
KLR Algebras Seminar Outline

Spring 2022

1 Fundamentals

(1) KLR Algebras: Essentials

You might want to replace the notation for a sequence of vertices i ∈ Seq(ν) by ~i in your talk.

Also, you might want to denote multiplication by xi as χi.

(a) Define the algebras R(ν), the projective modules P~i and ~jP and the antiinvolution ψ of R(ν).

[3, Section 2.1]

(b) Go over Examples 1) − 3) in [3, Section 2.2]. Example 3) is especially important. Fol-

low/supplement using [5, Section 3]. In particular,

i. Introduce the Schubert basis and state how the Demazure operators act on this basis.

ii. Prove the following chain of isomorphisms

NHm
∼= EndSymm

(Z[x1, . . . , xm]) ∼= M[m]q2 ! (Symm)

and conclude that the center of NHm is Symm.

iii. Using the isomorphism above, show that in the ordered basis {Sid, . . . ,Sw0}, em cor-

responds to emm, the matrix with a 1 in the m−th column and row by computing the

action on the Schubert basis and thus is an idempotent in NHm.

iv. Conclude that emNHm is isomorphic to the polynomial representation mP = Z[x1, . . . , xm]

as a right NHm module (up to a grading shift), and that there is an isomorphism of

graded right NHm modules

NHm
∼= mP

⊕[m]q2 !

v. Show that mP is indecomposable as a NHm module and thus up to a grading shift and

isomorphism, is the unique, graded, indecomposable projective NHm module.

vi. (Show that mP has a unique graded maximal submodule given by (Sym+
m) and thus

up to isomorphism, Z[x1, . . . , xm]/(Sym+
m) is the unique graded irreducible module of

NHm.)

(c) Introduce Po`ν and show that R(ν) acts on Po`ν for your favorite relations of R(ν). Introduce

~jB~i and show they span ~jR(ν)~i as a free abelian group and state that they in fact give a

basis and therefore making Po`ν a faithful module over R(ν). [3, Section 2.3]

(d) (Compute more examples. [3, Section 2.2])

(2) KLR Algebras: Properties

You might want to replace the notation i ∈ Seqd(ν) by ~(i), where ( ) is used to indicate divided

powers.

(a) Carefully define Sym(ν) and define ~j1~i as in [3, Theorem 2.5] and show that the center of

R(ν) is Sym(ν) and conclude that R(ν) is finite free over it’s center. [3, Section 2.4].
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(b) Using that any simple R(ν) module S is finite-dimensional, show that Sym+(ν) has to act by

0 on S, which implies there is a bijection between indecomposable projectives of R(ν) and

simples of R(ν). [3, Section 2.5]

(c) Show that P~i is self dual under the “bar” involution. Introduce the bilinear pairing on

K0(R(ν)) and G0(R(ν)) and show that
([
P~b
]
, [S~a]

)
= δ~b~a. Ignore all statements with ch(M)

for now. Define (~i)! and show that
~̂(i)
P ∼= ~(i)

P⊕(~i)!. [3, Section 2.5]

(d) Prove the “quantum serre relations” [3, Proposition 2.13].

(e) (Go over statements involving ch(M).)

(3) KLR Algebras: Categorification and a generalization

(a) Follow [3, Section 2.6] up until Proposition 2.19.

(b) Prove injectivity of the Categorification Theorem [3, Section 3.1]. For surjectivity, follow [1,

Theorem 3.3, Corollary 3.4, Page 16]. In particular, define Ch(M) if not already defined.

(c) State [1, Theorem 3.11].

(d) Define quiver Hecke algebras following [6, Remark 2.2.6, Definition 2.2.1] and show that we

recover the KLR algebra defined in [3] by setting Qij(u, v) = u−cij + v−cij for i 6= j.

(e) (Go over statements involving ch(M), in particular [3, Lemma 2.20], the “Shuffle Lemma.”)

2 Cyclotomic Quiver and Hecke Algebras in type A

(4) Cellular Algebras

(a) Define cellular algebras, give examples, and prove Lemma 2.3 in [7, Chapter 2]. Actually

just follow [7, Chapter 2] completely until you prove Corollary 2.17.

(b) (Prove the rest of the results in [7, Chapter 2] up to Corollary 2.21.)

(c) (Use [7, Theorem 2.20] to prove Brauer-Humphreys reciprocity)

[P λ : Cµ] = [Cµ : Dλ]

(5) Integral Cyclotomic Hecke Algebras and the Murphy Basis

You might want to replace the notation for a multipartition λ by ~λ and the notation for a ~λ−tableau

by ~t.

