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Mostly everything will be over Q, but there are generalizations to number fields. When we say
“curve”, we mean smooth, projective, and geometrically integral of dimension 1.

Let X be a curve over Q of genus g ≥ 2. Mordell famously conjectured that X(Q) is finite, and
this was proved by Faltings in 1983. This leads to the following problem:

Problem 1. For X with g ≥ 2 as above, compute the finite set X(Q).
Parshin showed that Faltings’ approach can be adapted to get an upper bound on the size of
X(Q), but does not give an algorithm to find the rational points. We’ll discuss a different strategy
introduced by Chabauty that can be modified in a way to be effective.

Suppose X(Q) ≠ ∅. Let J be the Jacobian of X . Recall that:

• J is an abelian variety.
• Its T -points are {L ∈ Pic (C × T ) ∶deg (Lt) = 0∀t} /q∗Pic(T ).
• Fix O ∈X(Q). Then, we have an embedding ι∶X ↪ J given by P ↦ [P −O].

One basic approach to computing X(Q) is as follows:
(i) Find J(Q).
(ii) Determine which points of J(Q) are actually on X(Q).

For the first step, the Mordell–Weil theorem ensures that J(Q) is a finitely-generated abelian
group. To find its generators and relations, there are algorithms based on descent.

If J(Q) is moreover finite, one can determine X(Q) by trying to find P ∈ X(Q) satisfying
ι(P ) = [P −O] = [D] for each degree-0 divisor [D] ∈ J(Q). This amounts to P = D +O + (f)
for f a non-zero rational function in L(D + O), and Riemann–Roch spaces can be computed
efficiently.

Another strategy is as follows:

(i) Embed J(Q) in the Lie group J(R), which is a compact commutative Lie group isomorphic
to Rg/Zg × F for some finite abelian group F .
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(ii) Let J(Q) be the closure of J(Q) in J(R), which is a Lie subgroup.

(iii) It would be nice if X(R) ∩ J(Q) ⊂ J(R) is finite, since this would imply that X(Q) is
finite.

Unfortunately, when J(Q) is dense in J , this is expected to not be the case.

Chabauty’s strategy was to use Qp instead of R.

Let us recall a bit about the structure of the p-adic Lie group J (Qp):

• LetH0 (JQp ,Ω
1) be the g-dimensionalQp-vector space of regular 1-forms. ForωJ ∈H0 (JQp ,Ω

1),
it turns out there is an antiderivative, which is a homomorphism:

ηj ∶J (Qp) → Qp,Q↦ ∫
Q

0
ωJ .

• This induces a bilinear pairing

J(Qp) ×H0 (JQp ,Ω
1) → Qp,

which when written as
log∶J (Qp) →H0 (JQp ,Ω

1)∨

is a local diffeomorphism (the tangent spaces at 0 of both are H0 (JQp ,Ω
1)∨).

(i) Embed J(Q) in the p-adic Lie group J(Qp).

(ii) Let J(Q) be the closure of J(Q) in J(Qp), which is a p-adic Lie subgroup. The hope is
that this is smaller than when taking the closure in J(R).

(iii) It would be nice if X(Qp) ∩ J(Q) ⊂ J(Qp) is finite, since this would imply that X(Q) is
finite.

To make this work, let r′ = dimJ(Q) and r = rkJ(Q). It turns out that r′ ≤ r and g always.
Theorem 2 (Chabauty). Let X be a curve of genus g ≥ 2 over Q. Let p be a prime and r, r′ be as
above. Suppose r′ < g (which is automatic e.g. if r < g). Then,X(Qp)∩J(Q), henceX(Q), is finite.
Although this is weaker than Faltings’ theorem in that it requires r′ < g, it has the advantage that
it gives an explicit upper bound on #X(Q) that is often sharp.

Suppose X has good reduction, i.e. is the generic fiber of a smooth proper curve over Zp. Let
X(Fp) denote the Fp-points of the reduction of X . By using a function on J(Qp) that vanishes
on J(Q), Coleman proves the following bound:

Theorem 3 (Coleman). For p > 2g and p a prime of good reduction for X ,

#X(Q) ≤#X (Fp) + (2g − 2).
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