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1. 01/25 – Lie Superalgebra Fundamentals (Cailan Li)

1.1. Basic definitions. We begin with some basic definitions.Definition 1.1.1. A “super vector space”, or “vector superspace”/“superspace”, is a Z2-graded space
V = V0 ⊕ V1. Given a homogeneous vector v ∈ Vi, let |v| = i ∈ Z2 denote the “parity” of the vector.

Given a superspace V , let Π be the parity-reversing functor, namely Π(V )i = Vi+1 for i ∈ Z2.

Cailan and the book use V0 and V1, but I will write only V0 and V1 for convenience. EDIT: Cailan agrees
with me.
Definition 1.1.2. A “Lie superalgebra” is a superspace g = g0 ⊕ g1 equipped with a Z2-graded bilinear
operation [□,□] : g× g −! g such that for all homogeneous x, y, z we have

• (skew-supersymmetry) [x, y] = −(−1)|x||y|[y, x];

• (superJacobi) [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]].

In particular, e.g. the bracket of a even and an odd thing is odd. It is not hard to see that by using skew-
supersymmetry one can bring superJacobi into the more symmetric form

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]].

Example 1.1.3. If A is an associative superalgebra, then it can be made a Lie superalgebra by setting

[x, y] = xy − (−1)|x||y|yx.

Now that we have defined superspaces, what are morphisms between them?Definition 1.1.4. A map f : g −! h between Lie superalgebras is a homomorphism if f is even (i.e.
degree 0) and

f([x, y]) = [f(x), f(y)].

Example 1.1.5. If g is a Lie superalgebra, then End g an associative superalgebra is moreover a Lie
superalgebra by the previous example. The “adjoint representation” of g is then

ad: g −! End g

x 7−! [x,□].

One can check that this is a legit homomorphism because of the superJacobi identity.
Postmortem remark: I think the ‘End’ here refers to not strict morphisms of superspaces, since

(End g)1 should be a thing also. This latter thing means degree 1 maps surely.

Remark: because the bracket is Z2-graded, the restriction to the even part actually lands as ad|g0 : g0 −!
End g1, i.e. g1 is a g0-module via the adjoint action.

Here is the main character for this seminar, gl(m|n). Let V = V0 ⊕ V1
∼= Cm|n be a super vector space,

where V0 = Cm and V1 = Cn. Then
gl(m|n) := EndCm|n

equipped with the bracket from the previous example. Fixing a basis for Cm|n, we get a natural form to

write things in, namely

(
A B
C D

)
. The even part looks like

gl(m|n)0 ∋
(
A 0
0 D

)
,

and the odd part looks like

gl(m|n)1 ∋
(
0 B
C 0

)
.

Evidently, as Lie algebras,
gl(m|n)0 ∼= gl(m)⊕ gl(n),

and
gl(m|n)1 ∼= (Cm ⊗ Cn∗)⊕ (Cm∗ ⊗ Cn)
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as gl(m|n)0-modules. Note that as a set, gl(m|n) ∼= gl(m+ n), but it is equipped with a different bracket.

Given a matrix g ∈ gl(m|n), when written in the standard form

(
A B
C D

)
earlier, define(

Definition 1.1.6. The “supertrace” is

str(g) = tra(A)− tra(D).

Here are some facts.Fact 1.1.7. (1) str([g, h]) = 0 for all g, h ∈ gl(m|n);
(2) sl(m|n) = {g ∈ gl(m|n) : str(g) = 0} is a Lie subsuperalgebra of gl(m|n);
(3) [gl(m|n), gl(m|n)] = sl(m|n).

See the book for proofs.
Another familiar structure is that of bilinear forms on a vector space. There is a super version of this

also.
Definition 1.1.8. A bilinear form ⟨□;□⟩ on a superspace V = V0 ⊕ V1 is “supersymmetric” if

⟨v;w⟩ = (−1)|v||w|⟨w; v⟩.
It is said to be even if ⟨even, odd⟩ = 0.

We will mostly be concerned with basic Lie superalgebras in this seminar:(
Definition 1.1.9. g is a “basic Lie superalgebra”, if it admits a nondegenerate even supersymmetric
bilinear form.

In fact, according to Cailan, “80% of the time we will be concerned with gl(m|n) and the rest 20% we will
be concerned with sl(m|n)”. Such things are (almost) always basic.[
Lemma 1.1.10. gl(m|n) and sl(m|n) (except (m,n) = (1, 1) and (2, 1) for sl; gl is always basic) are basic
Lie superalgebras.

