/12+(s(1−s))−1K2
)

P (Lβ(0, 0; 0, 1) > L)

≤
2 · P

(∫
RZ(0, 0;x, s)Z(x, s; 0, 1) dx > 1

2εe
L−1/12+(s(1−s))−1K2

)
P (Lβ(0, 0; 0, 1) > L)

=
2 · P

(
Lβ(0, 0; 0, 1) > L+ (s(1− s))−1K2 + log(ε/2)

)
P (Lβ(0, 0; 0, 1) > L)

We set ε = exp
(
−(s(1− s))−1K2/2

)
and invoke Theorem 4.1 to obtain that the previous display is

upper bounded by

C exp
(
−cL1/2(s(1− s))−1K2

)
.

Replacing K by K(s(1− s))1/2 completes the proof. □

We next derive a two-point estimate.

Lemma 5.6. For all K > 0, L ≥ 2, and 0 < s < t < 1,

P
(
P
[
|Γ0(s)− Γ0(t)| > K(t− s)1/2

]
> exp(−1

2K
2)
∣∣∣ Lβ(0, 0; 0, 1) > L

)
< C exp(−cK2L1/2).

Proof. We give the proof under the assumption that t− s ∈ (0, 12), since case where t− s ∈ [12 , 1]
follows from Lemma 5.4 easily. Observe that, for any ε > 0,

P
(
P (|Γ0(s)− Γ0(t)| > K) ≥ ε

∣∣∣ Lβ(0, 0; 0, 1) > L
)

= P

(∫
|x−y|≥K

Z(0, 0;x, s)Z(x, s; y, t)Z(y, t; 0, 1) dx dy > εZ(0, 0; 0, 1)
∣∣∣ Lβ(0, 0; 0, 1) > L

)

≤
P
(∫

|x−y|≥K Z(0, 0;x, s)Z(x, s; y, t)Z(y, t; 0, 1) dx dy > εeL−1/12
)

P (Lβ(0, 0; 0, 1) > L)

≤
2 · P

(∫
x−y≥K Z(0, 0;x, s)Z(x, s; y, t)Z(y, t; 0, 1) dx dy > 1

2εe
L−1/12

)
P (Lβ(0, 0; 0, 1) > L)

, (5.4)

where the factor of 2 comes from removing the absolute value in the condition under the supremum
by a union bound and using that Lβ(x, s; y, t)

d
= Lβ(−x, s;−y, t), Lβ(0, 0;x, s)

d
= Lβ(0, 0;−x, s),
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and Lβ(y, t; 0, 1)
d
= Lβ(−y, t; 0, 1) each as processes in the relevant spatial variables, as well as the

independence of all three processes on the LHS of the equalities.
Now, using the stationarity (and independence) properties of Lβ ,

Lβ(0, 0;x, s) + Lβ(x, s; y, t) + Lβ(y, t; 0, 1)
d
= Lβ(−K, 0;x−K, s) + Lβ(x−K, s; y, t) + Lβ(y, t; 0, 1)

+ (t− s)−1
[
(x− y −K)2 − (x− y)2

]
as a process in (x, y). Now since x− y > K, we see that

(t− s)−1
[
(x− y −K)2 − (x− y)2

]
< −(t− s)−1K2.

Thus the RHS of (5.4) is upper bounded by

2 ·
P
(∫

x−y>K Z(−K, 0;x−K, s)Z(x−K, s; y, t)Z(y, t; 0, 1) dx dy > 1
2εe

L−1/12+(t−s)−1(K)2
)

P (Lβ(0, 0; 0, 1) > L)
.

(5.5)

Now using that

Lβ(−K, 0; 0, 1)− 1/12 = log

∫
x,y∈R

Z(−K, 0;x−K, s)Z(x−K, s; y, t)Z(y, t; 0, 1) dx dy,

and that Lβ(−K, 0; 0, 1)
d
= Lβ(0, 0; 0, 1)−K2, it follows that (5.5) is upper bounded by

2 ·
P
(
Lβ(0, 0; 0, 1) > L+ ((t− s)−1 + 1)K2 + log(ε/2)

)
P(Lβ(0, 0; 0, 1) > L)

.

Set ε = exp(−(t − s)−1K2/2). Applying Theorem 4.1 gives that the previous display is upper
bounded by

C exp
(
−c(t− s)−1K2L1/2

)
.

Replacing K by K(t− s)1/2 completes the proof. □

6. Proportionality and estimates on sums

In this section, we record a number of estimates on the sum of passage times or free energies.
Consider (s1, · · · , sk) ∈ Λ̊k([0,∞)) and y⃗ ∈ Rk for k ∈ N. For the convenience of notations we denote
s0 = y0 = 0, and adopt the shorthand Lβ = Lβ(0, 0; 0, sk) and Lβ

i = Lβ(si−1, yi−1; si, yi) for each
1 ≤ i ≤ k. Estimates in this section provide control on tail probabilities for the sum

∑
i L

β
i (such as

Lemma 6.1, Lemma 6.4) or on the deviation of each Lβ
i from (si − si−1)L conditional on

∑
i L

β
i > L

(Lemma 6.3).
We assume that sk < C0 for a large C0. All the constants (within this section) can depend on k and
C0.

Our first statement bounds the upper tail of
∑

i L
β
i , in terms of the upper tail of Lβ .

Lemma 6.1. For any L ≥ 2, any M , and any z⃗ ∈ Rk, if min1≤i≤k si − si−1 > L−1, we have

P

(
sup

y⃗:∥y⃗−z⃗∥∞≤L−2

k∑
i=1

Lβ
i > M, Lβ(0, 0; zk, sk) < M − C logL

)
< C exp(−cL2).

Proof. This is immediate in the case of β = ∞ by subadditivity, i.e., Lβ(0, 0; yk, sk) ≥
∑k

i=1 L
β
i

and the unconditional local fluctuation bound (Lemma 3.1) to obtain that |Lβ(0, 0; yk, sk) −
Lβ(0, 0; zk, sk)| ≤ 1 with probability at least 1− exp(−cL2).
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We next turn to β = 1. We note from the unconditional fluctuation bound (Lemma 3.1) that, for
any fixed intervals I1, . . . , Ik, each with length L−2, and each zi ∈ Ii,

inf
y⃗∈∏k

i=1 Ii

k∑
i=1

Lβ
i > sup

y⃗:∥y⃗−z⃗∥∞≤cL−2

k∑
i=1

Lβ
i − 1,

with probability at least 1−C exp(−cL2). Under this event, and assuming that supy⃗:∥y⃗−z⃗∥∞≤L−2

∑k
i=1 L

β
i >

M , we have (with yk = zk)

Lβ(0, 0; zk, sk) ≥ log

∫
∏k−1

i=1 Ii

exp

(
k∑

i=1

Lβ
i

)
k−1∏
y=1

dyi

> M − 1 + (k − 1) log(L−2).

This completes the proof. □

By taking L = M and using Theorem 2.13, we get the following.

Corollary 6.2. For any large enough L, and any z⃗ ∈ Rk, if min1≤i≤k si − si−1 > L−0.99,

P

(
sup

y⃗:∥y⃗−z⃗∥∞≤L−2

k∑
i=1

Lβ
i > L

)
< exp

(
−4

3
s
−1/2
k L3/2 + Cs

−1/4
k L3/4

)
.

We note that the constraint min1≤i≤k si − si−1 > L−0.99 is to ensure that the bound is much larger
than exp(−cL2), the upper bound in Lemma 6.1.

The following statement asserts that, conditional on the sum of independent free energies being
large, the individual terms are with high probability proportionate to the total, up to a certain scale
of fluctuation.

Lemma 6.3. Fix each yi = 0. For any L large enough, K > C1L
3/8 for a constant C1 > 0 (so that

KL1/4 > C1L
5/8), if min1≤i≤k si − si−1 > L−0.99, then for each j = 1, . . . , k,

P

(
Lβ
j < (sj − sj−1)L−K(sj − sj−1)

1/2L1/4
∣∣∣ k∑

i=1

Lβ
i > skL

)
< exp(−cK2).

The above bound is optimal except for the fact that we require K > CL3/8, while it should hold
for K > C; the loss is due to the non-optimal error term in our tail bound Theorem 2.13. The
constraint min1≤i≤k si − si−1 > L−0.99 is due to applying Theorem 2.13 and Corollary 6.2. We also
mention the related result [Liu22b, Theorem 1.1] that implies that, conditional on L(0, 0; 0, 1) = L,
the weight of the geodesic up to height s is sL plus a random term on scale L1/4 which, when scaled
to be unit order, converges to a Gaussian random variable.

Proof of Lemma 6.3. By the independence of these Lβ
j , without loss of generality, we prove the

estimate for j = k.

Let Y =
∑k−1

i=1 Lβ
i , and X = Lβ

k − (sk − sk−1)L. Then the probability in the LHS equals

∞∑
ℓ=K(sk−sk−1)1/2L1/4

P

(
X ∈ −ℓ+ [−1, 0]

∣∣∣ k∑
i=1

Lβ
i > skL

)

=

∑∞
ℓ=K(sk−sk−1)1/2L1/4 P

(∑k
i=1 L

β
i > skL

∣∣∣ X ∈ −ℓ+ [−1, 0]
)
· P (X ∈ −ℓ+ [−1, 0])

P
(∑k

i=1 L
β
i > skL

)
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≤

∑∞
ℓ=K(sk−sk−1)1/2L1/4 P

(
Y > sk−1L+ ℓ

∣∣∣ X ∈ −ℓ+ [−1, 0]
)
· P (X ∈ −ℓ+ [−1, 0])

P
(∑k

i=1 L
β
i > skL

) . (6.1)

We can lower bound the denominator by
∏k

i=1 P(L
β
i > (si − si−1)L), which, by Theorem 2.13,

is > exp
(
−4

3skL
3/2 − Cs

1/2
k L3/4

)
. For the numerator, note that Y is independent of X, so the

summand indexed by ℓ in (6.1) can be upper bounded, using Corollary 6.2 and Theorem 2.13 by

exp
(
−4

3s
−1/2
k−1 (sk−1L+ ℓ)3/2 − 4

3(sk − sk−1)
−1/2 ((sk − sk−1)L− ℓ)3/2 + Cs

1/2
k L3/4

)
≤ exp

(
−4

3skL
3/2 − cℓ2(sk − sk−1)

−1L−1/2 + Cs
1/2
k L3/4

)
.

Substituting this into (6.1) and using that K > C1L
3/8 for a large enough constant C1 (so that cK2

is much larger than s
1/2
k L3/4) yields the claim. □

The following lemma provides control on the lower tail of the sum
∑k

i=1 L
β
i , conditional on the upper

tail of Lβ .

Lemma 6.4. Assume that min1≤i≤k si − si−1 > t0 for some t0 > 0. For any L > 0,

P

(
inf

y⃗:∥y⃗∥∞≤L−1/4 logL

k∑
i=1

Lβ
i < L− L5/8 logL

∣∣∣ Lβ > L

)
< C exp(−c(logL)2),

where the constants C, c may depend on t0.

Proof. We assume that L is large enough since otherwise the conclusion follows obviously.

We start with β = 1. We first claim that, conditional on Lβ > L, it holds with probability at least
1− C exp(−c(logL)2) that supy⃗:∥y⃗∥∞≤L−1/4 logL

∑k
i=1 L

β
i > L− C logL. Indeed, suppose that this

inequality does not hold. In the β = 1 case, we know from the quenched transversal fluctuation
estimate Lemma 5.4 that with conditional probability at least 1− C exp(−c(logL)2),

exp(L) <
(
1− e−cL−1/2(logL)2

)−1
∫
[−L−1/4 logL,L−1/4 logL]k−1

exp

(
k∑

i=1

Lβ
i

)
k−1∏
i=1

dyi,

where yk = 0 in the integral. If supy⃗:∥y⃗∥∞≤L−1/4 logL

∑k
i=1 L

β
i < L − C logL, the RHS is upper

bounded by

CL1/2(logL)−2(2L−1/4 logL)k exp (L− C logL) ≪ exp(L),

which is a contradiction.

In the β = ∞ case, by Lemma 5.2, with conditional probability at least 1 − C exp(−c(logL)2) it
holds that Lβ = supy⃗:∥y⃗∥∞≤L−1/4 logL

∑k
i=1 L

β
i , which implies our claim since we have conditioned

on Lβ > L.

Next, we know from Lemma 3.1 that, with (unconditional) probability at least 1−C exp(−cL3/2 logL),

sup
∥y⃗∥∞≤L−1/4 logL

k∑
i=1

∣∣∣Lβ
i − Lβ(0, si−1; 0, si)

∣∣∣ ≤ 1
2L

3/4(logL)1/2 · (L−1/4 logL)1/2 = 1
2L

5/8 logL.

By Theorem 2.13 we know P(Lβ > L) > exp(−CL3/2), the previous bound also holds conditionally
on Lβ > L with probability at least 1− C exp(−cL3/2 logL). This completes the proof. □
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7. Concentration of polymers

In this section, we mainly work with polymers, i.e., set β = 1. We prove the following fact: the
polymer measure at a given height s is a Dirac mass spread out over an L−1/2 interval around a
random location. More specifically, we define

π(s) = argmax
x∈R

Lβ(0, 0;x, s) + Lβ(x, s; 0, 1),

for any s ∈ (0, 1). Note that this is a function purely of the environment. The main result
of this section asserts that under the polymer measure P, the polymer path at each height in
[L−5/8, 1− L−5/8] stays within O(L−1/2 logL) of π with high probability.

Proposition 7.1. There exists M0 > 0 such that for any L ≥ 2, M > M0 and s ∈ [L−5/8, 1−L−5/8],

P
(
P
(
|Γ0(s)− π(s)| > ML−1/2 logL

)
> L−2M

∣∣∣ Lβ(0, 0; 0, 1) > L
)
< C exp(−c(log(L))2).

In the rest of this section, we shall always take s ∈ [L−5/8, 1−L−5/8]. For the convenience of notations,
we adopt the notation s1 = s and s2 = 1− s, Lβ

1 (x) = Lβ(0, 0;x, s) and Lβ
2 (x) = Lβ(x, s; 0, 1), and

Lβ = Lβ(0, 0; 0, 1).

7.1. Global to two-segments conditioning. In the upcoming proof of Proposition 7.1, it will be
useful to go from conditioning on Lβ > L to conditioning on Lβ

i (x) ∈ (hi, hi + dhi) for each i = 1, 2,
with x, h1, h2 belonging to a set of nice values. The following is the general statement that allows us
to do this.
Let Val ⊆ R2 be defined by

Val =
{
(h1, h2) ∈ R2 : L− (logL)2 < h1 + h2 < L+ (logL)2, hi > siL− s

1/2
i L5/8 logL for i = 1, 2

}
.

Lemma 7.2 (Global to two-segments conditioning). For any L > 0, 0 < K ≤ logL, and any event
A,

P
(
A | Lβ > L

)
< max

x∈L−2Z,|x|≤KL−1/4
sup

(h1,h2)∈Val
P
(
A
∣∣∣ Lβ

i (x) ∈ (hi, hi + dhi), i = 1, 2
)

× C exp(C(logL)2L1/2) + C exp(−cK2).

Proof. We assume that K > 1 since otherwise the conclusion follows trivially by setting C large.
We observe from Lemma 5.4 that, with probability at least 1 − C exp(−cK2), conditionally on
Lβ > L, ∫

[−KL−1/4,KL−1/4]
exp

(
(Lβ

1 + Lβ
2 )(x)

)
dx ≥

(
1− exp

(
−1

2K
2L−1/2

))
exp(L)

≥ exp
(
L+ log

(
1
2K

2L−1/2
))

,

which implies that

P
(

max
[−KL−1/4,KL−1/4]

Lβ
1 + Lβ

2 ≥ L− logL
∣∣∣ Lβ > L

)
> 1− C exp(−cK2).

This with unconditional local fluctuation estimates (Proposition 2.16) implies that

P
(

max
x∈L−2Z,|x|≤KL−1/4

(Lβ
1 + Lβ

2 )(x) ≤ L− (logL)2
∣∣∣ Lβ > L

)
< C exp(−cL2(logL)4)+C exp(−cK2).

Also, for each |x| ≤ KL−1/4, by Theorem 4.1 and Lemma 6.1,

P
(
(Lβ

1 + Lβ
2 )(x) ≥ L+ (logL)2 | Lβ > L

)
< C exp(−c(logL)2L1/2);
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and by proportionality (Lemma 6.3), we have

P
(
Lβ
i (x) ≤ siL− s

1/2
i L5/8 logL, (Lβ

1 + Lβ
2 )(x) > L− (logL)2

∣∣∣ Lβ > L
)

< P
(
Lβ
i (x) ≤ siL− s

1/2
i L5/8 logL

∣∣∣ (Lβ
1 + Lβ

2 )(x) > L− (logL)2
) P

(
(Lβ

1 + Lβ
2 )(x) > L− (logL)2

)
P(Lβ > L)

< C exp(−c(logL)2L3/4),

for each i = 1, 2, where the ratio is bounded using Corollary 6.2 and Theorem 2.13. Combining
the above three estimates, we see that with probability > 1 − C exp(−cK2), there exists one
x ∈ L−2Z, |x| ≤ KL−1/4, such that ValueCtrlx holds; where

ValueCtrlx =
{
L− (logL)2 < (Lβ

1 + Lβ
2 )(x) < L+ (logL)2,Lβ

i (x) > siL− s
1/2
i L5/8 logL for i = 1, 2

}
.

