KLR Algebras Seminar Outline

Spring 2022

1 Fundamentals

(1) KLR Algebras: Essentials

You might want to replace the notation for a sequence of vertices $\mathbf{i} \in \text{Seq}(\nu)$ by \vec{i} in your talk. Also, you might want to denote multiplication by x_i as χ_i .

- (a) Define the algebras $R(\nu)$, the projective modules $P_{\vec{i}}$ and $_{\vec{j}}P$ and the antiinvolution ψ of $R(\nu)$. [3, Section 2.1]
- (b) Go over Examples 1) 3) in [3, Section 2.2]. Example 3) is especially important. Follow/supplement using [5, Section 3]. In particular,
 - i. Introduce the Schubert basis and state how the Demazure operators act on this basis.
 - ii. Prove the following chain of isomorphisms

$$NH_m \cong \operatorname{End}_{\operatorname{Sym}_m} \left(\mathbb{Z}[x_1, \dots, x_m] \right) \cong M_{[m]_{q^2}!} \left(\operatorname{Sym}_m \right)$$

and conclude that the center of NH_m is Sym_m .

- iii. Using the isomorphism above, show that in the ordered basis $\{\mathfrak{S}_{id}, \ldots, \mathfrak{S}_{w_0}\}$, e_m corresponds to e_{mm} , the matrix with a 1 in the *m*-th column and row by computing the action on the Schubert basis and thus is an idempotent in NH_m .
- iv. Conclude that $e_m NH_m$ is isomorphic to the polynomial representation ${}_m P = \mathbb{Z}[x_1, \ldots, x_m]$ as a right NH_m module (up to a grading shift), and that there is an isomorphism of graded right NH_m modules

$$VH_m \cong {}_m P^{\oplus [m]_{q^2}!}$$

- v. Show that ${}_{m}P$ is indecomposable as a NH_{m} module and thus up to a grading shift and isomorphism, is the unique, graded, indecomposable projective NH_{m} module.
- vi. (Show that ${}_{m}P$ has a unique graded maximal submodule given by (Sym_{m}^{+}) and thus up to isomorphism, $\mathbb{Z}[x_{1}, \ldots, x_{m}]/(\text{Sym}_{m}^{+})$ is the unique graded irreducible module of NH_{m} .)
- (c) Introduce $\mathcal{P}o\ell_{\nu}$ and show that $R(\nu)$ acts on $\mathcal{P}o\ell_{\nu}$ for your favorite relations of $R(\nu)$. Introduce $_{\vec{j}}B_{\vec{i}}$ and show they span $_{\vec{j}}R(\nu)_{\vec{i}}$ as a free abelian group and state that they in fact give a basis and therefore making $\mathcal{P}o\ell_{\nu}$ a faithful module over $R(\nu)$. [3, Section 2.3]
- (d) (Compute more examples. [3, Section 2.2])

(2) KLR Algebras: Properties

You might want to replace the notation $\mathbf{i} \in \text{Seqd}(\nu)$ by (\vec{i}) , where () is used to indicate divided powers.

(a) Carefully define $\operatorname{Sym}(\nu)$ and define $_{\vec{j}}1_{\vec{i}}$ as in [3, Theorem 2.5] and show that the center of $R(\nu)$ is $\operatorname{Sym}(\nu)$ and conclude that $R(\nu)$ is finite free over it's center. [3, Section 2.4].

- (b) Using that any simple R(ν) module S is finite-dimensional, show that Sym⁺(ν) has to act by 0 on S, which implies there is a bijection between indecomposable projectives of R(ν) and simples of R(ν). [3, Section 2.5]
- (c) Show that $P_{\vec{i}}$ is self dual under the "bar" involution. Introduce the bilinear pairing on $K_0(R(\nu))$ and $G_0(R(\nu))$ and show that $\left(\left[P_{\vec{b}}\right], \left[S_{\vec{a}}\right]\right) = \delta_{\vec{b}\vec{a}}$. Ignore all statements with ch(M) for now. Define $(\vec{i})!$ and show that $\widehat{(\vec{i})}P \cong_{(\vec{i})} P^{\oplus(\vec{i})!}$. [3, Section 2.5]
- (d) Prove the "quantum serre relations" [3, Proposition 2.13].
- (e) (Go over statements involving ch(M).)

(3) KLR Algebras: Categorification and a generalization

- (a) Follow [3, Section 2.6] up until Proposition 2.19.
- (b) Prove injectivity of the Categorification Theorem [3, Section 3.1]. For surjectivity, follow [1, Theorem 3.3, Corollary 3.4, Page 16]. In particular, define Ch(M) if not already defined.
- (c) State [1, Theorem 3.11].
- (d) Define quiver Hecke algebras following [6, Remark 2.2.6, Definition 2.2.1] and show that we recover the KLR algebra defined in [3] by setting $Q_{ij}(u, v) = u^{-c_{ij}} + v^{-c_{ij}}$ for $i \neq j$.
- (e) (Go over statements involving ch(M), in particular [3, Lemma 2.20], the "Shuffle Lemma.")

