6. Cellule homology: what is a hole?

Recall that (2) because the tows hos a hole, but what does this mean precredy? For intance, where is the hole in

We answer this today, and by the end you will be convinced that the torus has 2 holes!
Idea: Space X mo "Vector space" $H_{1}(X)$

But... what is a vector space?
Lightning introduction to linear algebra
A vector space V with a basis b_{1}, \ldots, b_{n} is like \mathbb{R}^{2} with its basis $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}$
o) V is a set, whose elements are called vectors : $\binom{2}{3}$ is a vector in \mathbb{R}^{2}

1) In \mathbb{R}^{2} you can add vectors: $\binom{1}{2}+\binom{3}{4} \cdot\binom{1}{6}$, and sack them: $3 \cdot\binom{2}{1}=\binom{6}{3}$.
2) In \mathbb{R}^{2} every vector can be written as $\lambda_{2}\binom{1}{0}+\lambda_{2}\binom{0}{1}$, for some numbers λ_{1}, λ_{2}

$$
\left.\binom{2}{1.3}=2\binom{1}{0}+1.3\binom{0}{2} \quad \text { We say }\binom{2}{1.3} \text { is alinear combination of } \begin{array}{l}
1 \\
0
\end{array}\right) \text { and }\binom{0}{2} \text {. }
$$

3) Step 2 can only k done in a unique way: $\binom{2}{1.3} \longleftrightarrow 2,1.3$

Examples: • \mathbb{R}^{2} with bass $b_{1}=\binom{1}{2},\binom{-2}{3}$

- Let $S=\{$ catmplk, cereal $\}$. Then $V=\{$ linarar combinations of oatmilk andcereal $\}$ is a vector space with basis $b_{1}=$ catwalk,$b_{2}=$ cereal

$$
=\operatorname{SPan}(\delta)
$$

- Let $S=\{$ red, green, blue $\}$. Then $V=\operatorname{Span}(S)$ has basis red, green, blue:

Vector subspaces

A subspace of V is a subset $W \subseteq V$ such that of $w_{1}, w_{2} \in W \Rightarrow \lambda_{1} w_{1}+\lambda_{2} w_{2} \in W$

$$
w \in W \quad \Rightarrow \lambda w \in W
$$

Example: the line $y=x$ in R^{2}

$$
W=\left\{\binom{x}{x}: x \in \mathbb{R}\right\} \quad \subseteq \mathbb{R}^{2}
$$

Basis: $b_{1}=\binom{1}{1}$ (There are more choice o!)
Fact: every subspace of \mathbb{R}^{2} is either $\left\{\begin{array}{l}\mathbb{R}^{2} \\ a \text { line } \\ \text { the origin }\end{array}\right.$ example: Hope 2 Basis?
Example: $V=\mathbb{R}^{3}, \quad W=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ such that $\left.z=x+y\right\}$. Question what is a basis of W ?

Definition: the number of vectors of any basis of a vector space is called its dimension. We unite $\operatorname{dim}(V)$.

Vector quotients (Subtle!!)

Given a vector space V and a vector subspace $W \subseteq V$, one can form the quotient vector space V / W as follows: Consider the equivalence relation \sim on V given by: $v_{1} \sim v_{2} \Leftrightarrow v_{1}-v_{2} \in W$: Then $V / W=V / \sim$

Fact: V / W is a vector space. Let's see some examples. (Quick review of X / \sim)
Example:

$$
V=\mathbb{R}^{2}, W=
$$

Equivalence class of $v=\binom{0}{2}: \quad\left[\binom{0}{2}\right]=\left\{\binom{a}{0} \in \mathbb{R}^{2}:\binom{a}{0} \sim\binom{0}{2}\right\}$

$$
\begin{aligned}
& =\left\{\binom{a}{b} \in \mathbb{R}^{2}:\binom{a}{b}-\binom{0}{2} \in W\right\} \\
& =\left\{\binom{a}{b} \in \mathbb{R}^{2}:\binom{a}{b-2} \in W\right\} \\
& =\left\{\binom{a}{b} \in \mathbb{R}^{2}: a=b-2\right\}
\end{aligned}
$$

$$
=\left\{\binom{a}{a+2}: a \in \mathbb{R}\right\} \quad \text {. Notice: are cain wite this as }\binom{0}{2}+\text { W }
$$

What is happening pictorially? We are "collossing" the fine $y=x$, as weel as is paraldel lines.