In other words, we have
P(ValueCtrlc | Lβ > L) < C exp(−cK2),

where ValueCtrl = ∪x∈L−2Z,|x|≤KL−1/4ValueCtrlx. Now we have

P(A | Lβ > L) < P(A ∩ValueCtrl | Lβ > L) + C exp(−cK2).

Note that the first term in the RHS is bounded by

max
x∈L−2Z,|x|≤KL−1/4

sup
(h1,h2)∈Val

P
(
A
∣∣∣ Lβ

i (x) ∈ (hi, hi + dhi), i = 1, 2
) P(ValueCtrl)

P(Lβ > L)
.

By Lemma 6.1 and Theorem 4.1, we have

P(ValueCtrl) ≤
∑

x∈L−2Z,|x|≤KL−1/4

P(ValueCtrlx)

≤
∑

x∈L−2Z,|x|≤KL−1/4

P((Lβ
1 + Lβ

2 )(x) > L− (logL)2) < C exp(C(logL)2L1/2)P(Lβ > L).

Combining the last three displays leads to the conclusion. □

7.2. Random location and concentration. We next use Lemma 7.2 to control the location of
π(s), as well as prove Proposition 7.1.

The next result asserts that π(s) is of order L−1/4.

Proposition 7.3. For any L large enough, s ∈ [L−5/8, 1− L−5/8], and 0 < K ≤ log(L),

P
(
|π(s)| > KL−1/4 | Lβ > L

)
< C exp(−cK2).

The general idea to prove Proposition 7.3 is to (1) upper bound max(−KL−1/4,KL−1/4)c L
β
1 + Lβ

2

conditional on Lβ
1 (x) and Lβ

2 (x) for some x = O(KL−1/4), using Corollary 2.21; and (2) connect the
conditioning Lβ > L and the conditioning on the values of Lβ

1 (x) and Lβ
2 (x), using Lemma 7.2.

Proof of Proposition 7.3. We assume that K > 1 since otherwise the conclusion follows trivially by
setting C large.
As in the proof of Lemma 7.2, we have

P
(
maxLβ

1 + Lβ
2 ≥ L− logL

∣∣∣ Lβ > L
)
> 1− C exp(−c(logL)2). (7.1)

We also have

P
(

max
(−(s1∧s2)L1/2/2,(s1∧s2)L1/2/2)c

Lβ
1 + Lβ

2 ≥ (1− 1
10(s1 ∧ s2))L

)
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< C exp(−c(s1 ∧ s2)L
3/2)P(Lβ > L), (7.2)

by upper bounding the LHS using Corollary 6.2 plus shear invariance and a union bound, and lower
bounding P(Lβ > L) using Theorem 2.13. Combining (7.1) and (7.2) implies that

P
(
|π(s)| > KL−1/4 | Lβ > L

)
< C exp(−c(logL)2)

+ P

(
max

[− 1
2
(s1∧s2)L1/2,−KL−1/4]∪[KL−1/4, 1

2
(s1∧s2)L1/2]

Lβ
1 + Lβ

2 ≥ L− logL
∣∣∣ Lβ > L

)
. (7.3)

By Corollary 2.21 with a = KL−1/4, for any |x| ≤ KL−1/4/2, and (h1, h2) ∈ Val, we have

P

(
max

[− 1
2
(s1∧s2)L1/2,−KL−1/4]∪[KL−1/4, 1

2
(s1∧s2)L1/2]

Lβ
1 + Lβ

2 ≥ L− logL

∣∣∣ Lβ
i (x) ∈ (hi, hi + dhi), i = 1, 2

)
< C exp(−cKL3/4)

Thus by Lemma 7.2, the second term in the RHS of (7.3) can be bounded by C exp(−cK2), and the
conclusion follows. □

We next finish proving the polymer concentration result.

Proof of Proposition 7.1. Consider the event Tent defined by

Tent :=

{
max

|z−π(s)|≥ML−1/2 logL
Lβ
1 (z) + Lβ

2 (z)− (L− 2L1/2|z − π(s)|) < 0

}
To understand this definition, recall that we expect each of Lβ

1 and Lβ
2 to essentially adopt tent

shapes under the conditioning Lβ > L, where the tents each have slope approximately ±2L1/2. Thus
the sum Lβ

1 + Lβ
2 can be expected to be a line of slope ±4L1/2 up to random fluctuations; in the

definition of the event, we have reduced the slope magnitude by 1/2 for the benefit of ignoring the
random fluctuation.
Now, on Tent,∫

|x−π(s)|≥ML−1/2 logL
exp

(
(Lβ

1 + Lβ
2 )(x)

)
dx ≤

∫
|x−π(s)|≥ML−1/2 logL

exp
(
L− 2L1/2|x− π(s)|

)
dx

= 2

∫ ∞

ML−1/2 logL
exp

(
L− 2L1/2x

)
dx = L−1/2 exp (L− 2M logL) ,

which implies that, on Tent and Lβ > L,

P
(
|Γ0(s)− π(s)| > ML−1/2 logL

)
< L−2M .

Thus our task is now to upper bound P(Tentc | Lβ > L). We note that by Proposition 7.3,

P
(
|π(s)| > log(L)L−1/4 | Lβ > L

)
< C exp(−c(logL)2). (7.4)

Then it remains to upper bound P(Tentc ∩ {|π(s)| ≤ log(L)L−1/4} | Lβ > L).
We define the event Tent+ by

Tent+ :=

{
max

|z|≥(s1∧s2)L1/2/3
Lβ
1 (z) + Lβ

2 (z)− (L− 3L1/2|z|) < 0

}
.

Similar to (7.2) in the proof of Proposition 7.3, we have

P(Tentc+) < C exp(−c(s1 ∧ s2)L
3/2)P(Lβ > L),
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by upper bounding the LHS using Corollary 6.2 plus shear invariance and a union bound, and lower
bounding P(Lβ > L) using Theorem 2.13. Then we have P(Tentc+ | Lβ > L) < C exp(−c(s1∧s2)L3/2).
It now suffices to upper bound P(Tentc ∩ Tent+ ∩ {|π(s)| ≤ log(L)L−1/4} | Lβ > L), and we apply
Lemma 7.2 for this.
Take x ∈ L−2Z, |x| ≤ log(L)L−1/4 and (h1, h2) ∈ Val, and consider

P
(
Tentc ∩ Tent+ ∩ {|π(s)| ≤ log(L)L−1/4}

∣∣∣ Lβ
i (x) ∈ (hi, hi + dhi), i = 1, 2

)
. (7.5)

Assuming that for each i = 1, 2, Lβ
i (x) ∈ (hi, hi + dhi), and

max
ML−1/2 log(L)/5≤|y|≤(s1∧s2)L1/2/2

Lβ
i (x+ y) + 3

2 |y|(hi/si)
1/2 ≤ hi,

and Tent+ ∩ {|π(s)| ≤ log(L)L−1/4}, we must have |π(s) − x| < ML−1/2 log(L)/5, and Tent

holds. Therefore by Corollary 2.21 (with a = ML−1/2 logL), we have that (7.5) is bounded by
C exp(−cML1/2 logL)+C exp(−cL3/2). Then by Lemma 7.2, and taking M0 large enough, we have
P(Tentc | Lβ > L) < C exp(−cL1/2 logL) + C exp(−c(logL)2). Thus the conclusion follows. □

8. Tightness for polymers

We prove the β = 1 case of Proposition 5.1 in this section. We also denote Lβ = Lβ(0, 0; 0, 1) for
simplicity of notations.
The main task is to prove the following two points estimate, which refines Lemma 5.6.

Proposition 8.1. For all L ≥ 2, 0 < s < t < 1 and K > 0,

P
(
P
(
|Γ0(s)− Γ0(t)| > K(t− s)1/11L−1/4

)
> L−K

∣∣∣ Lβ > L
)
< C exp(−c(K ∧ logL)2).

Compared to the zero temperature setting (i.e., Proposition 5.3), we weaken our demand to a Hölder
1
11− bound instead of 1

2−, due to technical reasons which will be clear from its proof.
Proposition 8.1 immediately implies the following.

Corollary 8.2. For all L ≥ 2, K > 0 and 0 < s < t < 1,

E
[
P
(
|Γ0(s)− Γ0(t)| > K(t− s)1/11L−1/4

) ∣∣∣ Lβ > L
]
< C exp(−c(K ∧ logL)2).

Remark 8.3. As indicated in the introduction, from these tightness results and the polymer
concentration of Proposition 7.1, one can define a random backbone π̃, by e.g., taking π̃(s) =
π(s) for each s ∈ [0, 1] ∩ L−10Z, and linearly interpolate between them. Then with probability
> 1 − C exp(−c(logL)2), Γ0 is within distance L−1/2(logL)2 from π̃ at each s ∈ [0, 1] ∩ L−10Z,
by Proposition 7.1; and between any two points, Γ0 can deviate at most L−1, by Corollary 8.2.
Therefore (with the same probability) Γ0 is within distance L−1/2(logL)2 from the backbone π̃
throughout [0, 1].

Proof of the β = 1 case of Proposition 5.1. We recall that tightness on C([0, 1],R) follows by estab-
lishing a uniform modulus of continuity as well as one-point tightness. Since our processes are fixed
at 0 at heights 0 and 1, the former also implies the latter, so we only need to establish a uniform
modulus of continuity bound.
With Corollary 8.2, via a union bound over all s = 2−ij, t = 2−i(j + 1), 0 < s < t < 1, with i, j ∈ Z,
we have the following. For any K > 0, with probability > 1−C exp(−c(K ∧ logL)2) conditional on
Lβ > L,

sup
t0≤s<t≤1−t0

|Γ0(s)− Γ0(t)|(t− s)−1/12 ≤ KL−1/4.

Note that the exponent is 1
12 in contrast to the 1

11 present in Corollary 8.2; this is simply so that the
union bound over all the scales can be performed. This completes the proof. □
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To prove Proposition 8.1, the key idea is to upgrade Lemma 5.6 using the concentration result
Proposition 7.1. It allows us to essentially say that (with high probability under P) if the law of
Γ0(s) under P assigns a probability greater than ε (for a carefully chosen small ε) to the event of
large transversal fluctuation, it must assign a close to 1 probability to the event of having at least
say half of the same transversal fluctuation. The latter event’s probability is bounded by Lemma 5.6.
Note that in this argument it is actually not important that the interval around which most of the
mass is spread is centered around π(s), only that the interval is small.

We start by first upgrading the one-point estimate, at least L−5/8 away from the ends.

Proposition 8.4. For all K > 0, L ≥ 2, and s ∈ [L−5/8, 1− L−5/8],

P
(
P
(
|Γ0(s)| ≥ KL−1/4

)
> L−K

∣∣∣ Lβ > L
)
< C exp(−c(K ∧ logL)2).

Proof. We assume that K is large enough since otherwise we just choose C large to make the estimate
hold. We also assume that L is large enough since otherwise the conclusion follows from Lemma 5.4.

Let X(s,K) = P(|Γ0(s)| ≥ KL−1/4). By Proposition 7.1, with probability ≥ 1− C exp(−c(logL)2)
conditional on Lβ > L we have

X(s,K) ≤ P
(
|Γ0(s)− π(s)| ≥ KL−1/2 logL

)
+ 1|π(s)|≥ 1

2
KL−1/4

≤ L−2K + 1|π(s)|≥ 1
2
KL−1/4 ,

and

X(s, 14K) ≥ P
(
|Γ0(s)− π(s)| ≤ KL−1/2 logL

)
1|π(s)|≥ 1

2
KL−1/4

≥ (1− L−2K)1|π(s)|≥ 1
2
KL−1/4 .

Here we used that KL−1/2 logL < 1
4KL−1/4. These two bounds show that

X(s,K) > L−2K =⇒ |π(s)| ≥ 1
2KL−1/4 =⇒ X(s, 14K) ≥ 1− L−2K ,

and thus

P
(
X(s,K) > L−2K

∣∣∣ Lβ > L
)
< P

(
X(s, 14K) ≥ 1− L−2K

∣∣∣ Lβ > L
)
+ C exp(−c(logL)2).

By Lemma 5.4, P
(
X(s, 14K) > exp(−K2L−1/2/32)

∣∣∣ Lβ > L
)
< C exp(−cK2). This completes the

proof. □

Next, we turn to the two-point estimates. The proof strategies are analogous to what we just saw
for the one-point: we combine a cruder estimate coming from shear invariance with the information
that the polymer measure is localized on a smaller scale. We initially get the following two-point
estimate, which is under the additional constraints that the two points are at least L−5/8 away from
each other, and L−5/8 away from the ends. To get Proposition 8.1 from it, it turns out that the
cruder estimate Lemma 5.6 is sufficient, since we just prove an Hölder 1

10− bound instead of 1
2−.

Proposition 8.5. For all K > 0, L ≥ 2, and L−5/8 ≤ s < t ≤ 1− L−5/8, t− s ≥ L−5/8,

P
(
P
(
|Γ0(s)− Γ0(t)| > K(t− s)1/3L−1/4

)
> L−K

∣∣∣ Lβ > L
)
< C exp(−c(K ∧ logL)2).

We note that the exponent 1/3 can be replaced by any number < 2/5, due to the exponent of 5/8
(we only need that their product is < 1/4).
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Proof of Proposition 8.5. This proof is very similar to that of Proposition 8.4. Again, we can
assume that L,K are large enough. Let X(s, t,K) = P

(
|Γ0(s)− Γ0(t)| > K(t− s)1/3L−1/4

)
. By

Proposition 7.1, with probability ≥ 1− C exp(−c(logL)2) conditional on Lβ > L,

X(s, t,K) ≤ P

(
max
r∈{s,t}

|Γ0(r)− π(r)| ≥ KL−1/2 logL

)
+ 1|π(s)−π(t)|≥ 1

2
K(t−s)1/3L−1/4

≤ 2L−2K + 1|π(s)−π(t)|≥ 1
2
K(t−s)1/3L−1/4

and

X(s, t, 14K) ≥ P

(
max
r∈{s,t}

|Γ0(r)− π(r)| ≤ KL−1/2 logL

)
1|π(s)−π(t)|≥ 1

2
(t−s)1/3KL−1/4

≥ (1− 2L−2K)1|π(s)−π(t)|≥ 1
2
(t−s)1/3KL−1/4 .

Here we used that KL−1/2 logL < 1
4K(t− s)1/3L−1/4 since t− s > L−5/8. These imply that

X(s, t,K) > 2L−2K =⇒ |π(s)− π(t)| ≥ 1
2K(t− s)1/3L−1/4 =⇒ X(s, t, 14K) ≥ 1− 2L−2K .

Besides, by Lemma 5.6 we have P
(
X(s, t, 14K) > exp(−K2L−1/2/32)

∣∣∣ Lβ > L
)
< C exp(−cK2).

These complete the proof. □

Proof of Proposition 8.1. We assume that K is large enough by taking C large (if necessary), and
assume that L is large enough by applying Lemma 5.6 otherwise.

For the case where t− s < 2L−5/8, by Lemma 5.6, we can bound the conditional probability in the
statement of Proposition 8.1 by

C exp(−cK2(t− s)−9/11) < C exp(−cK2),

since exp(−1
2K

2(t− s)−9/11L−1/2) ≤ exp(−cK2L1/88) < L−K .

For the case where t− s ≥ 2L−5/8, if s < L−5/8, for s∗ = s or L−5/8, we apply Lemma 5.4 to get
that

P
(
P
[
|Γ0(s∗)| ≥ K(s∗(1− s∗))1/11L−1/4

]
> L−3K

∣∣∣ Lβ > L
)
< C exp(−cK2s

−9/11
∗ ),

since exp(−1
2K

2(s∗(1− s∗))−9/11L−1/2) < L−3K . Therefore we have

P
(
P
(
|Γ0(s)− Γ0(L

−5/8)| > K(L−5/8 − s)1/11L−1/4
)
> L−2K

∣∣∣ Lβ > L
)
< C exp(−cK2).

Similarly, if t > 1− L−5/8, we have

P
(
P
(
|Γ0(t)− Γ0(1− L−5/8)| > K(t− 1 + L−5/8)1/11L−1/4

)
> L−2K

∣∣∣ Lβ > L
)
< C exp(−cK2).

Thus we have reduced the problem of s, t to the same problem of s ∨ L−5/8, t ∧ (1 − L−5/8), and
that follows from Proposition 8.5. □

The remaining sections are devoted to proving finite dimensional convergence.

9. Estimates on free energies under conditionings

As indicated in Section 1.2, our strategy of deducing finite dimensional limit heavily relies on realizing
the conditioning on Lβ(0, 0; 0, 1) as conditioning on the existence of peaks at certain heights at
certain locations. As such, we will often need estimates on the probability of the existence of such
peaks given the global conditioning Lβ(0, 0; 0, 1), or on the probability of the latter conditioned on
the former. One such estimate (Lemma 6.4) has appeared before, and in this section we provide
some more refined ones.
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Let us introduce the setup, and some notations needed to state these estimates. We will work under a
setting similar to that in Section 6. Namely, we consider (s1, · · · , sk−1) ∈ Λ̊k−1([0, 1]) and x⃗ ∈ Rk−1

for k ∈ N, and denote s0 = x0 = xk = 0 and sk = 1. All the constants within this section can depend
on k and (s1, · · · , sk−1). For the convenience of notations we adopt the shorthand Lβ = Lβ(0, 0; 0, 1)

and Lβ
i = Lβ(si−1, xi−1; si, xi) for each 1 ≤ i ≤ k. We also write L⃗β for the vector {Lβ

i }ki=1.

