3. Multiplying Knots, the table of prime knots
4. Classify the following knots into prime or composite. For the composite ones K, identify K_{1} and K_{2} such that $K=K_{1} \# K_{2}$. (Here $K_{1}, K_{2} \neq$ unknot). Yow may us the table of k_{n} ts in the next page.
at)

bl)

cl)

az)

ba)

cz)

5. Find:
a) A knot S such that $S \neq u n k n o t$ and $S \#$ trefoil is tricolorable.
b) A knot T such that, if $K=, K \# T$ is tricolorable
c) A knot U sod that, for all knots $K, K \# U=K$
6. Consider the "coles" $0,1,2,3,4$, and define their addition as of they were on a clock: whenever their sum goes over 5, we subtract 5

This is called "addition modulo 5". Here are some examples: $4+3 \equiv 7 \equiv 7-5 \equiv 2 \quad(\bmod 5)$

$$
\begin{aligned}
& 2 \cdot 4 \equiv 8 \equiv 8-5 \equiv 3 \quad(\bmod 5) \\
& -3-4 \equiv-7 \equiv-7+5 \equiv-2 \quad \equiv-2+5 \equiv 3 \quad(\bmod 5) .
\end{aligned}
$$

Definition: Say a link diagram is 5-colorable if there is a way to assign a number from 0 to 4 to each diagram so that at each crossing $/ a / c$ we have $2 a \equiv b+c(\bmod 5)$ Prove that this is a link invariant by checking the three Reidemeister moves. For example, if $a\left|\left.\right|_{b}\right.$ is part of a 5 -colorable link, then the same link where we have replaced $\left.a\right|_{b}$ by $\quad \|_{2 b-a}^{b}$ is also tricolorable, since at both crossings we have $2 b \equiv a+2 b-a$
table df Prine knots up to 8 crossing-s

75
76
7_{z}

$8 q$

8 , 5

8_{20}

8_{21}

816