Proof. Let ⟨x, y⟩ = str(xy). This works. ■

1.2. Structural things. Now we discuss things like Cartan, roots, and other structural things.

1.2.1. Cartan.(
Definition 1.2.1. Let g be basic. Then a “Cartan subalgebra” is a Cartan subalgebra of g0, and the
“Weyl group” is the Weyl group of g0.

In our main case gl(m|n), the even part is gl(m)⊕ gl(n), i.e. the diagonal matrices. Let us denote

I(m|n) := {1, · · · ,m, 1, · · · , n},

endowed with a total order

1 < · · · < m < 0 < 1 < · · · < n.

Then the Cartan can be written

h(gl(m|n)) =
⊕

i∈I(m|n)

CEii.

Note that

⟨Eii;Ejj⟩ =


1 1 ≤ i = j ≤ m

−1 1 ≤ i = j ≤ n

0 i ̸= j

;

these minus signs come up because of the supertrace.
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1.2.2. Roots. Now that we have a notion of the Cartan, it makes sense to ask for a root decomposition.

Definition 1.2.2. Let h be the Cartan of g. For α ∈ h∗, let

gα = {g ∈ g : [h, g] = α(h)g ∀ h ∈ h}.
Then the “root system” for g is

Φ = {α ∈ h∗ : gα ̸= 0},
and we can define “even/odd roots” to be

Φ0 = {α ∈ Φ : gα ∩ g0 ̸= 0},
Φ1 = {α ∈ Φ : gα ∩ g1 ̸= 0}.

It is not obvious to me a priori that a root should be either even or odd, or indeed either. But thankfully
in the basic case we can say something stronger structurally.

Theorem 1.2.3. Let g be a basic Lie superalgebra. Then

(1)

g = h⊕
⊕
α∈Φ

gα;

(2) ⟨□;□⟩|h is nondegenerate and W -invariant;
(3) dim gα = 1 (this relies on nondegeneracy of the previous entry)
(4) Φ0,Φ1 are invariant under the action of W on h∗. (And therefore so is Φ.)

Note that the third fact tells us that in this basic case Φ0 and Φ1 are thankfully disjoint.
Let’s say something about roots for gl(m|n). In the case of gl(m|n), by definition the Cartan subalgebra

is contained in the even part. This implies that the superbracket is coincides with the usual Lie bracket
if the first entry is in the Cartan, i.e. the adjoint action of the Cartan on gl(m|n) is the same as that of
the Cartan on gl(m+ n). So the roots of gl(m|n) are the same as the roots of gl(m+ n), except with the
additional information of a partition of the roots into even and odd things. Let’s say what this partition
is. Let δi, εj ∈ h∗ for i ∈ [m] and j ∈ [n] be a dual basis to Eii and Ejj under ⟨□;□⟩. Let us also denote
εi = δi. Then the even roots are

Φ0 = {εi − εj : i ̸= j ∈ I(m|n) with either i, j > 0 or i, j < 0},

and the odd roots are

Φ1 = {δi − εj , εk − δl : i, l ∈ [m], j, k ∈ [n]}.
All of this is just a complicated way of saying that the parity of a root is the sum of the parities of the two
things it is a difference of.

Because h ∼= h∗ under h 7−! ⟨h;□⟩, the form ⟨□;□⟩ induces a form2 (□;□) which is also nondegenerate
on h∗. One can easily verify that

(δi; δj) = δij , (εi; εj) = −δij , (εk, δl) = 0.

In the case of superalgebras, roots can exhibit some weird behavior which don’t arise in the usual cases.
In particular they can have ‘zero length’, a phenomenon called isotropy.(
Definition 1.2.4. A root α ∈ Φ is “isotropic” if (α;α) = 0. Let Φ1 be the set of isotropic odd roots.

It bears saying that isotropic automatically implies odd because even roots are actual roots of the Lie al-
gebra g0, and the Killing form is positive-definite on the Q-span of Φ, so that in particular (α;α) > 0.
(Maybe this argument needs a little checking; what is the relationship between (□;□) and the Killing?)

Example 1.2.5. In the case gl(1|1), consider the (only) odd root δ1−ε1. Compute (δ1−ε1; δ1−ε1) =
(δ1; δ1) + (ε1; ε1) = 1− 1 = 0. So the odd root has zero length...

