Isomorphism of rets $f: x \rightarrow y$:
13. The fundamental group of a knot.

- $y x \neq y$ then $f(x) \neq f(y)$
- Every $y \in Y$ is equal to $f(x)$ for sure $x \in X$ Isomorphism of groups $f: x \rightarrow y$:
- f is an isomorphism of sets
- $f(x * y)=f(x) * f(y)$

1. a) Let $G=\left\langle a \mid a^{7}=1\right\rangle$. Prove that $|G|=7 . \quad 1, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b$
b) Let $G=\left\langle a, b \mid a^{4}=1, b^{2}=1, \quad b a=a^{3} b\right\rangle$. Prove that $|G|=8$.
c) Let $n \geqslant 2$. Prove that $\left\langle a \mid a^{n}=1\right\rangle \cong C_{n}$ as groups
2. Compote the following fundamental groups, using the given diagrams.
a) $\pi(\circlearrowright 1$
b) $\pi(\infty \propto \infty)$

c) $\pi(\circlearrowleft)$
3. Consider link diagrams D_{1} and D_{2} which only differ in the region inside the dashed circles below Prove that both D_{1} and D_{2} will have equivalent relations:

4. Let L be a link and let L^{\prime} be its mirror image. Prove that $\pi(L) \cong \pi\left(L^{\prime}\right)$
5. (Optional) Prove that $\Pi(L)$ is infinite for any link L. (Hint: find a sorjative map $\Pi(L) \rightarrow \mathbb{U}$)
6. (Challenge). Recall that $S_{3}=\{\Xi, \geq, \gg, \gg\}$

Highlighted are the elements known as "transpositions". Pore that if x, y, z are the three transpositions (in any order), then $x^{-1} y x=z$. Use this to pore that a tricoloring of a link L determines a homomorphism $\Pi(L) \rightarrow S_{3}$