Below we use x ≈ y to denote that x ∈ y + [0, e−L]; and for any vector h⃗ ∈ Rk, L⃗β ≈ h⃗ is the event
where Lβ

i ≈ hi for each i. A main reason for introducing this notation is that we will need to invoke
coalescence or Brownian comparison statements (Proposition 3.4 and Proposition 3.5) which do not
allow conditioning on exact values.

Take a⃗ = (a0, . . . , ak) ∈ [−L5/16 logL,L5/16 logL]k−1. For each i = 1, . . . , k − 1, we write

π∗(si) = argmax
x

Lβ(ai−1, si−1;x, si) + Lβ(x, si; ai+1, si+1).

This differs from π because π(si) is defined as the maximizer of Lβ(0, 0;x, si) + Lβ(x, si; 0, 1), while
π∗(si) is the maximizer of profiles within certain time strips which are disjoint for different i; this
disjointness gives some independence which will be useful for the arguments.
We next introduce useful notations generalizing the maximum to positive temperature: for f :
Rk−1 → R and a set I ⊆ Rk−1,

max(β)
x⃗∈I

f =


log

∫
I
exp
(
f(x1, . . . , xk−1)

)
dx1 · · · dxk−1 β = 1

max
x⃗∈I

f(x1 · · · dxk−1) β = ∞.
(9.1)

We further define the restricted free energy Lβ[y⃗, R] for R > 0 and y⃗ ∈ Rk−1 by

Lβ[y⃗, R] = max(β)
∥x⃗−y⃗∥∞≤R

k∑
i=1

Lβ
i .

Let rβ=1 = 1 and rβ=∞ = L−1/2. These are the fluctuation scales of the total free energy conditional
on the peak heights and locations. Let wβ=1 = L−1/2 and wβ=∞ = L−1. These are the window sizes
around each π∗(si) that would affect Lβ , under the upper tail.
The next two statements record the above-mentioned complementary estimates and will be the goal
of this section.

Proposition 9.1. Take any large enough L,M , and h⃗ ∈ Rk, a⃗ ∈ [−L5/16 logL,L5/16 logL]k+1,
x⃗ ∈ [−L5/16 logL,L5/16 logL]k−1. Denote H =

∑k
i=1 hi and assume that H > L/2 and each

|hi − (si − si−1)H| < L8/9. Then we have

P
(
Lβ > H − (k − 1)β−1 log(2H1/2) +Mrβ,

max
i=1,...,k−1

|π∗(si)− xi| ≤ wβ

∣∣∣ L⃗β ≈ h⃗

)
< C exp

(
−cM2L1/2rβ

)
+ C exp(−cL3/2), (9.2)

P
(
Lβ[x⃗, L−1/2(logL)2] > H − (k − 1)β−1 log(2H1/2) +Mrβ,

max
i=1,...,k−1

|π∗(si)− xi| ≤ wβ

∣∣∣ L⃗β ≈ h⃗

)
> c exp

(
−CM2L1/2rβ

)
− C exp(−cL3/2). (9.3)

Moreover, we also have

P
(
Lβ > H − (k − 1)β−1 log(2H1/2) +M

∣∣∣ L⃗β ≈ h⃗
)
< C exp

(
−cML1/2

)
. (9.4)
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The term (k − 1) log(2H1/2) is meant to be present in the case β = 1 and absent in the case β = ∞,
and multiplying the term by β−1 is a convenient notational tool to this effect (though in fact if one
were to work out the arguments in the case of general β, the term would be (k− 1)β−1 log(2βH1/2)).
The source of the log term for β = 1 comes from the fact that

∫∞
−∞ exp(−4H1/2|x|) dx = (2H1/2)−1,

which itself is a result that the dominant contribution to the integral is from an interval of scale
L−1/2 around zero. Since on L⃗β ≈ h⃗ the terms in the exponential in the convolution formula for
exp(Lβ) are essentially sums of two Brownian bridges with slope −2H1/2 each, heuristically taking
logarithms will yield that Lβ loses (k − 1) log(2H1/2) compared to the peak height of H.

We next give an estimate on the probability of
∑k

i=1 L
β
i being much smaller than L, conditional on

Lβ > L and π∗. It can be viewed as a refinement of Lemma 6.4.

Proposition 9.2. For all large enough L,M with M < L0.01, and x⃗ ∈ [−L5/16 logL,L5/16 logL]k−1,
x⃗ ∈ [−L5/16 logL,L5/16 logL]k−1, we have

P
(
Ek,M,w,L

∣∣∣ Lβ > L, max
i=1,...,k

|π∗(si)− xi| ≤ wβ

)
≤ exp

(
−cM2L1/2rβ

)
,

where

Ek,M,w,L =

{
k∑

i=1

Lβ
i ∈ L+ (k − 1)β−1 log(2L1/2) + [−L8/9,−Mrβ]

}

∩
k⋂

i=1

{
Lβ
i > (si − si−1)L− k−1L8/9

}
. (9.5)

Proposition 9.2 is proved by invoking Bayes’ theorem and Proposition 9.1, and we give its proof
now; we will return to proving Proposition 9.1 later. For any vector h⃗ ∈ Rk, denote

A
h⃗
=

k⋂
i=1

{
Lβ
i ∈ hi + [0, rβ]

}
.

Proof of Proposition 9.2. We assume without loss of generality that M ∈ N. Define ValM by

ValM =

{
h⃗ ∈ (rβZ)k :

∑k
i=1 hi ∈ L+ (k − 1)β−1 log(2L1/2) + [−L8/9 − rβ,−Mrβ]

hi ∈ (si − si−1)L+ [−L8/9, L8/9], i = 1, . . . , k

}
.

By doing a disjoint decomposition and applying Bayes’ theorem,

P
(
Ek,M,w,L

∣∣∣ Lβ > L, max
i=1,...,k

|π∗(si)− xi| ≤ wβ

)

≤

∑
h⃗∈ValM P

(
Lβ > L,maxi=1,...,k |π∗(si)− xi| ≤ wβ

∣∣∣ Ah⃗

)
· P
(
A

h⃗

)
P (Lβ > L,maxi=1,...,k |π∗(si)− xi| ≤ wβ)

.

We can also decompose the denominator in a similar fashion, but with the sum over all h⃗. Now for
each h⃗ ∈ ValM , we wish to bound the ratio

P
(
Lβ > L,maxi=1,...,k |π∗(si)− xi| ≤ wβ

∣∣∣ Ah⃗

)
· P(A

h⃗
)

P
(
Lβ > L,maxi=1,...,k |π∗(si)− xi| ≤ wβ

∣∣∣ Ah⃗′

)
· P(A

h⃗′)
,

where h⃗′ ∈ (rβZ)k is defined as follows: for each i = 2, . . . , k, h′i = hi, while
∑k

i=1 h
′
i ∈ L + (k −

1)β−1 log(2L1/2) + [0, 1], h′1 − h1 ∈ ⌊h′1 − h1⌋+ [0, rβ).
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By Theorem 4.1 we have
P(A

h⃗
)

P(A
h⃗′)

< C exp(C(h′1 − h1)L
1/2),

and by Proposition 9.1 we have

P
(
Lβ > L,maxi=1,...,k |π∗(si)− xi| ≤ wβ

∣∣∣ Ah⃗

)
P
(
Lβ > L,maxi=1,...,k |π∗(si)− xi| ≤ wβ

∣∣∣ Ah⃗′

) < C exp(−c(h′1 − h1)
2L1/2rβ) + C exp(−cL3/2).

By combining these two estimates, we can now bound the ratio as desired. Then by summing over
all h⃗ ∈ ValM the conclusion follows. □

We next give the proof of Proposition 9.1.

9.1. k = 2 setting. The basic step is to prove the following k = 2 version: from this, we can obtain
the general k-version by invoking coalescence (Proposition 3.4) to break down the case of general k
to a collection of k = 2 cases.
The notations within this subsection are slightly different, and we setup now. We take large enough
L > 0, h1 and h2 = Θ(L), 0 < s1, s2 < 1, |x∗| ≤ 2L5/16 logL. All the constants in this section can
depend on s1 ∧ s2. We write L⃗β = (Lβ(0, 0;x∗, s1),Lβ(x∗, s1; 0, s1 + s2)). For any R > 0 we denote

Lβ[x∗, R] = max(β)
|x−x∗|≤R

Lβ(0, 0;x, s1) + Lβ(x, s1; 0, s1 + s2)

and we write Lβ[R] = Lβ[0, R].

We also denote λ = (s
−1/2
1 h

1/2
1 +s

−1/2
2 h

1/2
2 ) to be the first order of the slope of the sum Lβ(0, 0;x, s1)+

Lβ(x, s1; 0, s1 + s2) under the conditioning that L⃗β ≈ h⃗. We take some x−, x+ with |x−|, |x+| ≤
2L5/16 logL and denote

π∗(s1) = argmaxLβ(x−, 0; ·, s1) + Lβ(·, s1;x+, s1 + s2).

Lemma 9.3. Denote W = 10−6(h1s1)
1/2 ∧ (h2s2)

1/2 and assume h1, h2 = Θ(L). In the case of
β = 1, for any M > L1/16 logL we have

P
(
Lβ[W ] > h1 + h2 − β−1 log(λ) +ML−1/4, |π∗(s1)− x∗| ≤ wβ

∣∣∣ L⃗β ≈ h⃗
)

< C exp(−cM2) + C exp(−cL3/2), (9.6)

and for any M > 0,

P
(
Lβ[x∗, L−1/2(logL)2] > h1 + h2 − β−1 log(λ) +ML−1/4, |π∗(s1)− x∗| ≤ wβ

∣∣∣ L⃗β ≈ h⃗
)

> c exp(−CM2)− C exp(−cL3/2). (9.7)

In the case of β = ∞, the first two bounds hold for any M > 0, after (1) replacing ML−1/4 with
ML−1/2 in both; (2) in the lower bound, replacing Lβ[x∗, L−1/2(logL)2] with Lβ[x∗, L−1].
Moreover, for both β = 1 and β = ∞, and M large enough, we have

P
(
Lβ[W ] > h1 + h2 − β−1 log(λ) +M

∣∣∣ L⃗β ≈ h⃗
)
< C exp(−cML1/2). (9.8)

Proof. The general idea of this proof is to invoke Lemma 2.19, then do computations of Brownian
motions.
We can assume that M is large enough since otherwise the estimates trivially hold. For the
convenience of notations, we denote S(x) = Lβ(0, 0;x, s1) + Lβ(x, s1; 0, s1 + s2), and write B(x) =
S(x∗ + x)− S(x∗) + 2λ|x|. In light of Lemma 2.19, we shall think of B(x) as a Brownian motion in
the interval [−CL−1/2 logL,CL−1/2 logL].
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Positive temperature. We first consider the case of β = 1 (where wβ=1 = L−1/2), and turn to the
zero temperature (β = ∞) case later.

Upper bound. By the convolution formula,

Lβ[W ] = log

∫ W

−W
exp(S(x)) dx. (9.9)

Since h1, h2 = Θ(L) and |x∗|, |x−|, |x+| ≤ 2L5/16 logL, by Corollary 2.21, conditional on L⃗β ≈ h⃗,
with probability at least 1− C exp(−cM2),

S(x) < h1 + h2 − 2λ|x− x∗|+ C|x− x∗|L5/16 logL+ML−1/4, (9.10)

for any |x− x∗| ≤ L−1/2, and

S(x) < h1+h2− 2λ|x−x∗|+C|x−x∗|L5/16 logL+M |x−x∗|1/2(| log(|x−x∗|LM−2)|+1), (9.11)

for any x with |x− x∗| ≥ L−1/2, |x| ≤ W .

To get (9.8), we note that by plugging (9.10) and (9.11) into (9.9), we have that Lβ [W ] < h1 + h2 +

log(λ−1) +CM2L−1/2 when M > L1/4. (Note that the RHS of (9.11) is maximized when |x− x∗| is
of order M2/L.) Relabeling M completes the proof.

To get (9.6), we note that with probability > 1− C exp(−cL3/2) conditional on L⃗β ≈ h⃗, the event
|π∗(s1)−x∗| ≤ L−1/2 implies that S(x) < h1+h2+ML−1/4+C exp(−cL) for all |x| ≤ W . Plugging
the minimum of this bound and (9.11) into (9.9), we get that Lβ[W ] < h1 + h2 + log(λ−1) +

CML−1/4 + CL−3/16 logL. Using that M > L1/16 logL the estimate (9.6) follows.

Lower bound. As the comparison in Lemma 2.19 is for some interval with length of order L1/2, we
need to do a truncation for π∗(s1). Namely, we claim

P(|π∗(s1)| > W | L⃗β ≈ h⃗) < C exp(−cL3/2). (9.12)

Indeed, from Theorem 2.13 and Proposition 2.16, and Proposition 3.4, we can deduce that

P
(
sup|x|>W Lβ(x−, 0;x, s1) ≥ Lβ(x−, 0;x∗, s1),Lβ

1 ≈ h1

)
P(Lβ

1 ≈ h1)
< C exp(−cL3/2),

P
(
sup|x|>W Lβ(x, s1;x+, s1 + s2) ≥ Lβ(x∗, s1;x+, s1 + s2),Lβ

2 ≈ h2

)
P(Lβ

2 ≈ h2)
< C exp(−cL3/2).

These together imply (9.12).

Now by definition

Lβ[x∗, L−1/2(logL)2] = log

∫ L−1/2(logL)2

−L−1/2(logL)2
exp(S(x∗ + x)) dx

= S(x∗) + log

∫ L−1/2(logL)2

−L−1/2(logL)2
exp (−2λ|x|+B(x)) dx. (9.13)

Define events AM and E as

AM =

{
min

|x|∈[L−1/2/4,L−1/2/2]
B(x) ≥ ML−1/4

}
∩
{

min
|x|≤L−1/2/4

B(x) ≥ −L−1/4

}
∩
{
B(x) ≥ −|x|1/2 log(|x|L1/2) for all |x| ∈ [L−1/2/2, L−1/2 logL]

}
,

E =

{
max

|x|≥L−1/2,|x+x∗|≤W
B(x)− 2λ|x| < max

|x|≤L−1/2
B(x)− 2λ|x| − C exp(−cL)

}
.
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If B were replaced by a two-sided Brownian motion with bounded drift, the probability of AM ∩ E
would be > c exp(−CM2), by standard Brownian motion computations. Then by Lemma 2.19,

P(AM ∩ E | L⃗β ≈ h⃗) > c exp(−CM2)(1− C exp(−cL))− C exp(−cL3/2)

> c exp(−CM2)− C exp(−cL3/2).

Assuming AM ∩ E, we can lower bound (9.13) by h1 + h2 + log(λ−1) + cML−1/4 − CL−1/4; and
|π∗(s1)| ≤ L−1/2 outside an event with probability < C exp(−cL3/2), by Proposition 3.4. Noting
that M is taken large enough, together with (9.12), the lower bound (9.7) follows.
These complete the proof of the lemma in the β = 1 case. We now turn to the β = ∞ case.

Zero temperature: We now need to bound the maximum of S instead of its integral. For the upper
bound, since h1, h2 = Θ(L) and |x∗|, |x−|, |x+| ≤ 2L5/16 logL, by Corollary 2.21, conditional on
L⃗β ≈ h⃗, with probability at least 1− C exp(−cM2),

S(x) < h1 + h2 − 2λ|x− x∗|+ C|x− x∗|L5/16 logL+ML−1/2,

for any |x− x∗| ≤ L−1, and

S(x) < h1 + h2 − 2λ|x− x∗|+ C|x− x∗|L5/16 logL+M |x− x∗|1/2(| log(|x− x∗|LM−2)|+ 1),

for any x with |x − x∗| ≥ L−1, |x| ≤ W . Then S(x) in [−W,W ] is at most h1 + h2 + CM2L−1/2

(note that the RHS of the previous display is maximized when |x− x∗| is of order M2/L), and we
get (9.8), by relabeling M .
Under the additional assumption that |π∗(s1) − x∗| ≤ L−1 (note that wβ=∞ = L−1), by Propo-
sition 3.4, we have that S(x) in [−W,W ] is at most h1 + h2 +ML−1/2 outside another event of
probability < C exp(−cL3/2). Thus we get (9.6).
For the lower bound, we note that (9.12) still holds with the same proof. Then by Proposition 3.4,
we just need to consider the probability of

max
|x|≤L−1

B(x) ≥ ML−1/2,

∣∣∣∣∣ argmax
|x+x∗|≤W

B(x)− 2λ|x|

∣∣∣∣∣ ≤ L−1.

Again by Lemma 2.19, conditional on L⃗β ≈ h⃗, the above happens with probability > c exp(−CM2)−
C exp(−cL3/2). This completes the proof. □

Below we return to using the notations defined before this subsection, i.e., at the beginning of
Section 9.

9.2. Proof of Proposition 9.1. Note that (with y0 = yk = 0)

Lβ = max(β)
y1,...,yk−1

k∑
i=1

L (yi−1, si−1; yi, si) .