Linear alyebra on Sage

Compoting bars for subspaces and quotents is not aluays easy by hand. Hee are some examples d compatations on Soge:

- Bosis of a subspace
- Bass of a quotrent:

$$
\text { In [13]: } V=0 Q^{\wedge} 3
$$

print('Basis of subspace:')

$$
W \theta=V \cdot \operatorname{span}([V .0+V \cdot 1, V \cdot 2])
$$

print(W0.basis())

$$
\mathrm{W} 1=\mathrm{V} \cdot \operatorname{span}([\mathrm{~V} \cdot 0+\mathrm{V} \cdot 1+\mathrm{V} \cdot 2])
$$

print('Basis of quotient:')

$$
\mathrm{Q} \theta=\mathrm{V} / \mathrm{W} 1
$$

for v in Q日.basis():
print(00.lift(v))
print('Basis of subquotient')
Q1 = W O/W1
for v in Q1.basis():
print(Q1.lift(v))

Out[13]: Basis of submodule:
[
$(1,1,0)$,
(0, 0, 1)
]
Basis of quotient:
($1,0,0$)
($0,1,0$)
Basis of subquotient
(1, 1, 0)

```
In [21]: M = matrix(QQ, [[1,1,1]])
    K = A.right_kernel()
    K.basis()
Out[21]: [
    (1, 0, -1),
    (0, 1, -1)
    ]
```

Collubr homology
Recall that we have been thinking of our faces such as

We can think of this as three sets: $x^{0}=\{p, q\} \sim \sim$ form $C_{0}=\operatorname{span}(\{p, q\})$
"Cell structure"

$$
\begin{aligned}
& x^{2}=\{\rightarrow \rightarrow \rightarrow\} \rightarrow \text { form } C_{1}=\operatorname{Span}(\{\rightarrow \vec{a}, \vec{b}\}) \\
& x^{2}=\{\langle t\rangle\} \rightarrow \text { form } C_{2}=\operatorname{Span}(1\langle\omega\rangle)
\end{aligned}
$$

Define: - He bandary of \vec{a} is $\partial(\vec{a})=q-p$

$$
\begin{aligned}
& \vec{b} \text { is } \partial\left(\vec{t}_{b}\right)=p-q . \quad \Rightarrow \quad \text { This gives us a map } \partial_{1}: C_{1} \rightarrow C_{0} \\
& \vec{c} \text { is } \partial\left(\vec{c}_{c}\right)=q-p \quad \text { for instance, } \partial_{2}(a+2 b)=\partial_{1}(a)+2 \partial_{1}(b) \\
&=p-q
\end{aligned}
$$

- He boundary of $\langle t\rangle$ is $\partial(\langle t\rangle)=-a-b-c+a+b+c=0$

We are ready to define H_{1} !
A cycle is an element v of V_{1} such that $\partial_{2}(v)=0$
Example: on

A boundary is an dement v of V_{1} och that $v=\partial_{2}(w)$ for some $w \in C_{2}$.
Example: $a_{1}+a_{2}+a_{3}=\partial(t) \Rightarrow a_{a_{1}}$ is a boundary, namely the boundary of
In fact, every boundary is a cycle: the boundary of a disk is always a circle! Bot not every cycle is a boundary:
\ln

$a+b$ is clearly a cycle, but it is no one's boundary it's a hole!

Question: What is a second, different "hole"?