2 Cyclotomic Quiver and Hecke Algebras in type A

(4) Cellular Algebras

- (a) Define cellular algebras, give examples, and prove Lemma 2.3 in [7, Chapter 2]. Actually just follow [7, Chapter 2] completely until you prove Corollary 2.17.
- (b) (Prove the rest of the results in [7, Chapter 2] up to Corollary 2.21.)
- (c) (Use [7, Theorem 2.20] to prove Brauer-Humphreys reciprocity)

$$[P^{\lambda}:C^{\mu}] = [C^{\mu}:D^{\lambda}]$$

(5) Integral Cyclotomic Hecke Algebras and the Murphy Basis

You might want to replace the notation for a multipartition λ by $\vec{\lambda}$ and the notation for a $\vec{\lambda}$ -tableau by \vec{t} .

- (a) Introduce Hu-Mathas definition of the cyclotomic Hecke algebra of type A and show that for $\ell = 1$ you recover the finite Hecke algebra of type A_{n-1} . State the Basis theorem [6, Equation 1.1.2] and introduce the Ariki-Koike algebras and say how they are related. [6, Section 1.1]
- (b) We will make some modifications to [6, Section 1.2] to make it more readable at the cost of possibly being off by a constant. In particular,
 - i. First, define the quantum characteristic of v to be the smallest element such that $(e)_v = 0$ where $(n)_v = 1 + v + \ldots + v^{n-1}$. Then follow [6, Section 1.2] up to the part where you define the fundamental weights Λ_i . Always use e = 0 instead of $e = \infty$.
 - ii. For $\Lambda = \sum_{i \in I_e} c_i \Lambda_i$ the level is defined to be $\sum_{i \in I_e} c_i$. Now fix a weight Λ of level ℓ and fix

a multicharge for Λ , aka an ordered ℓ -tuple, $(\kappa, \ldots, \kappa_{\ell}) \in I_e^{\ell}$ so that $i \in I_e$ appears c_i times. Follow [6, Definition 1.2.1] except replace $[\kappa_r]_v$ with v^{κ_r} . Note that \mathscr{H}_n^{Λ} does not depend on the choice of multicharge for Λ .

iii. Finally state [6, Theorem 1.2.2].

(c) Follow [6, Section 1.4] until you reach the definition of $d(\vec{t})$ but skip the paragraph with strong dominance order. Then follow [6, Section 1.5] but change the definition of $u_{\vec{\lambda}}$ so that it is instead

$$u_{\vec{\lambda}} = \prod_{1 \le x < \ell} \prod_{r=1}^{|\lambda^{(1)}| + \dots + |\lambda^{(x)}|} (L_r - v^{\kappa_{x+1}})$$

Also $\mathfrak{S}_{\vec{\lambda}}$ is the row stabilizer of the standard tableaux $\vec{t}^{\vec{\lambda}}$. State [6, Theorem 1.5.1, Corollary 1.5.2].

- (d) Define the Gelfand-Zetlin subalgebra of \mathscr{H}_n . Change the definition of $c_r^{\mathcal{Z}}(\vec{t})$ to be $c_r^{\mathcal{Z}}(\vec{t}) = v^{c_r^{\mathcal{Z}}(\vec{t})}$. State [6, Lemma 1.6.2, Corollary 1.6.3].
- (e) Now ignore the rest of [6,Section 1.6] until part (f) below and instead just show that the set

$$F_{\vec{s}} := \prod_{r=1}^{n} \prod_{\substack{c \in \mathscr{C}_n \\ c \neq c_r^{\mathcal{Z}}(\vec{s})}} \frac{L_r - c}{c_r^{\mathcal{Z}}(\vec{s}) - c}, \qquad \vec{s} \in \operatorname{Std}(\mathcal{P}_n^{\Lambda})$$

form a complete set of pairwise orthogonal idempotents in \mathscr{H}_n^{Λ} . Hint: By [6, Corollary 1.6.3] \mathscr{H}_n^{Λ} has an eigenbasis $\{f_{\vec{u}\vec{v}}\}$ for the operators $\{L_r\}$. Using that the regular representation is faithful, it suffices to show

$$F_{\vec{s}} F_{\vec{t}} f_{\vec{u}\vec{v}} = \delta_{\vec{s}\vec{t}} F_{\vec{s}} f_{\vec{u}\vec{v}}$$

(f) Introduce the *i*-string of length *n* and state [6, Corollary 1.6.11]. (Mention that $(\Lambda, \alpha_{i,n}) \leq 1 \iff \kappa_r + d \neq \kappa_s \forall 1 \leq r < s \leq \ell, \forall d \text{ s.t. } -n < d < n$, aka the fundamental weights that appear are spaced for enough apart.)

