4. A link polynomial

$$
\cdot\langle\grave{y}\rangle=A\langle)(\rangle+A^{\prime}\langle\breve{\bigcup}\rangle
$$

- $\langle\bigcirc\rangle=1$
- $\langle L \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle L\rangle$
$J(L)=(-A)^{- \text {-unite }(D)} \cdot\langle D\rangle \quad \underset{+1}{\text { X }}{ }_{-1}^{\lambda}$

1. Compute the withe of the following oriented links:
a)

b)

c)

2. Compote the Kaufman bracket of each of the links in 1. Then compute the Jones polynomial. Argue that none of them are topologically equivalent to one another, or to the unknot.
3. Compute the Jones polynomial of the following composite knots $K_{1} \# K_{2}$, by resolving the crossings of K_{1} first, and then the crossings of K_{2}. Do you see why, in general, $\left\langle K_{1} \# K_{2}\right\rangle=\left\langle K_{1}\right\rangle \cdot\left\langle K_{2}\right\rangle$? How are withe $\left(K_{1}\right)$, withe $\left(K_{2}\right)$ and writhe $\left(K_{1} \# K_{2}\right)$ related? Can you prove that $J\left(K_{1} \# K_{2}\right)=J\left(K_{1}\right) \cdot J\left(K_{2}\right)$?
a)

b)

4. Compute the Jones polynomial of the following disjoint unions of Knots $K_{1} 山 K_{2}$, similarly as in 3. Can you see a relation between $J\left(K_{1} 山 K_{2}\right)$ and $J\left(K_{1}\right) \cdot J\left(K_{2}\right)$?
a)

b)

5. Prove that the Jones polynomial satisfies RII invariance Hint prove that writhe $(K)=$ writhe (X) and $\langle K\rangle=\langle X\rangle$.
6. Explore the folloung extra topics:
a) Crossing numbers. Recall that $\operatorname{cr}(L)=$ minimum number of crossings amen all diagrams or L. The breadth of a polynomial is: $\operatorname{br}(P(A))=$ highest payer of A in P-lowest.
Consider the ($2 n+1$)-poll:

Let $a=$ number of circles in D for K after resolving all the crossings to $)($
$b=$ number of circles in D for K alter resolving all the crossings to \asymp
$c=$ number of crossings in D.
Do some examples to convince yourselves that $a+b=c-2$
Prove that the highest power in $\langle D\rangle$ well be $A^{c} \cdot A^{2(a-1)}$.
Prove that the lowest power in $\langle D\rangle$ well be $A^{-c} \cdot A^{-2(b-1)}$.
Decure that $\operatorname{br}(\langle D\rangle)=4 c$.
Remark: this can be used to show that actually $\operatorname{cr}((2 n+1)-$ fool $)=2 n+1$ (next class maybe)
b) Mirror images: (\rightarrow (revere all the crossings)

Prove that the tripoli and its mirror image are not equivalent.
Can you re the relation between $J(L)$ and J (mirror image $(L))$?
A knot which is equivalent to its mirror image is called ampichiral (the terminology comes from
a related notion in chemistry). What should J(ampidiral link) look like?

