15. A party trick: Brunnian links
16. You have 2 pins, A and B. Find a way to hang a picture subject to the pelowing conditions 1. If you remove pin A, the picture falls. If you remove pin B, the picture stays up.
17. If you remove pin A, the picture stays up. If you remove pin B, the picture stays up.
18. I you remove pin B, the picture falls. If you remove pin A, the picture stays up.
19. Write your solutions from Exercise 1 in terms of the generators of $\pi_{1}(\square)$, where a and b are:

20. Prove that the following identities hold in the free groups on the letters a, b, c.
21. $(a b)^{-1}=b^{-1} a^{-1}$. (Hint show that the RHS is the unique element x. such that $(a b) x=1$ and. $x(a b)=1$)
22. $[a, b]=[a, b a]$
23. $[a, b][b, c]=\left[a b a^{-1}, c a^{-1}\right] \quad\left(\right.$ Hint,$\left.\left(a b a^{-1}\right)^{-1}=a b^{-1} a^{-1}\right)$
24. Recall the solutions for the 2-pin and 3-pin problem Find a solution to the 4 -pin problem, using commutators.

Can you generalize your solution?

5. Solve the "2 at of $3^{3 "}$ puzzle: removing any 2 pins makes the picture fall, bot removing only 1 pin makes it stay up. You may only use a word (in a, b, c) with 6 letters. Draw your solution. Genealize your solution to the "($n-1$) out of n " puzzle.
6. (Challenge) Interpret the commutator as an OR statement, and ur the 3 -commutator from. Exercise 4 to solve the 2 out of 4 puzzle. You may we the Sage Math code in the second page to check that the picture dos not fall when you only remove 1 pin.
7. (Up to you) Solve your coon m out of n puzzle.

Sage code: (we https://sagecell sagemathorg)

```
1 F. \(<\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}>=\) FreeGroup ( ); \(\rightarrow\) Define the free group
def \(\operatorname{comm}(x, y):\) return \(x * y * x^{\wedge}-1 * y^{\wedge}-1 \quad \rightarrow\) Define the commutator
def \(\operatorname{comm} 3(x, y, z)\) : return \(x * y * z * x^{\wedge}-1 * y^{\wedge}-1 * z^{\wedge}-1 \rightarrow\) Define the 3 -commutator
\(\left.\begin{array}{l}\mathrm{rels}=[\mathrm{a}, \mathrm{b} * \mathrm{c}] \\ \mathrm{G}=\mathrm{F} / \mathrm{rel} \mathrm{s}\end{array}\right]\) Choose relations to impose. Here \(a=1\) and \(b c=1\)
G=F/rels
\(f=\) F.hom(G.gens()) \(\rightarrow\) Define the map \(f=\) "apply the relations"
word \(=\operatorname{comm}(d, b * c) * a^{\wedge} 2 \rightarrow\) choose some word to simplify. Here, \([d, b c] a^{2}\).
\(f(\) word \()==f(1) \rightarrow\) check if the word simplifies to 1 . Here, \([d ; b c] a^{2}=\cdot[d ; 1] \cdot 1^{2}=\cdot 1\)
```


Evaluate

True \rightarrow So correctly, it gives True