(6) Representations of Cyclotomic Quiver Hecke Algebras

(a) Quickly review some notions from graded algebras, state Fitting's Lemma, and show that if <u>m</u> is indecomposable, then it's graded lift, if it exists is unique up to grading shift [6, Section 2.1]. Follow the rest of [6, Section 2.1] and use [6, Corollary 2.1.6] to show graded Brauer-Humphreys reciprocity

$$[P^{\lambda}:C^{\mu}]_q = [C^{\mu}:D^{\lambda}]_q$$

- (b) Define $\mathscr{R}_{\beta}, \mathscr{R}_{n}, \mathscr{R}_{n}^{\Lambda}$ but use the notation $\mathscr{R}_{\beta}(\Gamma_{e}), \mathscr{R}_{n}(\Gamma_{e}), \mathscr{R}_{n}^{\Lambda}(\Gamma_{e})$ instead. [6, Section 2.2] (Also see [3, Section 3.4])
- (c) Follow [6, Section 2.3]. Then state [6, Proposition 2.4.3], but use [4, Theorem 1.17] for the definition of the action and the proof. (Separating is equivalent to $(\Lambda, \alpha_{i,n}) \leq 1$ by [6, Theorem 1.6.10].) The definition of $\mathbf{i}^{\mathbf{t}^{\lambda}}$ can be found at the start of [6, Section 2.4] (or alternatively it's just the content modulo e.)
- (d) State [6, Theorem 2.4.8, Corollary 2.4.9, Corrollary 2.4.11].
- (e) (Define blocks and state [6, Corollary 1.8.2].)

(7) Brundan-Kleshchev Graded Isomorphism and Categorification Theorem

(a) State [6, Theorem 3.1.1, Corollary 3.1.3]. [TODO]

- (b) Follow [6, Section 3.5] until you finish proving [6, Proposition 3.5.6] but remove X_{μ} from all statements.
- (c) Introduce the quantum affine algebra $U_q(\widehat{\mathfrak{sl}_e})$ and the Fock space $\mathscr{F}^{\Lambda}_{\mathcal{A}}$ and state [6, Theorem 3.5.9]. Show that $|\vec{0}_{\ell}\rangle$ is highest weight of weight Λ .
- (d) Introduce i-Ind and i-Res and state [6, Theorem 3.4.2]. Then prove [6, Proposition 3.5.12], in particular note that $d_q(|\vec{\lambda}\rangle) = [S^{\vec{\lambda}}]$.
- (e) Prove [2, Corollary 5.11] (Replace $\{D_{\vec{\mu}}\}$ the notation for dual canonical basis by $|D_{\vec{\mu}}\rangle$, note $S_{\lambda} = |\lambda\rangle$ in our notation above) and use this to show that $d_q(D_{\lambda}) = []$ s of $L(\Lambda)$, $\epsilon^{-1} = d_q$

3 KLRW Algebras and Knot Invariants

You are on your own here, good luck!

- (8) [10]
- (9) [10]
- (10) [10]

4 DG KLR Algebras and Categorification of Verma Modules

[9], [8].

References

- [1] J. Brundan. Quiver Hecke algebras and Categorification. 2013. arXiv: 1301.5868.
- J. Brundan and A. Kleshchev. "Graded decomposition numbers for cyclotomic Hecke algebras". In: Adv. Math. 222.6 (2009), pp. 1883–1942.
- [3] M. Khovanov and A. D. Lauda. "A diagrammatic approach to categorification of quantum groups. I". In: Represent. Theory 13 (2009), pp. 309–347.
- [4] A. S. Kleshchev. "Representation theory and cohomology of Khovanov-Lauda-Rouquier algebras". In: <u>Modular representation theory of finite and *p*-adic groups. Vol. 30. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. World Sci. Publ., Hackensack, NJ, 2015, pp. 109–163.</u>
- [5] A. D. Lauda. "A categorification of quantum $\mathfrak{sl}(2)$ ". In: Adv. Math. 225.6 (2010), pp. 3327–3424.
- [6] A. Mathas. Cyclotomic quiver Hecke algebras of type A. 2014. arXiv: 1310.2142.
- [7] A. Mathas. <u>Iwahori-Hecke algebras and Schur algebras of the symmetric group</u>. Vol. 15. University Lecture Series. American Mathematical Society, Providence, RI, 1999, pp. xiv+188.
- [8] G. Naisse and P. Vaz. "2-Verma modules". In: J. Reine Angew. Math. 782 (2022), pp. 43–108.
- [9] G. Naisse and P. Vaz. "On 2-Verma modules for quantum \mathfrak{sl}_2 ". In: Selecta Math. (N.S.) 24.4 (2018), pp. 3763–3821.
- [10] B. Webster. "Knot invariants and higher representation theory". In: <u>Mem. Amer. Math. Soc.</u> 250.1191 (2017), pp. v+141.