6-7. The value of conjectures

1. Find a link diagram satiffying the plowing conditions you may use Snap fy to draw them:

2. Identify the three nonalternating prime knots with 8 crossings:

Hunt: stat from He end.
3. Choose a prime knot with $n \leqslant 7$ crossings and un Tait's first conjecture to prove that its crossing number is n.
4. Let D be an oriented link diagram and let D ' be its mirror image. You may use Snap Ply. Explore how ur (D) and wo $\left(D^{\prime}\right)$ are related. Conjecture a relation between then. Prove your. conjecture.
5. Let D be a reduced alternating connected diagram of an amphichiral Knot Use Tart's second conjecture and the previous exercise to show that $D \neq 5_{1}$. Prove more generally that the number of crossings in D most be even.

O_{1}

3_{1}

Game: Choose a prime knot, tangle it as much as you can (within reason) using Soap Ry, and save it. Then share it on the chat so that the other group can open it in SnapPy's editor. First one to identify the knot wins. You may use any technique from the course. Some useful commands:

Import snappy
PD $=1(1,5,2,4),(5,3,6,2),(3,1,4,6) 1$
L snappy $=$ snappy ${ }^{2}$ Link (PD) $)$

- Basic example:

- L. is -alternating() returns whether the diagram is alternating: (dependent on the diagram)
- L. writhe () returns the writhe of the diagram
(invariant of alternating diagrams ONLY)
- L. is -colorable (n) returns whether the diagram is n-colorable (independent of the diagram)
- L. jones-polynomial () returns the Jones polynomial
(independent of the diagram)

