MATH W4051 PROBLEM SET 8 DUE OCTOBER 29, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

(1) (From Hatcher): Show that composition of paths has the following cancellation property: Let γ_{0}, γ_{1} be paths from p to q and η_{0}, η_{1} paths from q to r. Suppose that $\gamma_{0} * \eta_{0} \sim \gamma_{1} * \eta_{1}$ (rel endpoints) and $\eta_{0} \sim \eta_{1}$ (rel endpoints). Then $\gamma_{0} \sim \gamma_{1}$ (rel endpoints).
(2) Munkres 52.1
(3) Munkres 55.2
(4) Munkres 55.4 parts (a)-(d)
(5) Does every continuous map $S^{2} \rightarrow S^{2}$ have a fixed point? If so, prove it. If not, give a counterexample, and see if you can find a more restrictive statement which you think is true.
(6) Let X and Y be path-connected spaces.
(a) Prove that $\pi_{1}(X \times Y)=\pi_{1}(X) \times \pi_{1}(Y)$.
(b) Conclude that T^{2} is not homeomorphic to S^{2}.
(c) What is $\pi_{1}\left(\mathbb{R}^{2} \backslash 0\right)$?
(7) (From Hatcher): Define $f: S^{1} \times[0,1] \rightarrow S^{1} \times[0,1]$ by $f(\theta, s)=(\theta+2 \pi s, s)$. So, f restricts to the identity map on the two boundary circles of $S^{1} \times[0,1]$.
(a) Show that f is homotopic to the identity map by a homotopy fixing one of the two boundary circles (i.e., rel $S^{1} \times\{0\}$).
(b) Show that f is not homotopy to the identity map by a homotopy fixing both boundary circles (i.e., rel $S^{1} \times\{0,1\}$).
Hint: Consider what f does to the path $s \mapsto\left(\theta_{0}, s\right)$ for some $\theta_{0} \in S^{1}$.
E-mail address: rl2327@columbia.edu