We want to simplify the RHS using coalescence (Proposition 3.4). Since we only know that coalescence
holds up to a distance of order L1/2, we have to first argue that we can restrict the max(β) to be
over an interval centered at 0 of size much smaller than L1/2, with high probability conditionally on
L⃗β ≈ h⃗.
For notational convenience let, for R > 0 and i = 1, . . . , k − 1, and x ∈ R,

Lβ
i [x,R] = max(β)

|y−x|≤R
Lβ(xi−1, si−1; y, si) + Lβ(y, si;xi+1, si+1).

Restricting the interval and coalescence: Let δ = 10−6mini=1,...,k(si − si−1). Let E0 denote
the event that

Lβ ≤ Lβ [⃗0, δL1/2] + C exp(−cL),
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where 0⃗ ∈ Rk−1 is the vector with every entry being 0. Then we have

P(Ec
0 | L⃗β ≈ h⃗) < P(Ec

0,L > H − C logL | L⃗β ≈ h⃗) + P(L ≤ H − C logL | L⃗β ≈ h⃗).

The second term in the RHS is bounded by C exp(−cL2) by Lemma 6.1 and Theorem 2.13; and the
first term is bounded by

P(Ec
0 | L > H − C logL)

P(L > H − C logL)

P(L⃗β ≈ h⃗)
.

By Lemma 5.4, we have P(Ec
0 | L > H) < C exp(−cL3/2); and the ratio is bounded by C exp(CL25/18)

using Theorem 2.13 (and the assumption that x⃗ ∈ [−L5/16 logL,L5/16 logL]k−1, and that each
|hi − (si − si−1)H| < L8/9). Then we conclude that P(Ec

0 | L⃗β ≈ h⃗) < C exp(−cL3/2).

By the convolution formula, this with Proposition 3.4 implies that P(Coal | L⃗β ≈ h⃗) > 1 −
C exp(−cL3/2), where the coalescence event Coal is defined by

Coal =

{
Lβ ∈

k−1∑
i=1

Lβ
i [0, δL

1/2]−
k−1∑
i=2

Lβ
i + [−C exp(−cL), C exp(−cL)]

}
.

Upper bound: Under L⃗β ≈ h⃗, the sum
∑k−1

i=2 Lβ
i ∈

∑k−1
i=2 hi + [0, (k− 2)e−L]. Therefore, assuming

L⃗β ≈ h⃗ and Coal,{
Lβ > H − (k − 1)β−1 log(2H1/2) +Mrβ

}
⊆

{
k−1∑
i=1

Lβ
i [0, δL

1/2] ≥
k−1∑
i=1

(hi + hi+1)− (k − 1)β−1 log(2H1/2) +Mrβ − C exp(−cL)

}
.

Let Pi be the probability of

Lβ
i [0, δL

1/2] ≥ hi + hi+1 − β−1 log(2H1/2) + k−1M,

conditional on L⃗β ≈ h⃗. Let P ′
i be the probability of

Lβ
i [0, δL

1/2] ≥ hi + hi+1 − β−1 log(2H1/2) + k−1Mrβ,

and that |π∗(si)− xi| ≤ wβ, conditional on L⃗β ≈ h⃗. By a union bound, it suffices to upper bound∑k−1
i=1 Pi and

∑k−1
i=1 P ′

i .
For (9.4), we can then invoke (9.8) in Lemma 9.3 (using shear and translation invariance properties)
to obtain an upper bound on each Pi. Similarly, for (9.2) we invoke (9.6) in Lemma 9.3 to
obtain an upper bound on P ′

i . We note that, since |hi − (si − si−1)H| < L8/9, it follows that
log((si − si−1)

−1/2h
1/2
i + (si+1 − si)

−1/2h
1/2
i+1) = log(2H1/2) +O(L−1/9), while β−1L−1/9 < rβ . This

completes the proof.

Lower bound: By the convolution formula and Proposition 3.4, conditional on L⃗β ≈ h⃗, with
probability at least 1− C exp(−cL3/2),

Lβ[x⃗, L−1/2(logL)2] ≥
k−1∑
i=1

Lβ
i [xi, L

−1/2(logL)2]−
k−1∑
i=2

Lβ
i − C exp(−cL)

≥
k−1∑
i=1

Lβ
i [xi, L

−1/2(logL)2]−
k−1∑
i=2

hi − C exp(−cL). (9.14)

Take 2 ≤ i ≤ k − 1. Consider the processes Lβ(xi−1, si−1; ·, si) and Lβ(·, si−1;xi, si) conditional on
Lβ
i ≈ hi, as a measure on C([0, 1],R)2. By Proposition 3.5, it can be replaced by the product measure

of its marginals (up to an error of C exp(−cL)), on an event with probability > 1− C exp(−cL3/2),
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with Radon-Nikodym derivative bounded between 1−C exp(−cL) and 1+C exp(−cL). By Lemma 9.3
(plus shear and translation invariance properties), we can lower bound the probability of

Lβ
i [xi, L

−1/2(logL)2] ≥ hi + hi+1 − β−1 log(2H1/2) +Mrβ, |π∗(si)− xi| ≤ wβ, (9.15)

conditional on L⃗β ≈ h⃗, by c exp(−CM2L1/2rβ)− C exp(−cL3/2). (Here we also use that

log((si − si−1)
−1/2h

1/2
i + (si+1 − si)

−1/2h
1/2
i+1) = log(2H1/2) +O(L−1/9)

and β−1L−1/9 < rβ.) By the above coupling to independence, the probability of (9.15) for each i,
conditional on L⃗β ≈ h⃗, is also > c exp(−CM2L1/2rβ)− C exp(−cL3/2). Plugging these into (9.14)
finishes the proof of (9.3). □

10. Global and segment maximizers

In Proposition 7.1 we have shown that (conditional on the upper tail) the polymer Γ0 at any s ∈ (0, 1)
is close to the maximizer π(s), whose definition we recall is

π(s) = argmax
x∈R

Lβ(0, 0;x, s) + Lβ(x, s; 0, 1).

In zero temperature, we also use π to denote the geodesic π0, which is defined through the same
expression.
As already alluded, in our computations to obtain finite dimensional Gaussianity, it is more convenient
to use another optimizer

π∗(s) = argmax
x∈R

Lβ(0, s−;x, s) + Lβ(x, s; 0, s+).

Here s− ∈ [0, s) and s+ ∈ (s, 1]. In the rest of this section, all the constants can depend on s−, s, s+.
The main goal of this section is the following closeness between π(s) and π∗(s). As in previous
sections, we write Lβ = Lβ(0, 0; 0, 1).

Proposition 10.1. For any L ≥ 2, we have

P
(
|π(s)− π∗(s)| > L−1/2(logL)2

∣∣∣ Lβ > L
)
< C exp(−c(logL)2).

The case where s− = 0 and s+ = 1 is obvious, since then π(s) = π∗(s). Below we write the proof for
the case where s− > 0 and s+ < 1. The proof for the other two cases are similar and we omit them.

For the rest of this section, we shall take the shorthand Lβ
i = Lβ(xi−1, si−1;xi, si) for some

x⃗ = (x1, x2, x3) ∈ R3, and x0 = x4 = 0, s0 = 0, s1 = s−, s2 = s, s3 = s+, s4 = 1. We also write
L⃗β for the vector {Lβ

i }4i=1; in other words, we now have four parts instead of two like in previous
sections. For any vector h⃗ ∈ Rk, L⃗β ≈ h⃗ denotes the event where Lβ

i ∈ hi + [0, e−L] for each i.

Our general idea is to replace the conditioning Lβ > L by L⃗β ≈ h⃗, for some reasonable x⃗ ∈ R3 and
h⃗. Then we bound |π(s)− x2| conditional on L⃗β ≈ h⃗, using coalescence and the tent picture.
We first restrict π∗ to an interval of length < L1/2.

Lemma 10.2. For each i = 1, 2, 3 and L large,

P
(
|π∗(si)| > L5/16 logL

∣∣∣ Lβ > L
)
< C exp(−c(logL)2).

Proof. We write the proof for i = 2; the other two cases follow similarly.
Let E denote the event where |π∗(s)| > L5/16 logL. By Lemma 6.4 we have P(E1 | Lβ > L) >
1− C exp(−c(logL)2), where E1 is the event

inf
|x1|,|x2|,|x3|≤L−1/4 logL

4∑
i=1

Lβ
i ≥ L− L5/8 logL.
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We have that E ∩ E1 ⊂ E2, where E2 is the event

sup
|x2|>L5/16 logL,x1=x3=0

4∑
i=1

Lβ
i ≥ L− L5/8 logL.

By the shear invariance property and Corollary 6.2, and a union bound, we have that P(E2) <

C exp
(
−4

3L
3/2 − cL9/8(logL)2

)
. By combining this with the tail estimate Theorem 2.13 we get

that P(E2 | Lβ > L) < C exp(−cL9/8(logL)2). As we can upper bound P(E | Lβ > L) by
P(Ec

1 | Lβ > L) + P(E2 | Lβ > L), the conclusion follows. □

In replacing the conditioning Lβ > L into L⃗β ≈ h⃗, we will need to bound the ratio P(L⃗β ≈ h⃗)P(Lβ >

L)−1, for which we need that
∑4

i=1 hi > L− logL. For this we will invoke Proposition 9.2, as well
as a rough lower bound of Lβ

i conditional on the upper tail Lβ > L.

Lemma 10.3. For any x⃗ ∈ [−L5/16 logL,L5/16 logL]3, and i ∈ {1, 2, 3, 4}, we have

P
(
Lβ
i < (si − si−1)L− L27/32 logL)

∣∣∣ Lβ > L
)
< C exp(−c(logL)2).

Proof. We prove this for i = 2, and the other cases would follow verbatim.

We use Lβ
j,0 to denote Lβ

j with each of x1, x2, x3 replaced by 0. Let E denote the event Lβ
2 <

(s2 − s1)L− L27/32 logL, and define E0 by

E0 =
{
Lβ
j,0 > (sj − sj−1)L− L53/64

}
,

for each j = 1, 2, 3, 4. By Lemma 6.4, we have

P

 4∑
j=1

Lβ
j,0 < L− L5/8 logL

∣∣∣ Lβ > L

 < C exp(−c(logL)2). (10.1)

By Lemma 6.3, we have

P

Ec
0,

4∑
j=1

Lβ
j,0 ≥ L− L5/8 logL

 < C exp(−cL37/32) · P

 4∑
j=1

Lβ
j,0 ≥ L− L5/8 logL

 .

By Theorem 2.13 and Corollary 6.2, we can bound the ratio of the last factor over P(Lβ > L) by
C exp(CL9/8 logL). Therefore we have

P

Ec
0,

4∑
j=1

Lβ
j,0 ≥ L− L5/8 logL

∣∣∣ Lβ > L

 < C exp(−cL37/32).

Combining this with (10.1) implies that P(Ec
0 | Lβ > L) < C exp(−c(logL)2).

We next upper bound P(E | E0). In the case where x1x2 < 0, by the shift-invariance (Lemma 3.3)

P(E | E0) = P
(
Lβ(0, s1;x2 − x1, s2) < (s2 − s1)L− L27/32 logL

∣∣∣ E0) .
By Lemma 2.20 and using that |x1|, |x2| ≤ L5/16 logL, this is bounded by C exp(−cL11/8 logL).

In the case where x1x2 ≥ 0, by Lemma 2.20 and using that |x1|, |x2| ≤ L5/16 logL, we have

P
(
Lβ(0, s1;x2, s2) < (s2 − s1)L− L27/32(logL)/2

∣∣∣ E0) < C exp(−cL11/8 logL),

P
(
Lβ(x1, s1; 0, s2) < (s2 − s1)L− L27/32(logL)/2

∣∣∣ E0) < C exp(−cL11/8 logL).
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Then by the quadrangle inequalities (2.1) and (2.4), we still have P(E | E0) < C exp(−cL11/8 logL).
Then since (by Theorem 2.13) P(E0)P(Lβ > L)−1 < C exp(CL85/64), we have

P(E | Lβ > L) < C exp(−c(logL)2) + P(E ∩ E0 | Lβ > L)

≤ C exp(−c(logL)2) + P(E ∩ E0)P(Lβ > L)−1

≤ C exp(−c(logL)2) + P(E | E0)P(E0)P(Lβ > L)−1

< C exp(−c(logL)2).

Thus the conclusion follows. □

We next prove that, given the tail L⃗β ≈ h⃗, π(s) should be close to x2. Define

Val4 =

{
h⃗ ∈ R4 : hi ≥ (si − si−1)L− L27/32 logL, ∀i = 1, 2, 3, 4;

L− logL ≤
4∑

i=1

hi < L+ (logL)2

}
.

Lemma 10.4. For any x⃗ ∈ [−L5/16 logL,L5/16 logL]3, and h⃗ ∈ Val4,

P
(
|π(s)− x2| > L−1/2(logL)2/2

∣∣∣ L⃗β ≈ h⃗
)
< C exp(−cL1/2(logL)2).

Proof. By Theorem 2.13 we have

P(L⃗β ≈ h⃗) > c exp

(
−4

3
L3/2 − CL9/8(logL)2

)
. (10.2)

Therefore, using Lemma 6.1 we have

P
(
Lβ(0, 0;x2, s) < h1 + h2 − C logL

∣∣∣ L⃗β ≈ h⃗
)
< C exp(−cL2),

P
(
Lβ(x2, s; 0, 1) < h3 + h4 − C logL

∣∣∣ L⃗β ≈ h⃗
)
< C exp(−cL2).

Thus
P
(
Lβ(0, 0;x2, s) + Lβ(x2, s; 0, 1) < L− C logL

∣∣∣ L⃗β ≈ h⃗
)
< C exp(−cL2). (10.3)

We next restrict the intervals. We define Lβ
out as follows. For β = ∞, we let

Lβ
out = sup

x⃗∈R3\[−L3/8,L3/8]3

4∑
i=1

Lβ
i .

For β = 1, we let

Lβ
out =

(
sup

|x2|>L3/8

Lβ(x2, s; 0, 1) + Lβ(0, 0;x2, s)

)
∨(

sup
|x2|≤L3/8

(Lβ
out,−(x2) + Lβ(x2, s; 0, 1)) ∨ (Lβ(0, 0;x2, s) + Lβ

out,+(x2))

)
,

where
Lβ
out,−(x2) = log

∫
|x1|≥L3/8

exp
(
Lβ
1 + Lβ

2

)
dx1,

Lβ
out,+(x2) = log

∫
|x3|≥L3/8

exp
(
Lβ
3 + Lβ

4

)
dx3.
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Using Corollary 6.2 and shear invariance, and a union bound, we can upper bound P(Lβ
out >

L− (logL)3/2) by C exp
(
−4

3L
3/2 − cL5/4(logL)2

)
. Then by (10.2) we have

P
(
Lβ
out > L− (logL)3/2 | L⃗β ≈ h⃗

)
< C exp(−cL5/4(logL)2). (10.4)

We next consider the restricted part.

Lβ
res(x2) = max

x1,x3∈[−L3/8,L3/8]

4∑
i=1

Lβ
i ,

for β = ∞, and

Lβ
res(x2) = log

∫
|x1|≤L3/8

exp
(
Lβ
1 + Lβ

2

)
dx1 + log

∫
|x3|≤L3/8

exp
(
Lβ
3 + Lβ

4

)
dx3,

for β = 1. Using Proposition 3.4 and Corollary 2.21, one can upper bound Lβ
res assuming a coalescence

event, as in the proof of Proposition 9.1. Omitting the details, we can deduce that

P
(
sup
x∈I

Lβ
res(x) > L− (logL)3/2

∣∣∣ L⃗β ≈ h⃗

)
< C exp(−cL1/2(logL)2),

where I = [−L3/8, L3/8] \ [x2 −L−1/2(logL)2/2, x2 +L−1/2(logL)2/2]. This with (10.4) implies that

P

(
sup

|x−x2|>L−1/2(logL)2/2

Lβ(0, 0;x2, s) + Lβ(x2, s; 0, 1) > L− (logL)3/2
∣∣∣ L⃗β ≈ h⃗

)
< C exp(−cL1/2(logL)2).

This and (10.3) imply the conclusion. □

We now finish proving Proposition 10.1, using all the above ingredients as well as Proposition 9.2,
which lower bounds the sum

∑4
i=1 L

β
i by L− logL, given that Lβ > L.

Proof of Proposition 10.1. We can assume that L is large enough, since otherwise the conclusion
follows trivially.
Denote wβ=1 = L−1/2 and wβ=∞ = L−1 as in the previous section. By Lemmas 10.2 and 10.3, we
can bound the LHS in the display by∑

x⃗∈([−L5/16 logL,L5/16 logL]∩wβZ)3
P
(

max
i=1,2,3

|π∗(si)− xi| ≤ wβ, |π(s)− x2| > L−1/2(logL)2/2

Lβ
i ≥ (si − si−1)L− L27/32 logL,∀i = 1, 2, 3, 4

∣∣∣ Lβ > L
)
+ C exp(−c(logL)2). (10.5)

By Lemma 6.1 and Theorem 4.1, we have

P

(
4∑

i=1

Lβ
i ≥ L+ (logL)2

∣∣∣ Lβ > L

)
< C exp(−cL1/2(logL)2).

