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Mostly everything will be over Q, but there are generalizations to number fields. When we say
“curve”, we mean smooth, projective, and geometrically integral of dimension 1.

Let X be a curve over Q of genus g > 2. Mordell famously conjectured that X (Q) is finite, and
this was proved by Faltings in 1983. This leads to the following problem:

Problem 1. For X with g > 2 as above, compute the finite set X (Q).

Parshin showed that Faltings’ approach can be adapted to get an upper bound on the size of
X (Q), but does not give an algorithm to find the rational points. We’ll discuss a different strategy
introduced by Chabauty that can be modified in a way to be effective.

Suppose X (Q) # @. Let J be the Jacobian of X. Recall that:

« J is an abelian variety.
« Its T-points are {L € Pic (C' x T'):deg (L;) = 0Vt} /q* Pic(T).
« Fix O € X(Q). Then, we have an embedding ¢: X < J givenby P+~ [P - O].

One basic approach to computing X (Q) is as follows:
(i) Find J(Q).
(ii) Determine which points of J(Q) are actually on X (Q).

For the first step, the Mordell-Weil theorem ensures that J(Q) is a finitely-generated abelian
group. To find its generators and relations, there are algorithms based on descent.

If J(Q) is moreover finite, one can determine X (Q) by trying to find P ¢ X (Q) satisfying
t(P) = [P - O] = [D] for each degree-0 divisor [D] € J(Q). This amounts to P = D + O + (f)
for f a non-zero rational function in L(D + O), and Riemann-Roch spaces can be computed
efficiently.

Another strategy is as follows:

(i) Embed J(Q) in the Lie group J(R), which is a compact commutative Lie group isomorphic
to R9/Z9 x F for some finite abelian group F.



(ii) Let J(Q) be the closure of J(Q) in J(R), which is a Lie subgroup.

(iii) It would be nice if X(R) n J(Q) c J(R) is finite, since this would imply that X (Q) is
finite.

Unfortunately, when J(Q) is dense in J, this is expected to not be the case.
Chabauty’s strategy was to use Q, instead of R.

Let us recall a bit about the structure of the p-adic Lie group J (Q,):

o Let HY (J@p, Ql) be the g-dimensional Q,-vector space of regular 1-forms. For w; € H° (J@p, Ql),
it turns out there is an antiderivative, which is a homomorphism:

Q
1 (@)~ Q@ [ ws.
« This induces a bilinear pairing

J(Qp) x H° (JQp= Ql) - Q,
which when written as
log: J (Q,) —» H (Jg,, Q)"
is a local diffeomorphism (the tangent spaces at 0 of both are H° (Jg,,2!)").
(i) Embed J(Q) in the p-adic Lie group J(Q,).

(ii) Let J(Q) be the closure of J(Q) in J(Q,), which is a p-adic Lie subgroup. The hope is
that this is smaller than when taking the closure in J(R).

(iii) It would be nice if X(Q,) n J(Q) c J(Q,) is finite, since this would imply that X (Q) is
finite.

To make this work, let 7/ = dim J(Q) and r = rk J(Q). It turns out that 7’ < r and g always.

Theorem 2 (Chabauty). Let X be a curve of genus g > 2 over Q. Let p be a prime and r,r" be as

above. Supposer’ < g (which is automatic e.g. if r < g). Then, X (Q,)nJ(Q), hence X (Q), is finite.

Although this is weaker than Faltings’ theorem in that it requires 7’ < g, it has the advantage that
it gives an explicit upper bound on # X (Q) that is often sharp.

Suppose X has good reduction, i.e. is the generic fiber of a smooth proper curve over Z,. Let
X (F,) denote the [F,-points of the reduction of X. By using a function on J(Q,) that vanishes

on J(Q), Coleman proves the following bound:

Theorem 3 (Coleman). Forp > 2g and p a prime of good reduction for X,

#X(Q) < #X (Fp) + (29 - 2).
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