2Postmortem remark, mostly for myself: So I guess this would be the dagger rather than the star in the way I learned Lie
algebras. The key is that the star doesn’t really make general sense in the context of superalgebras since the denominator
(α;α) might be zero.
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Note that this example easily generalizes to show that all odd roots of gl(m|n) are isotropic. So the moral
here is that drawing the root picture for Lie superalgebras in general is rather dangerous because of these
‘invisible’ roots. So instead let us draw them as roots of gl(m+ n) instead.

1.2.3. Positive/simple roots. Now we discuss positive roots.
Definition 1.2.6. For g = gl(m|n) basic, let H be a hyperplane in the picture for gl(m+n) not containing
any roots and K be the Killing form for gl(m+ n). Then define

Φ+(H) = {α ∈ Φ : K(H,α) > 0}.
Let Σ(H) be the set of simple roots of Φ+(H), i.e. a ‘fundamental system’. (Simple here still means not
expressible as a positive linear combination of positive roots.)

Let me say that Cailan and likely the book use Π(H) rather than Σ(H). As you might have suspected from
the notational choice above, the choice of H actually matters here; different choices may not be conjugate
to each other under the Weyl group.

Example 1.2.7. Take gl(2|1). There are two odd roots, which are both isotropic, and one even root.
Here’s a picture:

The simple roots, as usual, are the ‘closest’ ones to the hyperplane H. Note that on the left there is
one even simple root and one odd simple root, whereas on the right both simple roots are odd. Hence
the Weyl group, being S2 × S1 and keeping Φi within itself, cannot bring one to the other.

Because of this poor behavior, people tend to stick to a prescribed standard for the simple roots. For
gl(m|n), this “standard system” is simply consecutive differences of ‘diagonal entries’. In terms of Dynkin
diagrams this looks like

You can look at nonstandard systems too. If n = m, you can have a fundamental system consisting of
entirely odd roots (not sure why you would want that); as a picture this is
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Now that we have a notion of positive roots, we can say what n+ is. Given a choice of hyperplane H,
define the nilpotent Lie algebras as follows.

Definition 1.2.8. Given a choice of H, define the “nilpotent” and “Borel” subalgebras as

n+(H) =
⊕

α∈Φ+(H)

gα,

n−(H) =
⊕

α∈Φ−(H)

gα,

b(H) = h⊕ n+(H).

Warning: in this definition, it is not the case that the Borel is the maximal solvable subalgebra.

1.2.4. Odd reflections. Now let us discuss ‘odd reflections’. Postmortem remark: As I understand it, this
is supposed to atone for the failure of the Weyl group in Example 1.2.7.

Lemma 1.2.9 (Serganova). Let g be basic, Σ be a fundamental system for Φ+, α an isotropic odd root.
Then

Φ+
α := {−α} ∪ Φ+ \ {α},

i.e. Φ+ except replace α with −α, is also a set of positive roots with fundamental system given by

Σα = {−α} ∪ {β ∈ Σ : (β;α) = 0, β ̸= α} ∪ {β + α : β ∈ Σ, (β;α) ̸= 0},
i.e. roughly leave β as is if (β;α) = 0 and add α to it otherwise.

We can call this procedure rα, in a satire of the sα reflection for usual Lie algebras. This rα is a map of
sets, sending

rα : α 7−! −α,

β 7−!

{
β (β;α) = 0

β + α (β;α) ̸= 0
.

Warning: unlike the sα, this does not extend to a linear map.

Example 1.2.10. Consider gl(1|2). If we think of this set-theoretically/pictorially as gl(3), as we
know, there are essentially three choices of hyperplanes in the root picture. Two of these were drawn
in Example 1.2.7. The Dynkin pictures for these three choices are

.
Note well that if we start at the left and pick α = δ1 − ε1, then β = ε1 − ε2 has (ε1 − ε2; δ1 − ε1) =
−(ε1; ε1)+(ε2; ε1) = 1 ̸= 0, so that rδ1−ε1 tells us to add α to β which brings us to the middle picture.
If we start at the middle and pick α = δ1− ε2, then (ε1− δ1; δ1− ε2) = −1 ̸= 0 again and rδ1−ε2 brings
us to the right.

In some sense the Weyl group action can be thought of as ‘even reflections’. Then there is a theorem,
also due to Serganova:[
Theorem 1.2.11. The odd reflections rα, as defined above, together with the Weyl action, is transitive
on the set of fundamental systems.

So once you add in these rα’s you actually hit every possible choice of H.
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