This together with Proposition 9.2 implies that, for any x⃗ ∈ ([−L5/16 logL,L5/16 logL] ∩ wβZ)3,

P
(

max
i=1,2,3

|π∗(si)− xi| ≤ wβ, L⃗β ̸∈ Val4,

Lβ
i ≥ (si − si−1)L− L27/32 logL,∀i = 1, 2, 3, 4

∣∣∣ Lβ > L
)
< C exp(−c(logL)2).

Then each summand in (10.5) can be bounded by∑
h⃗

P
(

max
i=1,2,3

|π∗(si)− xi| ≤ wβ, |π(s)− x2| > L−1/2(logL)2/2, L⃗β ≈ h⃗,
∣∣∣ Lβ > L

)
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+ C exp(−c(logL)2),

where the sum is over < exp(CL) many h⃗ ∈ Val4, such that any element in Val4 is ≈ h⃗ for one of
them. We note that the summand for each h⃗ is bounded by

P
(
|π(s)− x2| > L−1/2(logL)2/2

∣∣∣ L⃗β ≈ h⃗
)
P(L⃗β ≈ h⃗)P(Lβ > L)−1.

By Lemma 10.4, the first factor is bounded by C exp(−cL1/2(logL)2). Then the sum over h⃗ is
bounded by

C exp(−cL1/2(logL)2)P(L⃗β ∈ Val4)P(Lβ > L)−1.

By Lemma 6.1 and Theorem 4.1, we can bound this by C exp(CL1/2 logL), since L⃗β ∈ Val4 implies
that

∑4
i=1 L

β
i ≥ L − logL. Now since each summand in (10.5) is bounded by C exp(−c(logL)2),

plugging this estimate back leads to the conclusion. □

11. Finite dimensional Brownian bridge limit

In this section, we prove finite dimensional convergence of π0 and Γ0 to Brownian bridge (under
upper tails). As in previous sections we take the setup of (s1, · · · , sk−1) ∈ Λ̊k−1([0, 1]) for k ∈ N,
and denote s0 = 0 and sk = 1; and all the constants within this section can depend on k and
(s1, · · · , sk−1). Also recall that we define

π∗(si) = argmax
x

Lβ(0, si−1;x, si) + Lβ(x, si; 0, si+1),

for each i = 1, . . . , k − 1. We adopt the shorthand Lβ = Lβ(0, 0; 0, 1).

We shall prove that as L → ∞, L1/4{π∗(si)}k−1
i=1 conditional on Lβ > L converges to a joint Gaussian,

matching that for a Brownian bridge. We note that even in zero temperature, π∗(si) does not a
priori coincide with π0(si) = π(si), which is instead given as the maximizer of processes from height
0 to si and si to 1 (instead of si−1 to si and si to si+1 here), i.e., π(si) = argmaxz Lβ(0, 0; z, si) +
Lβ(z, si; 0, 1). However, we have shown that, conditional on the upper tail, with high probability
|π∗(si)− π(si)| is of order smaller than L−1/4 (Proposition 10.1); and in positive temperature the
polymer measure concentrates at height si in a window of order smaller than L−1/4 around π(si)

(Proposition 7.1). Therefore, the Gaussian limit of {π∗(si)}k−1
i=1 as follows suffices for us to deduce

our main results.

We denote wβ=1 = L−1/2 and wβ=∞ = L−1 as before. Fix any compact set K ⊆ Rk−1, and all the
constants below can depend on K.

Theorem 11.1. As L → ∞, uniformly over x⃗, y⃗ ∈ K (with x0 = xk = y0 = yk = 0 for the
convenience of notations),

P
(
maxi=1,...,k−1 |π∗(si)− xiL

−1/4| ≤ wβ | Lβ > L
)

P
(
maxi=1,...,k−1 |π∗(si)− yiL−1/4| ≤ wβ | Lβ > L

)
→ exp

(
−2

[
k∑

i=1

(xi − xi−1)
2 − (yi − yi−1)

2

si − si−1

])
.

We note that the RHS is the ratio of the joint density of (12B(s1), . . . ,
1
2B(sk−1)) evaluated at x⃗ and

y⃗, where B is a standard Brownian bridge on [0, 1].

Note that this is a comparison of probabilities, while we wish to show weak convergence. The
following lemma allows the transition. Its proof is fairly straightforward real analysis and we relegate
it to Appendix A.
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Lemma 11.2. Let d ≥ 1 and suppose {X⃗ε}ε>0 is a family of Rd-valued random vectors such that as
ε → 0, X⃗ε → X⃗ in distribution for some random vector X⃗. Suppose also that there is a continuous
strictly positive integrable function f : Rd → (0,∞) such that, for every compact set K ⊆ Rd,
uniformly over x⃗, y⃗ ∈ K as ε → 0,

P
(
X⃗ε ∈ x⃗+ [−ε, ε)d

)
P
(
X⃗ε ∈ y⃗ + [−ε, ε)d

) · f(y⃗)
f(x⃗)

→ 1. (11.1)

Then X⃗ is absolutely continuous with respect to the Lebesgue measure of Rd, and has density given
by f(x⃗)/

∫
Rd f(z⃗) dz⃗.

With these results in hand, we may prove our main theorems.

Proofs of Theorems 1.1 and 1.2. The tightness of {L1/4π0}L≥2 and {L1/4Γ0}L≥2 conditional on
Lβ > L in the space C([0, 1],R) is given by Proposition 5.1, and it remains to establish finite
dimensional convergence.

For B being a standard Brownian bridge on [0, 1], Theorem 11.1 and Lemma 11.2 imply that
{2L1/4π∗(si)}k−1

i=1 → {B(si)}k−1
i=1 in distribution. Proposition 10.1 along with the Borel-Cantelli

lemma guarantees that L1/4π(si)− L1/4π∗(si) → 0 almost surely for every i. This implies that, for
β = ∞, {2L1/4π0(si)}k−1

i=1 → {B(si)}k−1
i=1 in distribution, completing the proof of Theorem 1.1.

For β = 1, taking expectations in Proposition 7.1 further yields that P(maxi=1,...,k−1 |Γ0(si) −
π∗(si)| ≤ ML−1/2 logL | Lβ > L) > 1 − L−cM − C exp(−c(logL)2), for M being a large enough
constant. Thus L1/4Γ0(si) − L1/4π∗(si) → 0 almost surely for every i. We then obtain that
{2L1/4Γ0(si)}k−1

i=1 → {B(si)}k−1
i=1 in distribution, completing the proof of Theorem 1.2. □

The rest of this section and the next are devoted to proving Theorem 11.1.

11.1. Finite dimensional convergence. We introduce some useful shorthand to make the notation
simpler: L⃗β,x⃗ is a vector whose ith component is given by

Lβ,x⃗
i = Lβ(xi−1L

−1/4, si−1;xiL
−1/4, si)

Below we also use o(1) to denote any quantity that → 0 as L → ∞.

Proof of Theorem 11.1. We start by noting that, by Lemma 6.4,

P

(
k∑

i=1

Lβ,x⃗
i < L− L5/8 logL

∣∣∣ Lβ > L

)
< C exp(−c(logL)2);

and by Lemma 6.1, plus Theorem 2.13 and Theorem 4.1, for some C0 > 0

P

(
k∑

i=1

Lβ,x⃗
i > L+ C0 logL

∣∣∣ Lβ > L

)
< C exp(−cL1/2 logL).

So we can upper bound P(maxi=1,...,k−1 |π∗(si)− xiL
−1/4| ≤ wβ,Lβ > L) by

P
(
Esum, max

i=1,...,k−1
|π∗(si)− xiL

−1/4| < wβ,Lβ > L

)
+ C exp(−c(logL)2) · P(Lβ > L),

where Esum is the event

L− L5/8 logL ≤
k∑

i=1

Lβ,x⃗
i ≤ L+ C0 logL.
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Take M∗ to be a large constant, and let Eprop(M∗) be defined by

Eprop(M∗) =
k⋂

i=1

{
Lβ,x⃗
i ≥ (si − si−1)L−M∗L7/8

}
.

Using Lemma 6.3 (proportionality statement), and Corollary 6.2 and Theorem 2.13 (tail bounds for
the sum

∑k
i=1 L

β,x⃗
i and Lβ), we have

P

(
Ec
prop,

k∑
i=1

Lβ,x⃗
i ≥ L− L5/8 logL

)

≤ exp
(
−cM2

∗L
5/4
)
· P

(
k∑

i=1

Lβ,x⃗
i ≥ L− L5/8 logL

)

≤ exp

(
−cM2

∗L
5/4 − 4

3
(L− L5/8 logL)3/2 + CL3/4

)
≤ exp

(
−cM2

∗L
5/4 + CL9/8 logL

)
· P
(
Lβ > L

)
.

As M∗ is large enough, this is upper bounded by exp(−cM2
∗L

5/4) · P(Lβ > L).
Thus far, we have overall shown that

P
(

max
i=1,...,k−1

|π∗(si)− xiL
−1/4| < wβ,Lβ > L

)
≤ P

(
Eprop(M∗), Esum, max

i=1,...,k−1
|π∗(si)− xiL

−1/4| < wβ,Lβ > L

)
+ C exp(−c(logL)2) · P(Lβ > L).

Set (as before) rβ=1 = 1 and rβ=∞ = L−1/2. Using Proposition 9.2, we conclude that

P
(

max
i=1,...,k−1

|π∗(si)− xiL
−1/4| < wβ,Lβ > L

)
≤
(
1− e−cM2

∗L
1/2rβ

)−1P

(
Eprop(M∗), Esum,maxi=1,...,k−1 |π∗(si)− xiL

−1/4| < wβ,Lβ > L∑k
i=1 L

β,x⃗
i > L+ (k − 1)β−1 log(2L1/2)−M∗rβ

)
(11.2)

+ C exp(−c(logL)2) · P
(
Lβ > L

)
.

We next do a restriction. Recall the notation max
(β)
x⃗∈I f for f : Rk−1 → R and a set I ⊆ Rk−1 from

(9.1). Define

Lβ[1] = max(β)
∥z⃗∥∞≤1

k∑
i=1

Lβ(si−1, zi−1; si, zi), (11.3)

where z0 = zk = 0. Then, by the (quenched) one-point transversal fluctuation estimate (Proposi-
tion 8.4 for β = 1 and Lemma 5.2 for β = ∞), (11.2) is bounded by

(
1− e−cM2

∗L
1/2rβ

)−1P

 Eprop(M∗), Esum,maxi=1,...,k−1 |π∗(si)− xiL
−1/4| < wβ ,

Lβ[1] > (1− β−1e−cL1/4
)L,∑k

i=1 L
β,x⃗
i > L+ (k − 1)β−1 log(2L1/2)−M∗rβ


+ C exp(−c(logL)2) · P

(
Lβ > L

)
.

(11.4)

To analyze the first term in the previous display, we define

Eval =

{
(h1, . . . , hk) ∈ (e−LZ)k :

L+ (k − 1)β−1 log(2L1/2)− (M∗ + 1)rβ ≤
∑k

i=1 hi ≤ L+C0 logL,
hi ∈ (si − si−1)L+ [−2M∗L7/8, kM∗L7/8] for i = 1, . . . , k

}
.

(11.5)
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Here we take the fine mesh (e−LZ)k instead of Rk because (as mentioned before) we will need to
apply Proposition 3.4 and Proposition 3.5. We also recall the notation L⃗β,x⃗ ≈ h⃗ for the event that
each Lβ,x⃗

i ∈ hi + [0, e−L].

Now we see that the probability in the first term of (11.4) is bounded by∑
h⃗∈Eval

P
(

max
i=1,...,k−1

|π∗(si)− xiL
−1/4| < wβ,Lβ[1] > (1− β−1e−cL1/4

)L
∣∣∣ L⃗β,x⃗ ≈ h⃗

)
· P
(
L⃗β,x⃗ ≈ h⃗

)
.

(11.6)
Our goal is to relate each of these terms to the corresponding one with x⃗ replaced by y⃗, which we
state precisely in the next two lemmas to be proved later. The first factor is essentially unchanged:

Lemma 11.3. For h⃗ = (h1, . . . , hk) ∈ Eval,

P
(

max
i=1,...,k−1

|π∗(si)− xiL
−1/4| < wβ,Lβ[1] > (1− β−1e−cL1/4

)L
∣∣∣ L⃗β,x⃗ ≈ h⃗

)
≤ (1 + o(1))P

(
max

i=1,...,k−1
|π∗(si)− yiL

−1/4| < wβ,Lβ[1] > L
∣∣∣ Lβ,y⃗ ≈ h⃗

)
.

The proof of this lemma is somewhat involved and will be given in Section 12. For the second factor
in (11.6), we have the following statement, which is the source of the Brownian bridge density in our
result. Its proof is a straightforward consequence of Theorem 4.1, and we give it after completing
the proof of Theorem 11.1.

Lemma 11.4. For (h1, . . . , hk) ∈ Eval,

P
(
L⃗β,x⃗ ≈ h⃗

)
= (1 + o(1)) exp

(
−2

k∑
i=1

(xi − xi−1)
2 − (yi − yi−1)

2

si − si−1

)
· P
(
Lβ,y⃗ ≈ h⃗

)
.

Inputting the information from the previous two lemmas into (11.6) and (11.4) yields that

P
(

max
i=1,...,k−1

|π∗(si)− xiL
−1/4| ≤ wβ,Lβ > L

)
< C exp(−c(logL)2) · P

(
Lβ > L

)
+ (1 + o(1))

(
1 + exp(−cM2

∗L
1/2rβ)

)
exp

(
−2

k∑
i=1

(xi − xi−1)
2 − (yi − yi−1)

2)

si − si−1

)
×
∑

h⃗∈Eval

P
(

max
i=1,...,k−1

|π∗(si)− yiL
−1/4| < wβ,Lβ[1] > L

∣∣∣ Lβ,y⃗ ≈ h⃗
)
· P(Lβ,y⃗ ≈ h⃗).

Therefore we have, since {Lβ,y⃗ ≈ h⃗} are disjoint events for distinct h⃗ ∈ Eval,

P
(

max
i=1,...,k−1

|π∗(si)− xiL
−1/4| ≤ wβ

∣∣∣ Lβ > L

)
≤ (1 + o(1))

(
1 + e−cM2

∗L
1/2rβ

)
exp

(
−2

k∑
i=1

(xi − xi−1)
2 − (yi − yi−1)

2)

si − si−1

)

× P
(

max
i=1,...,k−1

|π∗(si)− yiL
−1/4| ≤ wβ

∣∣∣ Lβ > L

)
+ C exp(−c(logL)2).

(11.7)

We need to lower bound P(maxi=1,...,k−1 |π∗(si)− yiL
−1/4| ≤ wβ | Lβ > L) in order to ensure that

the error term C exp(−c(logL)2) is not dominating. For this we sum the previous display over
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x⃗ ∈ [−KL−1/4,KL−1/4]k ∩ (wβZ)k, where K is a large constant such that∑
x⃗∈[−KL−1/4,KL−1/4]k∩(wβZ)k

P
(

max
i=1,...,k−1

|π∗(si)− xiL
−1/4| ≤ wβ

∣∣∣ Lβ > L

)
≥ 1

2
;

that this is possible follows from combining transversal fluctuation bounds for π(si) (Proposition 7.1
and Proposition 7.3 for β = 1 or Lemma 5.2 for β = ∞) and the bound on the closeness of π(si)
and π∗(si) (Proposition 10.1). Then from (11.7) we have that(
1
2 − C exp(−c(logL)2)

)
≤ C · P

(
max

i=1,...,k−1
|π∗(si)− yiL

−1/4| ≤ wβ

∣∣∣ Lβ > L

)
×

∑
x⃗∈[−KL−1/4,KL−1/4]k∩(wβZ)k

exp

(
−2

k∑
i=1

(xi − xi−1)
2 − (yi − yi−1)

2)

si − si−1

)
.

This yields that P(maxi=1,...,k−1 |π∗(si)− yiL
−1/4| ≤ wβ | Lβ > L) is lower bounded by a polynomial

in L−1. Thus we conclude that

P
(
maxi=1,...,k−1 |π∗(si)− xiL

−1/4| ≤ wβ | Lβ > L
)

P
(
maxi=1,...,k−1 |π∗(si)− yiL−1/4| ≤ wβ | Lβ > L

)
≤ (1 + o(1))

(
1 + e−cM2

∗L
1/2rβ

)
exp

(
−2

k∑
i=1

(xi − xi−1)
2 − (yi − yi−1)

2)

si − si−1

)
+ C exp(−c(logL)2).

We can then get a lower bound of the same ratio by swapping x⃗ and y⃗. Taking L → ∞ followed by
M∗ → ∞ completes the proof. □

Proof of Lemma 11.4. It suffices to prove the case y⃗ = 0⃗ and apply the resulting statement twice.
By independence, P

(
L⃗β,x⃗ ≈ h⃗

)
=
∏k

i=1 P
(
Lβ,x⃗
i ∈ hi + [0, e−L]

)
. So we have to show that

P
(
Lβ,x⃗
i ∈ hi + [0, e−L]

)
= (1 + o(1)) exp

(
− 2x2i
si − si−1

)
· P
(
Lβ,⃗0
i ∈ hi + [0, e−L]

)
.

