8. Alternative geometries: Poincare disk model

Topology
study spaces

- Distances don't matter

- Study things like orientability, connectedness, holes.

Differential Geometry study spaces

- Distances matter

\neq
- Study things like: length, area, volume, angles curvature...

We well focus on 2D geometries. 2D space can be "curved locally" in three way:

curvature $=0$

curvature >0

curvature < 0

[Watch Code Parade video]

We will work in hyperbolic space with a projection onto the disk.
Let's see what this means for the curvature $=0$ plane

Disk model for the plane

Straight line \leadsto Converges at infinity
(Like lat week, this is really te projective plane)
Simberly, the plane with positive curvature has a disk model:

Straight line \sim Converges inside the disk

Similarly, the plane with negative curvature has a disk model:

Hyperbolic plane

$\}$

Straight line ~ Converges onside the dak

On Hyperbolic Knot Theory
Recall we want

Consider the complement of a knot K :

Call it C_{K} for complement.

We say that C_{K} is hyperbolic of "it can be made to look like H^{3} locally"

Theorem (Thurston, 1978): All knots can be classified into:
$\left.\begin{array}{l}\text { - Torus knots } \\ \text { - Satellite knots }\end{array}\right\} \quad$ Contrived, "easy"

- Hyperbolic Knots (knots with C_{L} hyperbolic) $\}$ Most knots!

Moreover, the hyperbolic structure, of it exists, it is unique.

How to build hyperbolic 20 spaces using ideal polygons:

Identify: "portal"

Hyperbolic torus

A polygon is "ideal" if its vertices lie in the ideal bandary.

How to build hyperbolic 3D spaces using ideal polyhedia:

\downarrow
Here we can identify faces to form a closed 3D space.

The complement of the figure eight knot is hyperbolic
Introduce 2D patches bounding the complement

There patches divide 3D-space into two:

(front and back).

So we can "fill in" 2 tetrahedra (front and back) with faces N, S, E, W

$$
\boldsymbol{N}^{\prime}, S^{\prime}, E^{\prime}, \boldsymbol{W}^{\prime}
$$

and identifications:

Finally, shrink the edges coming from the knot $(3,4,5,6)$:

$$
\leadsto
$$

We finally obtain the complement of the knot as the "Dirichlet domain "

Facets and edges are identified accordingly.
Question: with these "portals" in place, how would this space look like from the inside? (See exercises)

Exercises: Hyperbolic Geometry
These exercises mut be carried oft using NonEudid (link on the website). Do as many as you can. For each exercise, select "Clear All" under "Select Measurement or Modification"

1. Lines
(a) Two lines are parallel if they cont intersect inside the disk. Construct three lines (using "Line") Call them l_{1}, l_{2}, l_{3}. They mort satisfy:

- l_{1}, l_{2} intersect at a single pint.
- l_{3} is parallel to both l_{1} and l_{2}.
(b) Construct two lines (using "Line") Construct their intescetion point (using "Intersection point" and its instructions.)

Next, measure the 4 angles at the point of intersection (see the instructions under "Moore angle") Finally, move the pom's you used to define the lines in order to make the 4 angles 90°.
2. Perpendicular bisedor.
(a) Draw a line segment, with endpoints A and B.
(b) Draw a circle with center A and passing through B

Draw a circle with center B and passing through A.
(c) Draw a line through the intersection points of the 2 circles.
(d) Check that the line and segment are perpendicular (measure the angle).
(More exercises on the next page)
3. Triangles
(a) Construct a triangle losing line segment) with angles adding up to 100°.

Then one with angles adding up to $<0 s^{\circ}$.
(b) Construct a triangle and draw perpendicular bisectors to each side (Feel free to hide the auxiliary circles). By moving the points around, convince yourselves that the three bisectors intersect in a single point. Finally find the circle that passes through the vertices of the triangle.
(c) Construct a triangle $\widehat{A B C}$ Chose a point D on the segmeot $B C$. Finally measure the triangles ("Measure triangles") $\widehat{A B C}, \widehat{A B D}, \widehat{A D C}$. Let $A\left(\right.$ triangle) $=180^{\circ}$-angle sum Check that $A(\widehat{A B C})=\mathcal{A}(\widehat{A B D})+A(\widehat{A D C})$. Call A the "area" of the triangle:
4. Areas
(a) Draw two triangles with equal side lengths (indifferent parts of the disk) Check that their angles are equal. Is this true in Eudidean geometry?
(b) Draw two triangles with equal angles (in different parts of the disk): Check that their side lengths are equal is this true in Eudidean geometry?
(c) Conclude from this and 3.c) that the notion of area we defined is reasonable
5. (Harder) Towards differential geometry

Consider the unit disk $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ divided into annular regions $R_{0,}, \ldots, R_{N-1}$
 each of width $\frac{1}{N}$.
Define the norm $\|(x, y)\|=\sqrt{x^{2}+y^{2}}$. Define a distance on each R_{k} given by $d(p, q)=\frac{\|p-q\|}{1-\left(\frac{k}{N}\right)^{2}}$. SKetch what you imagine is the shortest path between P and Q. Do the same for P and M. How wald you formalize this setup "as $N \rightarrow \infty^{"}$. For instance, how would you compute the length of a path?
(Extra) Hyperbolic Knot Theory

1. Go or to Hyperrogue to experience the hyperbolic plane "from a foal perspactix".
2. Go over to Hypernom to experience hyperbolic 3D space "foo a local prospective". (Ore the arrow keys + WASD)
3. Open Sraply (install it if you havent yet) and input: $M=$ Manifold) The link editor will pop up. Draw any link and dick on Tools $>$ Send to Snap ply. Verify that your link is hyperbolic by computing its volume via M. volume(). (If it isn't, it will return 0). Then explore the hyperbolic geometry of the complement of your link using

- M. dirichlet_domain(). view)
- M. inside-view(). (Use the arrowkeys + ward)

