13. The fundamental group of a Knot	Somorphism of sets $f: X \rightarrow Y$: • If $x \neq y$ then $f(x) \neq f(y)$ Injectivity • Every $y \in Y$ is equal to $f(x)$ for some $x \in X$: Surjectivity Isomorphism of groups $f: X \rightarrow Y$: • f is an somorphism of sets • $f(x \neq y) = f(x) \neq f(y)$ Perpets the operat
1. a) Let $G = \langle a a^3 = 1 \rangle$ Prove that $ G = 7$.	$1, a, a^2, a^3, b, a^3, a^5, a^{s}b, a^{s}b$
b) Let $G = \langle a, b \rangle a^4 = 4$, $b^2 = 4$, $ba = a^3b \rangle$ c) Let $n \ge 2$. Prove that $\langle a \mid a^{n} = 1 \rangle \stackrel{\sim}{=} C_n$ as groups	Prove that G =8.
2. Compute the following fundamental groups, using the given diagram	n,
ы) П(сосос)	
$(c) = \pi(\bigcirc)$	
3. Consider link diagrams D_1 and D_2 which only differ in the	region inside the dashed circles below
Prove that both Da and Da will have equivalent relations:	· · · · · · · · · · · · · · ·
4. Let L be a link and let L' be its mirror image. F	Prove that $\pi(L) \cong \pi(L')$
5. (Optional) Prove that TT(L) is infinite for any link L	(Hint: find a surjective map $TT(L) \rightarrow Z$)
6 ((hallenge)) Recall that $S_3 = 1 = 2$	
Highlighted are the elements known as "transpositions". Prove	e that if x, y, z are the three
transpositions (in any order), then $x^{-1}y = z$. Use this to p	nove that a tricoloring of a link L
determines a homomorphism $\Pi(L) \rightarrow S_3$ Lea map soch that f(a*b) = f(a)*f(b)	