Now, by shear invariance and using Theorem 4.1 in the third line,

P
(
Lβ,x⃗
i ∈ hi + [0, e−L]

)
= P

(
Lβ,x⃗
i ≥ hi

)
− P

(
Lβ,x⃗
i ≥ hi + e−L

)
= P

(
Lβ,⃗0
i ≥ hi +

(xi − xi−1)
2L−1/2

si − si−1

)
− P

(
Lβ,⃗0
i ≥ hi + e−L +

(xi − xi−1)
2L−1/2

si − si−1

)
= (1 + o(1)) exp

(
−2(si − si−1)

−3/2h
1/2
i (xi − xi−1)

2L−1/2
)
· P
(
Lβ,⃗0
i ≥ hi

)
− (1 + o(1)) exp

(
−2(si − si−1)

−3/2(hi + e−L)1/2(xi − xi−1)
2L−1/2

)
· P
(
Lβ,⃗0
i ≥ hi + e−L

)
.

Since (hi + e−L)1/2 = h
1/2
i + O(e−L), and h

1/2
i = (si − si−1)

1/2L1/2 + o(L1/2) due to that hi =
(si − si−1)L+ o(L), the previous display equals

(1 + o(1)) exp

(
−2(xi − xi−1)

2

si − si−1

)[
P
(
Lβ,⃗0
i ≥ hi

)
− P

(
Lβ,⃗0
i ≥ hi + e−L

)]
,

which is what we wanted to show. □
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12. Joint comparison of maximizer location and free energy across peaks

In this section, we give the proof of Lemma 11.3. We use the setup there: in particular, C0,M∗ are
large constants, L is taken to be large (depending on C0,M∗), h⃗ ∈ Eval for Eval defined in (11.5),
x⃗, y⃗ ∈ K for a compact set K ⊆ Rk−1, and (s1, · · · , sk−1) ∈ Λ̊k−1([0, 1]) for k ∈ N, with s0 = 0 and
sk = 1. All the constants within this section can depend on C0, M∗, K, k, and (s1, · · · , sk−1).

The proof strategy is to do a resampling on a small interval I (with size of order L−1/2 logL) in a way
that a certain conditional probability of the event in question (the location of π∗(si) for i = 1, . . . , k
and a lower bound on Lβ[1]) is a function of the endpoint values at the boundary of I. The proof
then comes down to showing that the density of these endpoint values under the conditioning Lx⃗ ≈ h⃗

(which recall is shorthand for Lβ,x⃗
i ∈ hi + [0, e−L] for i = 1, . . . , k) is 1 + o(1) of the density of the

same under the conditioning Ly⃗ ≈ h⃗.
However, note that neither of the events maxi=1,...,k−1 |π∗(si) − xiL

−1/4| < wβ and Lβ[1] > (1 −
β−1 exp(−cL1/4))L are functions of the profile on an interval of size of order L−1/2 logL. Thus we
will need to first argue that we can consider different events which do have this localized property.
For the first event, we simply consider the maximizer on I as a proxy, instead of on R; clearly, if the
first event holds, then it also holds that the restricted maximizer is wβ-close to xiL

−1/4. We will
then show (Lemma 12.7) that with high probability the restricted maximizer and true maximizer
coincide. In the β = ∞ case, on this event we also have that Lβ [1] is a function of the profile on an
interval of size of order L−1/2 logL.
Modifying the second event, Lβ[1] > (1 − exp(−cL1/4))L, to be a local function of the profile in
the β = 1 case is more difficult. A naive argument (invoking Proposition 7.1 and Proposition 10.1)
shows that the free energy when restricted to an interval of size ML−1/2 logL (for a large number
M) would capture a (1− L−M ) fraction of the total free energy. But at the end of the comparison
we need to be able to return to the event of being larger than Lβ[1] > L, and so we need to argue
that, conditional on Lx⃗ ≈ h⃗ and Lβ [1] > (1− exp(−cL1/4))L (as well as the location of the restricted
maximizer), with high probability Lβ will actually be larger than L+ L−E∗ for some E∗, i.e., the
free energy overshoots by a polynomial amount. Then we know that restricting to a ML−1/2 logL
window still results in the free energy being larger than L (by picking M large enough), and we can
do our localized comparison argument with this event.

In the following Section 12.1 we give the argument for saying that, conditional on Lx⃗ ≈ h⃗ and
Lβ [1] > (1− exp(−cL1/4))L, it holds with high probability that Lβ [1] > L+L−E∗ (Lemma 12.1). In
Section 12.2 we argue that the free energy (in a form suitable for analysis in the upcoming proof of
Lemma 11.3) from the smaller interval of size ML−1/2 logL is also L+ L−E∗ (Lemma 12.5). Then
in Section 12.3 we give the proof of Lemma 11.3.

Denote Econd to be the event where maxi=1,...,k−1 |π∗(si)| < wβ,Lβ [1] > (1− β−1e−cL1/4
)L, L⃗β,x⃗ ≈ h⃗.

The following will be frequently used, to relate the conditioning on Econd and L⃗β,x⃗ ≈ h⃗ for h⃗ ∈ Eval

with Eval as defined in (11.5):

P

(
max

i=1,...,k−1
|π∗(si)| < wβ,Lβ[1] > (1− β−1e−cL1/4

)L
∣∣∣ L⃗β,x⃗ ≈ h⃗

)
> c exp(−CL1/2). (12.1)

It follows from the lower bound in Proposition 9.1 and h⃗ ∈ Eval.

12.1. Conditional overshoot at positive temperature. We work in the case of β = 1 only in
this subsection, in which case we recall that wβ = L−1/2.

Lemma 12.1. There exists a constant ρ > 0 such that

P
(
Lβ[1] < L+ ρL−3

∣∣∣ Econd) < CL−1.
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This lemma is proved by a resampling argument, and we explain the setup next. For a function
f : R → R and an interval [a, b], we define the bridge of f on [a, b], denoted f [a,b], by

f [a,b](x) = f(x)− x− a

b− a
f(b)− b− x

b− a
f(a);

in words, it is the function obtained by affinely shifting f to equal 0 at a and b.

For any x ∈ R, we define

Lβ
+[1](x) = max(β)

|z2|,...,|zk−1|≤1

k∑
i=2

Lβ(zi−1, si−1; zi, si),

with z1 = x, zk = 0; note that this is a function of Lβ on the temporal strip [s1, 1].

Let hβs1,1 and hβs1,2 be the top two lines in the line ensemble associated with Lβ(0, 0; ·, s1); in particular
hβs1,1 = Lβ(0, 0; ·, s1). Let F be the σ-algebra generated by

• hβs1,1(z) for z ∈ (−∞, x1L
−1/4] ∪ [x1L

−1/4 + wβ,∞),
• (hβs1,1)

x1L−1/4+[0, 1
2
wβ ], (hβs1,1)

x1L−1/4+[ 1
2
wβ ,wβ ],

• hβs1,2 and Lβ
+[1].

In particular, conditional on F , the remaining randomness (to determine hβs1,1) is the value of
U := Lβ(0, 0;x1L

−1/4 + 1
2wβ, s1) = hβs1,1(x1L

−1/4 + 1
2wβ), by linear interpolation. Therefore, for

z ∈ [x1L
−1/4, x1L

−1/4 + 1
2wβ] and u ∈ R, we denote

hβ,us1,1
(z) :=

z − x1L
−1/4

1
2wβ

(
u− hβs1,1(x1L

−1/4)
)
+ hβs1,1(x1L

−1/4) + (hβs1,1)
x1L−1/4+[0, 1

2
wβ ](z) (12.2)

and a similar expression for z ∈ [x1L
−1/4 + 1

2wβ, x1L
−1/4 + wβ]. Further, given F and U , we also

determine the value of Lβ [1] via the formula for hβs1,1 as well as the convolution formula, since Lβ
+[1] is

F -measurable. We also observe that the dependence of Lβ[1] on U is increasing since the convolution
formula has an increasing dependence on hβs1,1, which itself depends on U in an increasing manner.

Now we apply the Brownian Gibbs property. It implies that the distribution of U is a normal random
variable of F-measurable mean µ and variance σ2 given by

µ = 1
2

(
hβs1,1(x1L

−1/4 + wβ) + hβs1,1(x1L
−1/4)

)
σ2 = 2 ·

1
2wβ · 1

2wβ

wβ
= 1

2wβ,
(12.3)

tilted by the Radon-Nikodym derivative W pt(U)/Zpt, where W pt and Zpt are given by

W pt(u) = W (hβ,us1,1
, hβs1,2), Zpt = EF

[
W pt(U)

]
.

where W (hβ,us1,1
, hβs1,2) is from (2.6) for the interval [x1L−1/4, x1L

−1/4 + wβ].

Now, if we require that Lβ[1] > (1 − e−cL1/4
)L, this is equivalent to U being larger than some

F-determined value, due to the increasing dependence of Lβ[1] on U already noted. Further, if we
also require that |π∗(s1)| ≤ wβ , it is not hard to see that this also is equivalent to a lower bound on
U (which may be −∞).

These in turn imply that, conditional on Econd, and L⃗β,x⃗ ≈ h⃗, the distribution of U is given by a
Gaussian random variable of mean µ and variance σ2 as given in (12.3) tilted by W pt(U)/Zpt, and
is further conditioned to be larger than an F -measurable random variable, which we denote by Cor
(short for “corner”, which is terminology introduced for an analogous object in [Ham16]). Now, since
W pt is an increasing function, this Gaussian random variable stochastically dominates the Gaussian
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random variable X with the same mean and variance which is conditioned only to be larger than
Cor.
If we know that Cor is not too high (say less than order L) and µ is not too low (say −µ less than
order L), then the Gaussian random variable will overshoot by an amount at least polynomial in
L−1. This upper bound on Cor and lower bound on µ are recorded in the next two lemmas and will
be proved shortly.

Lemma 12.2. There exists K0 such that for K > K0,

P
(
Cor > h1 +K

∣∣∣ Econd) ≤ exp(−cKL1/2).

Lemma 12.3. There exists K0 such that,

P
(
µ < −K0L

∣∣∣ Econd) ≤ exp(−cL3/2).

However, knowing that the Gaussian overshoots by a polynomial-in-L−1 amount does not immediately
imply that the free energy overshoots L by a comparable amount. For this we need to additionally
know that the contribution to the free energy from the interval that gets perturbed by resampling U
is non-trivial (in fact, it contributes a positive proportion of the free energy, as we will show). This
is recorded in the next lemma.

Lemma 12.4. There exists ρ > 0 such that, conditional on Econd, with probability at least 1 −
exp(−cL1/2), ∫ x1L−1/4+ 3

4
wβ

x1L−1/4+ 1
4
wβ

exp
(
hβs1,1(x) + Lβ

+[1](x)
)
dx ≥ ρLβ[1].

With the previous three lemmas in hand, we now give the proof of Lemma 12.1. Afterward, we will
give the proofs of those lemmas.

Proof of Lemma 12.1. For every u ∈ R, we define Lβ,u[1] the same way as Lβ[1] through (11.3),
except for replacing Lβ(0, 0; s1, ·) = hβs1,1 by hβ,us1,1

. We observe that, for any δ > 0,

exp
(
Lβ,U−δ[1]

)
=

∫
[−1,1]\[x1L−1/4+ 1

4
wβ ,x1L−1/4+ 3

4
wβ ]

exp
(
hβ,U−δ
1 (x) + Lβ

+[1](x)
)
dx

+

∫ x1L−1/4+ 3
4
wβ

x1L−1/4+ 1
4
wβ

exp
(
hβ,U−δ
1 (x) + Lβ

+[1](x)
)
dx.

Notice that hβ,U−δ
s1,1

(x) ≤ hβs1,1(x) −
1
2δ on x1L

−1/4 + [14wβ,
3
4wβ] (by the formula (12.2)). So the

second term in the previous display is upper bounded by∫ x1L−1/4+ 3
4
wβ

x1L−1/4+ 1
4
wβ

exp
(
hβs1,1(x) + Lβ

+[1](x)− 1
2δ
)
dx.

Note also that hβ,U−δ
s1,1

(x) ≤ hβ,Us1,1
(x) = hβs1,1(x), which gives an upper bound on the first term two

displays above. Then by Lemma 12.4, there exists ρ > 0 such that, with conditional probability at
least 1− exp(−cL1/2), exp(Lβ,U−δ[1]) is upper bounded by[

1− ρ+ e−
1
2
δρ
] ∫

[−1,1]
exp

(
hβs1,1(x) + Lβ

+[1](x)
)
dx =

[
1− ρ+ e−

1
2
δρ
]
exp(Lβ[1]).

Since e−x ≤ 1 − x/2 for x ∈ [0, 1], we see that the square bracket factor is at most 1 − ρδ/4. In
summary, with conditional probability at least 1− exp(−cL1/2), for any δ > 0 sufficiently small,

exp
(
Lβ,U−δ[1]

)
≤ (1− ρδ/4) exp

(
Lβ[1]

)
. (12.4)
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Recall from the discussion preceding Lemma 12.2 that, conditionally on F , U stochastically dominates
a random variable X which is Gaussian with mean µ and variance σ2 as given in (12.3) and conditioned
to stay above Cor (i.e., X is not tilted by W pt(U)/Zpt). Now, since (by Lemma 12.2 and Lemma 12.3)
with conditional probability at least 1−exp(−cL1/2) it holds that Cor ≤ h1+K0 (so that in particular
Cor = O(L)) and µ ≥ −K0L, it follows that, with conditional probability at least 1− L−1 that

X ≥ Cor + L−3,

using standard estimates for the normal tail bound (Lemma 2.22).

In particular, since U stochastically dominates X, taking δ = L−3 implies that U − δ ≥ Cor. Since
Cor is such that for any u ≥ Cor it holds that Lβ,u[1] ≥ (1− e−cL1/4

)L, we obtain from combining
these observations with (12.4) that

exp(Lβ[1]) ≥ (1 + 1
5ρL

−3) exp(L).

Taking logarithms and relabeling ρ completes the proof. □

We next prove the three lemmas that have been assumed.

Proof of Lemma 12.2. We observe that by the definition of Cor, it holds almost surely that Cor ≤
hβs1,1(x1L

−1/4 + 1
2wβ). So we obtain

P
(
Cor > h1 +K

∣∣∣ L⃗β,x⃗ ≈ h⃗
)
≤ P

(
hβs1,1(x1L

−1/4 + 1
2wβ) > h1 +K

∣∣∣ L⃗β,x⃗ ≈ h⃗
)
.

By Theorem 2.17 this is upper bounded by exp(−cKL1/2). Combining this with (12.1) and taking
K large enough, we obtain the claimed bound. □

Proof of Lemma 12.3. Since µ = 1
2(h

β
s1,1

(x1L
−1/4 +wβ) + hβs1,1(x1L

−1/4)), it holds by Theorem 2.17

and the independence of Lβ,x⃗
i across i that P

(
µ < −K0L | L⃗β,x⃗ ≈ h⃗

)
< exp(−cL3/2). Combining

this with (12.1) completes the proof. □

Proof of Lemma 12.4. Take C∗ to be a large constant. By using Proposition 9.1 for a mesh of L2

many x ∈ [−1, 1], taking a union bound, and applying the unconditional local fluctuations estimates
Proposition 2.16, we have

P

(
max
|x|≤1

Lβ(x, s1; 0, 1) >

k∑
i=2

hi − (k − 2) log(2L1/2) +
1

2
C∗
∣∣∣ L⃗β,x⃗ ≈ h⃗

)
< exp(−cC∗L1/2). (12.5)

Further by Corollary 2.21,

P
(
hβs1,1(x) ≤ h1 − C∗ − L1/2|x− x1L

−1/4|/2, ∀x : |x− x1L
−1/4| ≥ 10C∗wβ, |x| ≤ 1

∣∣∣ L⃗β,x⃗ ≈ h⃗
)

> 1− C exp(−cC∗L1/2).

We can replace the conditioning L⃗β,x⃗ ≈ h⃗ in the above two estimates by Econd, using (12.1). Then
from these, we have that with probability > 1− C exp(−cL1/2) conditioning on Econd,∫

|x−x1L−1/4|≥10C∗wβ ,|x|≤1
exp

(
hβs1,1(x) + Lβ(x, s1; 0, 1)

)
dx

≤ exp

(
k∑

i=1

hi − (k − 2) log(2L1/2)− log(L1/2)− 1
2C∗

)
≤ exp(L− 1

4C∗) ≤ exp(−1
4C∗)Lβ[1],

63



using that h⃗ ∈ Eval and C∗ is large for the second inequality, and that we have conditioned on
Lβ[1] > L for the last inequality. This implies that

Lβ[1] ≤ (1− exp(−1
4C∗))−1

∫
|x−x1L−1/4|≤10C∗wβ

exp
(
hβs1,1(x) + Lβ

+[1](x)
)
dx. (12.6)

It also follows from Corollary 2.21 that, with probability at least 1− C exp(−cC∗L1/2) conditioning
on L⃗β,x⃗ ≈ h⃗,

h1 − 20C∗ ≤ inf
|x−x1L−1/4|≤10C∗wβ

hβs1,1(x) ≤ sup
|x−x1L−1/4|≤10C∗wβ

hβs1,1(x) ≤ h1 + C∗.

And by Corollary 2.21 and Proposition 3.4, with probability at least 1−C exp(−cC∗L1/2) conditioning
on L⃗β,x⃗ ≈ h⃗, there is

Lβ(x, si−1; y, si) > hi − 30C∗,

for any i = 2, . . . , k, and |x− xi−1L
−1/4|, |y − xiL

−1/4| ≤ 10C∗wβ ; thus

inf
|x−x1L−1/4|≤10C∗wβ

Lβ
+[1](x) ≥

k∑
i=2

hi − (k − 2) log(2L1/2)− 30kC∗.