At this point it is tempting to make the following definition:
"The holes of X are the cycles which are not boundaries"
However, there is a problem:

There two cycles represent the same "hole". How to fix this? Notice that although a ad a' are not boundones,

$$
a-a^{\prime}=\partial\left(a b^{0} b-a^{\prime}\right)=\partial\left(a{\underset{c}{c}}_{c_{c}^{\prime}}^{-a^{\prime}}\right)
$$

In other words, the holes of X are encoded in the vector space

$$
H_{1}(x)=\text { Cycles of } x / \text { Boundaries of } x
$$

Shorthand:

$$
\begin{aligned}
& Z(X)=\left\{v \in V_{1}: \partial_{2}(v)=0\right\} \\
& B(X)=\left\{v \in V_{1}: V=\partial_{2}(w) \text { for come } w \in V_{2}\right\}
\end{aligned}
$$

Example: $H_{1}\left(T^{2}\right)$

Cell structure: $x^{\circ}=\{p\}$

$$
\begin{aligned}
& x^{1}=\{a, b\} \\
& x^{2}=\{t\}
\end{aligned}
$$

$$
Z\left(T^{2}\right)=\operatorname{Span}(\{a, b\})=V_{1} \text { since } \partial(a)=\partial(b)=p-p=0
$$

$B\left(T^{2}\right)=\operatorname{San}(30 y)=0$ since the only boundary is $a+b-a-b$
$\Rightarrow H_{1}\left(T^{2}\right)$ is $Z\left(T^{2}\right) / B\left(T^{2}\right)=V_{2} / 0=V_{2}$, a 2-dimensional vector space with basis $a=$

$$
b=
$$

Remark: one defines H_{2}, H_{3}, \ldots similarly: H_{2} counts "2-dimensional holes". For instance, $H_{2}(S$ ") is 1-dimensional Theorem: He dimension of H_{i} is independent of the choice of cellar structure of X.

Extra: Browner's fixed point theorem
The importance of H_{1} is not so much as a numerical invariant (dim H_{1}) bt rather due to the following fact:
For any continual map $f: x \rightarrow Y$ there is a linear map. $H_{1}(f): H_{2}(x) \rightarrow H_{2}(y)$

This has the following application
Theorem (browner): any continuous map $\bigcirc \stackrel{f}{\rightarrow} \bigcirc$ has a fixed point: $f\left(x_{0}\right)=x_{0}$
Examples:
How do you even prose something. like three? Suppose such an f existed.
Clever idea: consider the map g :

Since $f(x) \neq x$ ever, g is well defied.

Now, we have maps

$$
\begin{equation*}
\stackrel{f}{\text { indian }} \bigcirc \tag{g}
\end{equation*}
$$

Observe that $g \circ f=i d \mathrm{O}$, therefore $H_{1}(g) \circ H_{1}(f)=H_{1}(g \circ f)=H_{1}(d)=$ id: $H_{1}(O) \rightarrow H_{1}(O)$ On the other hand we have $H_{1}\left(\bigcirc \mid \xrightarrow{\left.H_{2}()\right)} H_{1}\left(\bigcirc\left|\xrightarrow{\left.H_{2} \zeta\right)} H_{1}\right| \bigcirc\right)\right.$ $\operatorname{din}^{1} 1$ $\operatorname{dim} 1$ $\}$ Contradiction! must be zero!
5. Cellobr homology : what is a hole?

1. Verify the following computations on Sage For the following, feel fee to use sage
2. Comate ∂_{1} and ∂_{2} for P^{2}. Then, comate $H_{1}\left(P^{2}\right)$
3. Complete $H_{1}\left(T^{2} \# T^{2}\right)$ and $H_{1}\left(P^{2} \# P^{2}\right)$ (Challage: what is $H_{2}(x \# y)$ for infers x, y ?)
4. Give cell structures for the cylinder and the Mobbius strip, indicating ∂_{1} and ∂_{2} in each care. Then compute their the: 5. Compute sone examples of $H_{0}(x)$ and give an interpretation for it.. (Consider eg. $S^{2} U S^{2}$)
