Week 5

6-7. The value of conjectures 1. Find a link diagram satisfying the following conditions. You may use Snap Py to draw them. A link diagram is alternating if following each strand's path, overcrossings and undercrossings alternate. Reduced Afternating Connected Yes ü) Yes Yes No A link diagram D is reduced if we cannot find two areas such that Yes No Yes iii) No in) Yes No $D = \left(\begin{array}{c} D_{1} \\ D_{2} \end{array} \right)$ Yes ×). No Yes Yes No Vi) No Connected a fink diagram is connected if ignoring (inder/over) crossings, the diagram is connected. vii) No No Yes viii) 2. Identify the three nonalternating prime knots with 8 crossings: $\begin{cases} 3 \\ 8_1 \\ 8_2 \\ 8_3 \\ 8_3 \\ 8_3 \\ 8_4 \\ 8_3 \\ 8_4 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_5 \\ 8_4 \\ 8_5 \\ 8_5 \\ 8_4 \\ 8_5$ $\bigotimes_{\delta_{4}} \bigotimes_{\delta_{10}} \bigotimes_{\delta_{10}} \bigotimes_{\delta_{12}} \bigotimes_{\delta_{13}} \bigotimes_{\delta_{14}} \bigotimes_{\delta_{15}} \bigotimes_{\delta_{15}} \bigotimes_{\delta_{14}} \bigotimes_{\delta_{15}} \bigotimes_{\delta_{14}} \bigotimes_{\delta_{15}} \bigotimes_{\delta_{14}} \bigotimes_{\delta_{15}} \bigotimes_{\delta_{15}}$ Hint: start from the end. 3. Choose a prime knot with n < 7 (rossings and ve Tait's first conjecture to prove that its crossing Tait's first conjecture: Any reduced alternating link diagram has the smallest number of crossings Tait's second conjecture: Any two reduced reduced alternating connected diagrams for the same link have the same writhe number is 4. Let D be an oriented fink diagram and let D' be its mirror image. You may use Snap Py. Explore how wr(D) and wr(D') are related. Conjecture a relation between them. Prove your conjecture. 5. Let D be a reduced alternating connected diagram of an amphichiral knot. Use Tait's second conjecture and the previous exercise to show that $D \neq 5_4$. Prove more generally that the number of crossings in D must be even.

Game Choose a pr	rime Knot, tangle	it as i	nuda	as you	(CAIA	(w	thin r	rason) USINC C	J Snap	Py,	• •	
and save it. Then share i	t on the chat so	that the	e othe	r group	(a v	, 0	pen it	in	Sna	pfy's	edito	(.	
First one to identify the	Knot wins. You	may use	any	techniq	ve fr	OM	the	(00)	¥.	•		••••	
Some useful commandes:			• •			•	•	• •		•	• •	• •	
l	<pre>port snappy = ((1, 5, 2, 4), (5, 3, 6, 2), (3, 1, 4, 6)] monppy = snappy.Link(PD)monppy.sage_link() lot()</pre>					٠		• •					
· Rasse avainale			• •	• •	• •	٠	•	• •		٠	• •	• •	
- casic example.			• •	• •	• •		•		• •	•		• •	
		• • •		• •		•	•			•	• •		
							٠	• •					
• L. is_alternating()	returns whether	the diagra	nn is	alterna	ting .	•	(depe	ndent	on H	e dia	ram)	• •	
• L. writhe ()	ne() returns the writhe of the diagram						(invariant of alternating diagrams ONLY)						
• L. is_colorable (n) returns whether the diagram is n-colorable							(independent of the diagram)						
· L. jones_polynomial () returns the Jones polynomial							(independent of the diagram)						
· · · · · · · · ·	· · · · · · ·			• •		•	•	• •		•	· ·	• •	