Combining these two estimates with (12.5), we get that, with probability at least 1−C exp(−cC∗L1/2)

conditioning on L⃗β,x⃗ ≈ h⃗,∫ x1L−1/4+ 3
4
wβ

x1L−1/4+ 1
4
wβ

exp
(
hβs1,1(x) + Lβ(x, s1; 0, 1)

)
dx∫ x1L−1/4+10C∗wβ

x1L−1/4−10C∗wβ
exp

(
hβs1,1(x) + Lβ(x, s1; 0, 1)

)
dx

≥ (40C∗)−1 exp(−40kC∗).

We can further replace the conditioning by Econd, using (12.1). Then together with (12.6) the proof
completes. □

12.2. Free energy of restricted interval. In this subsection, we prove the following statement.

We introduce some notation to describe the free energy profiles in disjoint temporal strips defined by
[si−1, si]. We define

htop,i,x⃗1 = Lβ(xi−1L
−1/4, si−1;xiL

−1/4+·, si), hbot,i,x⃗1 = Lβ(xi−1L
−1/4+·, si−1;xiL

−1/4, si), (12.7)

for each i = 1, . . . , k. For any vector z⃗ ∈ Rk−1, we always write z0 = zk = 0 for the convenience of
notations. We denote

hsum(z⃗) =
k−1∑
i=1

htop,i,x⃗1 (zi) +
k∑

i=2

hbot,i,x⃗1 (zi−1), (12.8)

We also write IM,L = [−ML−1/2 logL,ML−1/2 logL], and Ix⃗ = L−1/4x⃗+ Ik−1
M,L ⊂ Rk−1. Recall the

max(β) notation from (9.1).

Lemma 12.5. When β = 1, there exists ρ > 0 such that, conditional on Econd, it holds with
probability at least 1− CL−1 that

max(β)

z⃗∈Ik−1
M,L

hsum(z⃗) ≥ L+ ρL−3 +
k−1∑
i=2

Lβ,x⃗
i .

When β = ∞, conditional on Econd, it holds with probability at least 1− exp(−cL1/2) that

max
z⃗∈Ik−1

M,L

hsum(z⃗) ≥ L+
k−1∑
i=2

Lβ,x⃗
i .

64



To prove this in the β = 1 case, the main thing we need is that the contribution to the free energy
Lβ[1] from outside Ix⃗ is small, which we isolate in the following statement.

Lemma 12.6. When β = 1, conditional on Econd, with probability at least 1− exp(−cML1/2),

max(β)
z⃗∈[−1,1]k−1\Ix⃗

k∑
i=1

Lβ(zi−1, si−1; zi, si) ≤ L− 1

2
M logL.

To handle the β = ∞ case, we will need the following statement, which is that the maximizer
restricted to Ix⃗ is with high probability the same as the global maximize. We note that it also holds
when β = 1.
We define the restricted (in terms of the interval over which the maximization is performed) version
of π∗(si): for i = 1, . . . , k − 1 we let

π∗,res,x⃗(si) = argmax
|z|≤ML−1/2 logL

(
Lβ(0, si−1;xiL

−1/4 + z, si) + Lβ(xiL
−1/4 + z, si; 0, si+1)

)
, (12.9)

for M being a large number.

Lemma 12.7. With probability 1 − exp(−cML1/2 logL) conditional on L⃗β,x⃗ ≈ h⃗, for each i =
1, . . . , k,

π∗(si) = xiL
−1/4 + π∗,res,x⃗(si).

We give the proof of Lemma 12.5 before turning to proving Lemmas 12.6 and 12.7.

Proof of Lemma 12.5. In this proof, by ‘conditional probability’, we refer to the conditioning Econd.
Case of β = ∞: We let Eeq denote the event where π∗(si) = xiL

−1/4 + π∗,res,x⃗(si) for each i =
1, . . . , k − 1. We first note that by Lemma 12.7 and (12.1), for all large enough M , Eeq holds with
conditional probability > 1 − exp(−cML1/2). Now on Eeq it follows by definition that Lβ[1] =

maxz⃗∈Ix⃗
∑k

i=1 Lβ(zi−1, si−1; zi, si). Further by coalescence, which holds with conditional probability
> 1− C exp(−cL3/2) by Proposition 3.4 and (12.1), it follows that

max
z⃗∈IkM,L

hsum(z⃗) = max
z⃗∈Ix⃗

k∑
i=1

Lβ(zi−1, si−1; zi, si) +
k−1∑
i=2

Lβ,x⃗
i ≥ L+

k−1∑
i=2

Lβ,x⃗
i ,

completing the proof.

Case of β = 1: By Lemma 12.1 there exists ρ > 0 such that, with conditional probability at least
1 − CL−1, we have Lβ[1] ≥ L + ρL−3. By Lemma 12.6, with conditional probability at least
1− exp(−cML1/2),

exp(Lβ[1])− exp

(
max(β)
z⃗∈Ix⃗

k∑
i=1

Lβ(zi−1, si−1; zi, si)

)
≤ L− 1

2
M exp(L).

The previous two inequalities, along with exp(x) ≥ 1 + x, imply that

exp

(
max(β)
z⃗∈Ix⃗

k∑
i=1

Lβ(zi−1, si−1; zi, si)

)
≥ exp(L+ ρL−3)− L− 1

2
M exp(L)

≥ exp(L)
[
1 + ρL−3 − L− 1

2
M
]

≥ exp(L)
[
1 + 1

2ρL
−3
]
.

By coalescence (Proposition 3.4), with conditional probability at least 1− C exp(−cL3/2),
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max(β)
z⃗∈IkM,L

hsum(z⃗) ≥ max(β)
z⃗∈Ix⃗

k∑
i=1

Lβ(zi−1, si−1; zi, si) +

k−1∑
i=2

Lβ,x⃗
i − kCe−cL

> L+ 1
4ρL

−3 − kCe−cL +
k−1∑
i=2

Lβ,x⃗
i ,

Since kCe−cL ≪ ρL−1, the proof is complete by relabeling ρ. □

The main step in proving Lemma 12.6 is to handle the case of k = 2, which is given in the
following statement; then we can obtain the statement for general k by making use of coalescence
(Proposition 3.4).

Lemma 12.8. Conditional on Econd, it holds with probability at least 1− exp(−cML1/2) that, for
each i = 1, . . . , k − 1,∫

(−xiL−1/4+[−1,1])\IM,L

exp
(
htop,i,x⃗1 (z) + hbot,i+1,x⃗

1 (z)
)
dz ≤ L−M exp (hi + hi+1) .

and ∫
−xiL−1/4+[−1,1]

exp
(
htop,i,x⃗1 (z) + hbot,i+1,x⃗

1 (z)
)
dz ≤ exp

(
hi + hi+1 − log(2L1/2) +M

)
.

Proof. The second inequality follows from (9.6) in Lemma 9.3 and (12.1).

For the first inequality, by (12.1), it suffices to show that the displayed inequality holds with
probability at least 1− exp(−cML1/2) given only that L⃗β,x⃗ ≈ h⃗. Indeed, conditional on L⃗β,x⃗ ≈ h⃗,
from Corollary 2.21, it holds with probability at least 1−C exp(−cML1/2 logL) that, for all z ̸∈ IM,L,
z + xiL

−1/4 ∈ [−1, 1],

htop,i,x⃗1 (z) ≤ hi − 1
2M logL− 1

4L
1/2|z|,

hbot,i+1,x⃗
1 (z) ≤ hi+1 − 1

2M logL− 1
4L

1/2|z|.

By plugging these into the integral, the conclusion follows. □

Proof of Lemma 12.6. By coalescence Proposition 3.4 and (12.1), with probability at least 1 −
C exp(−cL3/2) conditional on Econd, the LHS is at most

max(β)
z⃗+L−1/4x⃗∈[−1,1]k−1\Ix⃗

k−1∑
i=1

htop,i,x⃗1 (zi) + hbot,i+1,x⃗
1 (zi) + Ce−cL −

k−1∑
i=2

hi.

Recall that the first term is the logarithm of an integral over [−1, 1]k−1 \ Ix⃗. We can upper bound
the integral by replacing [−1, 1]k−1 \ Ix⃗ with the k − 1 dimension product where all but the ith one
is [−1, 1] and the ith one is [−1, 1] \ (xiL−1/4 + IM,L), and summing over i (i.e., the sum is inside
the logarithm). Using Lemma 12.8, we get an upper bound of

k∑
i=1

hi + Ce−cL −M logL− (k − 2) log(2L1/2) +M + C log k.

Using that h⃗ ∈ Eval, by taking M large enough the conclusion follows. □

Proof of Lemma 12.7. We need to show that with high probability, conditional on L⃗β,x⃗ ≈ h⃗, it holds
that maxi=1,...,k−1 |π∗(si)− xiL

−1/4| ≤ ML−1/2 logL so that π∗(si) = xiL
−1/4 + π∗,res,x⃗(si).
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Let Ji denote the interval {z : |z+xiL
−1/4| ≤ 10−6(si−si−1)

1/2∧ (si+1−si)
1/2}. By Proposition 3.4,

conditional on L⃗β,x⃗ ≈ h⃗, with probability > 1−C exp(−cL3/2) the event π∗(si) ̸= xiL
−1/4+π∗,res,x⃗(si)

implies that
sup

z∈Ji\IM,L

htop,i,x⃗1 (z) + hbot,i+1,x⃗
1 (z) > hi + hi+1 − C exp(−cL), (12.10)

or

sup
z ̸∈Ji

Lβ(0, si−1;xiL
−1/4 + z, si) + Lβ(xiL

−1/4 + z, si; 0, si+1)

≥ Lβ(0, si−1;xiL
−1/4, si) + Lβ(xiL

−1/4, si; 0, si+1). (12.11)

We have that (12.10) further implies that either

sup
z∈Ji\IM,L

htop,i,x⃗1 (z) > hi+1 − C exp(−cL),

or
sup

z∈Ji\IM,L

hbot,i+1,x⃗
1 (z) > hi − C exp(−cL),

happens; and by Corollary 2.21, each happens, conditional on L⃗β,x⃗ ≈ h⃗, with probability <
exp(−cML1/2 logL).

As for (12.11), by Corollary 2.21, with probability > 1−C exp(−cL3/4) conditional on L⃗β,x⃗ ≈ h⃗, we
have that the RHS is > hi + hi+1 − L1/4 logL. For the LHS, for any fixed z ̸∈ Ji we have

P
(
Lβ(0, si−1;xiL

−1/4 + z, si) + Lβ(xiL
−1/4 + z, si; 0, si+1) > hi + hi+1 − L1/4 logL

)
< C exp

(
−4

3(si+1 − si−1)L
3/2 − cz2L1/2

)
by Theorem 2.13, and that h⃗ ∈ Eval. Then by a union bound over all z ̸∈ Ji, z ∈ L−2L, and using
the continuity estimate Proposition 2.16, we get that the LHS is ≤ hi + hi+1 − L1/4 logL with
probability > 1− C exp

(
−4

3(si+1 − si−1)L
3/2 − cL3/2

)
. Then since

P
(
Lβ,x⃗
i ∈ hi + [0, e−L]

)
> c exp

(
−4

3(si − si−1)L
3/2 − CL3/4

)
and

P
(
Lβ,x⃗
i+1 ∈ hi+1 + [0, e−L]

)
> c exp

(
−4

3(si+1 − si)L
3/2 − CL3/4

)
,

by Theorem 2.13, we conclude that (12.11) happens with probability < C exp(−cL3/4) conditional
on L⃗β,x⃗ ≈ h⃗. This completes the proof. □

12.3. The density comparison. We now finish the proof of Lemma 11.3.

Recall the setup at the beginning of this section. Also recall the definition of π∗,res,x⃗(si) from (12.9)
as a version of π∗(si) defined for i = 1, . . . , k − 1 but with a restricted interval over which the
maximization is performed, and the definition of htop,i,x⃗1 and hbot,i,x⃗1 from (12.7), and hsum from
(12.8).

As before, we let IM,L = [−ML−1/2 logL,ML−1/2 logL], and wβ=1 = L−1/2, wβ=∞ = L−1.

Proof of Lemma 11.3. We want to estimate the conditional probabilities on both the LHS and the
RHS and show that they are within 1 + o(1) of each other. Towards this, for either ι = 0 or 1 (we
allow both as the RHS in Lemma 11.3 does not have the β−1e−cL1/4 term), we claim that

P
(

max
i=1,...,k−1

|π∗(si)− xiL
−1/4| < wβ,Lβ[1] > (1− ιβ−1e−cL1/4

)L
∣∣∣ L⃗β,x⃗ ≈ h⃗

)
= (1 +O(L−1))
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×P

(
max

i=1,...,k−1
|π∗(si)− xiL

−1/4| < wβ, max(β)

z⃗∈Ik−1
M,L

hsum(z⃗) ≥ L+ β−1ρL−3 +

k−1∑
i=2

Lβ,x⃗
i

∣∣∣ L⃗β,x⃗ ≈ h⃗

)
.

(12.12)

Indeed, by Lemma 12.5, the LHS is upper bounded by the RHS; while by Proposition 3.4,

Lβ[1] +
k−1∑
i=2

Lβ,x⃗
i ≥ max(β)

z⃗∈Ik−1
M,L

hsum(z⃗),

with probability > 1−C exp(−cL3/2), conditional on Lβ,x⃗ ≈ h⃗. Then since the LHS is lower bounded
by c exp(−CL1/2) (β = 1) or c (β = ∞) by Proposition 9.1 and h⃗ ∈ Eval, the LHS is lower bounded
by the RHS.

We now let E± denote the events where for each i = 1, . . . , k − 1,

sup
|z|≤wβ

htop,i,x⃗1 (z) + hbot,i+1,x⃗
1 (z) > sup

|z|≥wβ ,z∈IM,L

htop,i,x⃗1 (z) + hbot,i+1,x⃗
1 (z)∓ C exp(−cL),

and

max(β)

z⃗∈Ik−1
M,L

hsum(z⃗) ≥ L+ β−1ρL−3 +
k−1∑
i=2

hi ∓ C exp(−cL).

By Lemma 12.7 and Proposition 9.1, the probability in the RHS of (12.12) is in[
P(E− | L⃗β,x⃗ ≈ h⃗)− exp(−cML1/2), P(E+ | L⃗β,x⃗ ≈ h⃗) + exp(−cML1/2)

]
. (12.13)

Now we wish to make use of Proposition 3.5 to replace the processes htop,i,x⃗1 and hbot,i,x⃗1 by a collection
of processes given by independent Brownian bridges, up to an exponentially small L∞ error and on
an event with probability 1− exp(−cL).

Denote

G = L+ β−1ρL−3 −
k∑

i=1

hi

Since h⃗ ∈ Eval from (11.5), we have G < −(k − 1)β−1 log(2L1/2) + Crβ (recall that rβ=1 = 1 and
rβ=∞ = L−1/2).

Reduce to Brownian bridges. We denote θ = 10−7mini=1,...,k(si − si−1)L
1/2. We let Θ denote

the collection of all

b⃗ = (⃗bbot,L, b⃗bot,R, b⃗top,L, b⃗top,R) =
(
(bbot,Li )ki=2, (b

bot,R
i )ki=2, (b

top,L
i )k−1

i=1 , (b
top,R
i )k−1

i=1

)
∈ R4(k−1).

For any b⃗ ∈ Θ, we denote by B†,i,⃗b a rate 2 Brownian bridge from (−θ,−2θL1/2 + b†,Li ), to (0, 0),
then to (θ,−2θL1/2 + b†,Ri ), for † = top, i = 1, . . . , k − 1, and † = bot, i = 2, . . . , k. All these B†,i

are independent of each other. One should think of B†,i as being approximately h†,i,x⃗1 − hi, which we
will use in a more precise sense via Proposition 3.5.

We then denote by E⃗
b

the event where for each i = 1, . . . , k − 1,

sup
|z|≤wβ

Btop,i,⃗b(z) +Bbot,i+1,⃗b(z) > sup
|z|≥wβ ,z∈IM,L

Btop,i,⃗b(z) +Bbot,i+1,⃗b(z),

and

max(β)

z⃗∈Ik−1
M,L

k−1∑
i=1

Btop,i,⃗b(zi) +
k∑

i=2

Bbot,i,⃗b(zi−1) ≥ G.
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We also denote by E⃗
b,± the event where for each i = 1, . . . , k − 1,

sup
|z|≤wβ

Btop,i,⃗b(z) +Bbot,i+1,⃗b(z) > sup
|z|≥wβ ,z∈IM,L

Btop,i,⃗b(z) +Bbot,i+1,⃗b(z)∓ C exp(−cL),

and

max(β)

z⃗∈Ik−1
M,L

k−1∑
i=1

Btop,i,⃗b(zi) +
k∑

i=2

Bbot,i,⃗b(zi−1) ≥ G∓ C exp(−cL).