(a) Introduce Hu-Mathas definition of the cyclotomic Hecke algebra of type A and show that for

` = 1 you recover the finite Hecke algebra of type An−1. State the Basis theorem [6, Equation

1.1.2] and introduce the Ariki-Koike algebras and say how they are related. [6, Section 1.1]

(b) We will make some modifications to [6, Section 1.2] to make it more readable at the cost of

possibly being off by a constant. In particular,

i. First, define the quantum characteristic of v to be the smallest element such that (e)v = 0

where (n)v = 1 + v + . . . + vn−1. Then follow [6, Section 1.2] up to the part where you

define the fundamental weights Λi. Always use e = 0 instead of e =∞.

ii. For Λ =
∑
i∈Ie

ciΛi the level is defined to be
∑
i∈Ie

ci. Now fix a weight Λ of level ` and fix

a multicharge for Λ, aka an ordered `−tuple, (κ, . . . , κ`) ∈ I`e so that i ∈ Ie appears ci
times. Follow [6, Definition 1.2.1] except replace [κr]v with vκr . Note that H Λ

n does not

depend on the choice of multicharge for Λ.
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iii. Finally state [6, Theorem 1.2.2].

(c) Follow [6, Section 1.4]until you reach the definition of d(~t) but skip the paragraph with strong

dominance order. Then follow [6, Section 1.5] but change the definition of u~λ so that it is

instead

u~λ =
∏

1≤x<`

|λ(1)|+...+|λ(x)|∏
r=1

(Lr − vκx+1)

Also S~λ
is the row stabilizer of the standard tableaux ~t

~λ. State [6, Theorem 1.5.1, Corollary

1.5.2].

(d) Define the Gelfand-Zetlin subalgebra of Hn. Change the definition of cZr (~t) to be cZr (~t) =

vc
Z
r (~t). State [6, Lemma 1.6.2, Corollary 1.6.3].

(e) Now ignore the rest of [6, Section 1.6] until part (f) below and instead just show that the set

F~s :=
n∏
r=1

∏
c∈Cn
c6=cZr (~s)

Lr − c
cZr (~s)− c

, ~s ∈ Std(PΛ
n )

form a complete set of pairwise orthogonal idempotents in H Λ
n . Hint: By [6, Corollary 1.6.3]

H Λ
n has an eigenbasis {f~u~v} for the operators {Lr}. Using that the regular representation is

faithful, it suffices to show

F~s F~t f~u~v = δ~s~t F~s f~u~v

(f) Introduce the i−string of length n and state [6, Corollary 1.6.11]. (Mention that (Λ, αi,n) ≤
1 ⇐⇒ κr + d 6= κs∀1 ≤ r < s ≤ `,∀d s.t. − n < d < n, aka the fundamental weights that

appear are spaced far enough apart.)

(6) Representations of Cyclotomic Quiver Hecke Algebras

(a) Quickly review some notions from graded algebras, state Fitting’s Lemma, and show that

if m is indecomposable, then it’s graded lift, if it exists is unique up to grading shift [6,

Section 2.1]. Follow the rest of [6, Section 2.1] and use [6, Corollary 2.1.6] to show graded

Brauer-Humphreys reciprocity

[P λ : Cµ]q = [Cµ : Dλ]q

(b) Define Rβ,Rn,R
Λ
n but use the notation Rβ(Γe),Rn(Γe),R

Λ
n (Γe) instead. [6, Section 2.2]

(Also see [3, Section 3.4])

(c) Follow [6, Section 2.3]. Then state [6, Proposition 2.4.3], but use [4, Theorem 1.17] for

the definition of the action and the proof. (Separating is equivalent to (Λ, αi,n) ≤ 1 by

[6, Theorem 1.6.10].) The definition of it
λ

can be found at the start of [6, Section 2.4] (or

alternatively it’s just the content modulo e.)

(d) State [6, Theorem 2.4.8, Corollary 2.4.9, Corrollary 2.4.11]. .

(e) (Define blocks and state [6, Corollary 1.8.2].)

(7) Brundan-Kleshchev Graded Isomorphism and Categorification Theorem

(a) State [6, Theorem 3.1.1, Corollary 3.1.3]. [TODO]
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(b) Follow [6, Section 3.5] until you finish proving [6, Proposition 3.5.6] but remove Xµ from all

statements.

(c) Introduce the quantum affine algebra Uq(ŝle) and the Fock space FΛ
A and state [6, Theorem

3.5.9]. Show that |~0`〉 is highest weight of weight Λ.

(d) Introduce i−Ind and i−Res and state [6, Theorem 3.4.2]. Then prove [6, Proposition 3.5.12],

in particular note that dq(|~λ〉) = [S
~λ].

(e) Prove [2, Corollary 5.11] (Replace
{
D~µ

}
the notation for dual canonical basis by |D~µ〉, note

Sλ = |λ〉 in our notation above) and use this to show that dq(Dλ) = [] s of L(Λ), ε−1 = dq

3 KLRW Algebras and Knot Invariants

You are on your own here, good luck!

(8) [10]

(9) [10]

(10) [10]

4 DG KLR Algebras and Categorification of Verma Modules

[9], [8].
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