It is straightforward to check that

|P(E⃗
b
)− P(E⃗

b,±)| < C exp(−cL). (12.14)

For each a > 0 we let Θa denote the collection of all b⃗ ∈ Θ, where each coordinate is in [−a, a]. We
write D = logL.
Since x⃗ ∈ K which is a compact set, applying Proposition 3.5, and using Lemma 2.20 to bound each
htop,i1 and hbot,i1 at ±θ, we have that

P(E− | L⃗β,x⃗ ≈ h⃗) ≥ (1− C exp(−cD2)) min
b⃗∈Θ

DL1/4

P(E⃗
b,−)− C exp(−cL), (12.15)

and

P(E+ | L⃗β,x⃗ ≈ h⃗) ≤ max
b⃗∈Θ

DL1/4

P(E⃗
b,+

) +

⌊L1/4⌋∑
i=2

C exp(−ci2D2) max
b⃗∈Θ

iDL1/4

P(E⃗
b,+

)

+ C exp(−cL) + C exp(−cD2L1/2). (12.16)

By (12.14), we can replace each P(E⃗
b,±) by P(E⃗

b
). We also note that these bounds are independent

of x⃗.
We next state a comparison lemma for different b⃗.

Lemma 12.9. For any large enough K > 0, and b⃗, g⃗ ∈ Θ such that ∥⃗b− g⃗∥∞ < KL1/4, we have

P(E⃗
b
) = (1 +O(K2L−1/4 logL))P(Eg⃗) +O(exp(−cK2M−1L1/2 logL)).

Now for each i = 1, . . . , ⌊L1/4⌋, and any b⃗ ∈ ΘiDL1/4 , g⃗ ∈ ΘDL1/4 , we can find a sequence of vectors
in Θ, b⃗ = b⃗(0), b⃗(1), . . . , b⃗(i) = g⃗, with ∥⃗b(j−1) − b⃗(j)∥∞ ≤ DL1/4 for each j = 1, . . . , i. Then (12.9)
implies that for each j

P(E⃗
b(j−1)) < (1 + CD2L−1/4 logL)P(E⃗

b(j)
) + C exp(−cD2M−1L1/2 logL),

and, since 1 + x ≤ exp(x),

P(E⃗
b
) < exp(CiD2L−1/4 logL)

(
P(Eg⃗) + C exp(−cD2M−1L1/2 logL)

)
.

In other words, we have (for each i = 1, . . . , ⌊L1/4⌋)

max
b⃗∈Θ

iDL1/4

P(E⃗
b
) < exp(CiD2L−1/4 logL)

(
min

b⃗∈Θ
DL1/4

P(E⃗
b
) + C exp(−cD2M−1L1/2 logL)

)
.

Therefore, by plugging this into (12.16) (with each P(E⃗
b,+

) replaced by P(E⃗
b
) using (12.14)) we have

P(E+ | L⃗β,x⃗ ≈ h⃗) < (1 + C exp(−cD2)) max
b⃗∈Θ

DL1/4

P(E⃗
b
) + C exp(−cD2M−1L1/2 logL).

Also, (12.15) (with each P(E⃗
b,−) replaced by P(E⃗

b
) using (12.14)) and Lemma 12.9 imply that

P(E− | L⃗β,x⃗ ≈ h⃗) > (1− C exp(−cD2)) max
b⃗∈Θ

DL1/4

P(E⃗
b
)− C exp(−cD2M−1L1/2 logL).
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Since that (as we have seen above) (12.12) is lower bounded by c exp(−CL1/2) (β = 1) or c (β = ∞)
by Proposition 9.1, and the RHS of (12.12) is in the interval (12.13), we conclude that (12.12) equals
(1 + o(1))max⃗

b∈Θ
DL1/4

P(E⃗
b
), which is independent of x⃗. □

It remains to prove the comparison lemma on Brownian bridges.

Proof of Lemma 12.9. We note that the events E⃗
b
and Eg⃗ are measurable with respect to the processes

B†,i,⃗b in the interval IM,L. Therefore, conditional on that each B†,i,⃗b and B†,i,g⃗ are the same at
±ML−1/2 logL, the conditional probabilities of E⃗

b
and Eg⃗ would be the same.

We let BdyCtrl be the event where for each † = top, i = 1, . . . , k − 1, and † = bot, i = 2, . . . , k, we
have

|B†,i,⃗b(ML−1/2 logL)− b†,Ri θ−1ML−1/2 logL+ 2M logL| < K logL,

|B†,i,⃗b(−ML−1/2 logL)− b†,Li θ−1ML−1/2 logL+ 2M logL| < K logL,

|B†,i,g⃗(ML−1/2 logL)− b†,Ri θ−1ML−1/2 logL+ 2M logL| < K logL,

|B†,i,g⃗(−ML−1/2 logL)− b†,Li θ−1ML−1/2 logL+ 2M logL| < K logL.

It follows from Gaussian tail bounds (Lemma 2.22) (and noting that ∥⃗b− g⃗∥ ≤ KL1/4) that

P (BdyCtrlc) ≤ exp
(
−cK2M−1L1/2 logL

)
.

It then suffices to control the ratio of the probability densities of B†,i,⃗b(±ML−1/2 logL) and
B†,i,g⃗(±ML−1/2 logL), in the interval −ML1/2 logL + [−K logL,K logL]. For this, note that
B†,i,⃗b(±ML−1/2 logL) and B†,i,g⃗(±ML−1/2 logL) are Gaussian random variables with the same
variance of order ML−1/2 logL, and mean differ by ≤ Kθ−1ML−1/4 logL. Therefore the density
ratio is

exp(O((K logL)(Kθ−1ML−1/4 logL)(ML−1/2 logL)−1)) = 1 +O(K2L−1/4 logL).

Therefore the conclusion follows. □

Appendix A. Weak convergence lemma

Proof of Lemma 11.2. Fix M > 0. We then have that

max
∥x⃗∥∞,∥y⃗∥∞≤M,∥x⃗−y⃗∥∞≤ϵ

∣∣∣∣f(x⃗)f(y⃗)
− 1

∣∣∣∣→ 1. (A.1)

This follows from the continuity and strict positivity of f combined with the compactness of [−M,M ]d.
Now we take any δ > 0, and x⃗, y⃗ ∈ [−M + δ,M − δ]d. For any ε such that δε−1 ∈ N, by splitting
x⃗+ [−δ, δ)d into (δε−1)d many translations of [−ε, ε)d, applying (11.1) across them, and using (A.1),
we have

P
(
X⃗ε ∈ x⃗+ [−δ, δ)d

)
P
(
X⃗ε ∈ y⃗ + [−δ, δ)d

) →

∫
x⃗+[−δ,δ)d f(z⃗) dz⃗∫
y⃗+[−δ,δ)d f(z⃗) dz⃗

,

as ϵ → 0. Then by the continuity of f , and that X⃗ϵ → X⃗ in distribution, we conclude that

P
(
X⃗ ∈ x⃗+ [−δ, δ)d

)
P
(
X⃗ ∈ y⃗ + [−δ, δ)d

) =

∫
x⃗+[−δ,δ)d f(z⃗) dz⃗∫
y⃗+[−δ,δ)d f(z⃗) dz⃗

.
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We note that by sending M → ∞, this holds for arbitrary x⃗, y⃗ ∈ Rd. Then by the integrability of f ,
we get

P
(
X⃗ ∈ x⃗+ [−δ, δ)d

)
=

∫
x⃗+[−δ,δ)d f(z⃗) dz⃗∫

Rd f(z⃗) dz⃗
.

Then the conclusion follows by sending δ → 0. □

Appendix B. Tent Brownian comparison and estimates

In this appendix, we provide the proofs of Lemma 2.18, Lemma 2.19, and Lemma 2.20.

Proof of Lemma 2.18. We wish to prove Lemma 2.18 from Theorem 2.17, by applying the tail
comparison of Theorem 4.1. However, the proof of Theorem 4.1 we give uses Lemma 2.18, and we
next explain how circular arguments are avoided.

First, recall the notation L
1/2
M = (L − M)1/2 from the proof of Theorem 4.1. That proof used

Lemma 2.18 in the special case of

P

(
max

x∈{−L
1/2
M ,L

1/2
M }

∣∣∣ĥβt,1(x)− L+ 2L1/2|x|
∣∣∣ > ML1/4

∣∣∣ ĥβt,1(0) > L

)
< exp(−cM2),

for M = logL, i.e., the process is considered only at the two points ±L
1/2
M and not on the entire

interval [−L1/2, L1/2]; this was done in the proof of Theorem 4.1 right before (4.8). This application
of Lemma 2.18 with this value of M is the only one in the proof of Theorem 4.1. We will show how
to prove the above display, and then we will be allowed to use Theorem 4.1 to prove Lemma 2.18.

Call the event in the previous display AM,L. Take a large C1 > 0, then the previous display is
bounded by

P
(
AM,L, ĥ

β
t,1(0) < L+ C1L

1/4 | ĥβt,1(0) > L
)
+ P

(
ĥβt,1(0) > L+ C1L

1/4 | ĥβt,1(0) > L
)
. (B.1)

The second term is upper bounded, using a trivial upper bound and then Theorem 2.13, by

P
(
ĥβt,1(0) > L+ C1L

1/4
)

P
(
ĥβt,1(0) > L

) ≤
exp

(
−4

3(L+ C1L
1/4)3/2 + CL3/4

)
exp

(
−4

3L
3/2 − CL3/4

) ≤ exp
(
−cL3/4

)
, (B.2)

as C1 is large. The first term of (B.1) is upper bounded by

P
(
AM,L

∣∣∣ ĥβt,1(0) ∈ (L,L+ C1L
1/4)

)
≤ sup

L′∈(L,L+C1L1/4)

P
(
AM,L

∣∣∣ ĥβt,1(0) ∈ (L′, L′ + dL′)
)
.

Now applying the Theorem 2.17 where we condition on the value of ĥβt,1(0) yields that the final term
is upper bounded by exp(−cM2) when 0 < M < cL3/4. Thus the bound on (B.1) is exp(−cM2) +

exp(−cL3/4) ≤ exp(−cM2) when M < L3/8, as is certainly the case for M = logL.

This establishes the needed bound on (B.1) and so we may now make use of Theorem 4.1, as noted
above. We now perform the same analysis as above but with

ÃM,L =

{
sup

|x|≤L1/2

∣∣∣ĥβt,1(x)− L+ 2L1/2|x|
∣∣∣ > ML1/4

}
replacing AM,L and with M2L−1/2 replacing C1L

1/4; the only difference is that the bound in
(B.2) now follows from Theorem 4.1 instead of Theorem 2.13 (and is now exp(−cM2) instead of
exp(−cL3/4)). The remaining analysis is the same and yields an overall bound on the LHS of (B.1)
of exp(−cM2) for 0 < M < cL3/4. □
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Proof of Lemma 2.19. Let E0 denote the event where ĥβt,1(0) ∈ (L,L+ dL). Denote by E1 the event

ĥβt,2(x) < −x2 + 0.1L, ∀x ∈ [−1
2L

1/2, 12L
1/2],

and by E2 the event where
ĥβt,1(−L1/2/2), ĥβt,1(L

1/2/2) > −0.1L.

By Lemma 2.12 and Lemma 3.2, we have

P(E1 | E0) > P
(
ĥβt,1(x) < −x2 + 0.1L, ∀x ∈ [−1

2L
1/2, 12L

1/2]
)
> 1− C exp(−cL3/2).

By Theorem 2.17 we have P(E2 | E0) > 1− C exp(−cL3/2).

We now assume the event E0 ∩ E1 ∩ E2, and consider the Radon-Nikodym derivative between the two
sets of processes. Let F = Fext([−t2/3L1/2/2, t2/3L1/2/2]) be the sigma-algebra generated by ĥβt,1 on
(−∞,−L1/2/2] ∪ {0} ∪ [L1/2/2,∞) and ĥβt,2. Then according to the Gibbs property (Lemma 2.9), it
suffices to bound

Z−1W (B, hβt,2), (B.3)

where

• B̂ : [−L1/2/2, L1/2/2] → R is a rate 2 Brownian bridge, conditional on B̂(−L1/2/2) =

ĥβt,1(−L1/2/2), B̂(0) = L, B̂(L1/2/2) = ĥβt,1(L
1/2/2); and B : [−t2/3L1/2/2, t2/3L1/2/2] → R

satisfies that B̂(x) = t−1/3B(t2/3x);
• W (B, hβt,2) < 1 is the weight defined through (2.6), in the interval [−t2/3L1/2/2, t2/3L1/2/2];
• Z = E[W (B, hβt,2) | F ] is a renormalization constant.

Assuming E0 ∩E1 ∩E2, we have P(B̂(x) ≥ 0.2L,∀x ∈ [−L1/2/2, L1/2/2] | F) > 1−C exp(−cL2); and
whenever infx∈[−L1/2/2,L1/2/2] B̂(x) ≥ 0.2L and also under E1, we have

hβt,2(t
2/3x)−B(t2/3x) > t1/3 · 0.1L, ∀x ∈ [−L1/2/2, L1/2/2].

Therefore, from (2.6) we have

W (B, hβt,2) > 1− 2t2/3L1/2 exp(−t1/3 · 0.1L) > 1− C exp(−ct1/3L).

Thus we have Z > 1− C exp(−ct1/3L), and (B.3) is 1 +O(exp(−ct1/3L)) under E0 ∩ E1 ∩ E2. This
combined with the estimates on P(E1 | E0) and P(E2 | E0) leads to the conclusion. □

We next prove Lemma 2.20.

Proof of Lemma 2.20. For the first bound, by Theorem 2.17 we have that

P
(
|ĥβt,1(±L1/2/2)| > ML1/4/5

∣∣∣ ĥβt,1(0) ∈ (L,L+ dL)
)
< exp(−cM2).

Then the bound follows from Lemma 2.19 and standard Brownian bridge estimates.

For the second bound, we use a strategy similar to the proof of Lemma 2.18. Namely, the LHS is
bounded by

sup
L′∈(L,L+MσI/2)

P
(
sup
x∈I

∣∣∣ĥβt,1(x)− (L− 2L1/2|x|)
∣∣∣ > MσI

∣∣∣ ĥβt,1(0) ∈ (L′, L′ + dL′)
)

+ P
(
ĥβt,1(0) > L+MσI/2

∣∣∣ ĥβt,1(0) > L
)
.

Then by the first bound and Theorem 4.1, the second bound follows. □
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Appendix C. Tail and tent estimates for small time

In this appendix we explain how to adapt the proofs in [GH22] to get Theorem 2.13 and Theorem 2.17,
using inputs from [DG23]. Theorems 2.13 and 2.17 are proven in [GH22] for t > t0 for any t0 fixed,
so here we prove it for 0 < t < t0 for a particular t0 coming from the new inputs from [DG23].
Written with our scaling, [DG23, Theorem 1.4] asserts that, for any ε > 0, there exist t0, c, and s0,
all depending on ε, such that, for 0 < t < t0 and M > M0t

−1/12,

P
(
ĥβt,1(0) > M + t−1/3 log t−1

)
≤ exp

(
−c

M2t1/6√
1 +Mt1/3−ε/2

)
.

If we additionally assume that M > M0t
−1/3−ε and t < 1, so that M1/2 ≥ t−1/6−ε/2 ≥ t−ε/2, the

previous display implies that

P
(
ĥβt,1(0) > 2M

)
≤ P

(
ĥβt,1(0) > M + t−1/3 log t−1

)
≤ exp

(
−cM3/2tε/2

)
≤ exp(−cM).

For control on the lower tail, as recorded in Theorem 2.15, [DG23, Theorem 1.7] and a similar
calculation shows that, if M > t−1/6,

P
(
ĥβt,1(0) < −M

)
≤ exp(−cM2t1/6) ≤ exp(−cM); (C.1)

and one can also instead assume M > t−1/12−ε and obtain a weaker bound of the form exp(−cMα)
for some α = α(ε).

To apply the arguments of [GH22], we also need an a priori lower bound on P(ĥβt,1(0) > M). For this
it is easy to check that the proof of [GH22, Lemma 5.4] applies verbatim if we assume M > t−1/6 (or
M > t−1/12−ε, as above) and use (C.1) in place of lower tail tightness (over t ≥ t0) of ĥβt,1(0). This
will then yield, for t > 0 and M > t−1/6,

P
(
ĥβt,1(0) > M

)
≥ exp(−5M3/2).

With these estimates in place, we satisfy Assumptions (i)–(iv) from [GH22, Section 2.2] (more
precisely, the above verifies Assumption (iv) on tail bounds, as the other assumptions are qualitative
and hold for any t > 0). In particular, [GH22, Theorems 4.1, 5.1, and 5.3] will apply as they hold
only assuming these assumptions, modulo controlling the partition function arising from the Gibbs
property of ĥβt , and we explain this point next.
In [GH22], the estimates lower bounding the partition function are captured in Lemma 3.11, Corollary
3.12, Proposition 3.14, and Corollary 3.15. The latter two are already stated for t > 0. Lemma
3.11 says that the partition function Zt of a single curve with respect to a lower boundary curve
p on an interval [z1, z2] is lower bounded by exp(−2t2/3e−t1/6)

∫ z2
z1

exp(−t1/3g(u)) du) · P(B(u) >

p(u)+ g(u)+ t−1/6,∀u ∈ [z1, z2]) for any non-negative function g, and a quick inspection of the proof
shows that a minor modification yields a lower bound of exp(−2t2/3)

∫ z2
z1

exp(−t1/3g(u)) du)·P(B(u) >

p(u) + g(u), ∀u ∈ [z1, z2]), which is better for small t. Carrying this change to Corollary 3.12 and
then making use of these estimates in the proofs of [GH22, Theorems 4.1, and 5.1] will then yield
Theorems 2.13 and 2.17.
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