# MATH W4051 PROBLEM SET 10 DUE NOVEMBER 19, 2008. 

INSTRUCTOR: ROBERT LIPSHITZ

(1) Computing $\pi_{1}$ through clever homotopy equivalences. .
(a) Let $S \subset \mathbb{R}^{3}$ consist of $n$ lines through the origin. What is $\pi_{1}\left(\mathbb{R}^{3} \backslash S\right)$ ? Prove (explain) your answer.
(b) Let $S \subset \mathbb{R}^{3}$ consist of $n$ parallel lines. What is $\pi_{1}\left(\mathbb{R}^{3} \backslash S\right)$ ? Prove (explain) your answer.
(c) Let $S \subset \mathbb{R}^{3}$ consist of $n$ points. What is $\pi_{1}\left(\mathbb{R}^{2} \backslash S\right)$ ? Prove (explain) your answer.
(d) Let $S$ denote the unit circle in $\mathbb{R}^{2} \subset \mathbb{R}^{3}$. What is $\pi_{1}\left(R^{3} \backslash S\right)$ ? Prove (explain) your answer.
(2) Prove the following strengthening of the Brouwer fixed point theorem: let $f: \mathbb{D}^{2} \rightarrow \mathbb{R}^{2}$ be a map such that $f\left(S^{1}\right) \subset \mathbb{D}^{2}$. Then $f$ has a fixed point $p \in \mathbb{D}^{2}$.
(3) Consider the letters of the alphabet, in the font shown:

## abcdefghijklmnopqrstuvwxyz

(a) Group the letters into homotopy equivalence classes. Explain (briefly) your answers.
(b) Group the letters into homeomorphism classes. Explain (briefly) your answers.
(4) Hatcher, exercise $6(\mathrm{a}, \mathrm{b})$, p. 18, quoted here:
6. (a) Let $X$ be the subspace of $\mathbb{R}^{2}$ consisting of the horizontal segment $[0,1] \times\{0\}$ together with all the vertical segments $\{r\} \times[0,1-r]$ for $r$ a rational number in $[0,1]$. Show that $X$ deformation retracts to any point in the segment $[0,1] \times\{0\}$, but not to any other point. [See
 the preceding problem.]
(b) Let $Y$ be the subspace of $\mathbb{R}^{2}$ that is the union of an infinite number of copies of $X$ arranged as in the figure below. Show that $Y$ is contractible but does not deformation retract onto any point.

(5) What is the product in the category of abelian groups? The coproduct? (Prove your answers, one of which might surprise you.)
(6) Here's another abstract description of free groups. The free group $F_{n}$ on $n$ symbols $a_{1}, \ldots, a_{n}$ is characterized as follows: there is a map of sets $i:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow F_{n}$, and for any group $G$ and map of sets $f:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow G$ there is a unique map $g: F_{n} \rightarrow G$ such that $f=g \circ i$.

In terms of diagrams:

(a) Prove that this property characterizes $F_{n}$ up to unique isomorphism. That is, given any two groups $E$ and $F$ and maps $i_{E}:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow E$ and $i_{F}:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow F$ satisfying the condition given above there is a unique isomorphism $f: E \rightarrow F$ so that the following diagram commutes:

(b) Explain briefly that $\mathbb{Z}$ has this property for $n=1$, so $\mathbb{Z} \cong F_{1}$.
(c) Explain why $F_{2}$, as defined in class, has this property for $n=2$. (You may use either the construction in terms of words or the definition as a coproduct.)
Optional but particularly encouraged:
(6) Pushouts and amalgamated products. Given a category $\mathcal{C}$, objects $X, Y, Z \in o b(\mathcal{C})$ and morphisms $i_{X}: Z \rightarrow X, i_{Y}: Z \rightarrow Y$, a pushout of $\left(X, Y, Z, i_{X}, i_{Y}\right)$ is an object $P$ together with maps $j_{X}: X \rightarrow P, j_{Y}: Y \rightarrow P$ so that $j_{X} \circ i_{X}=j_{Y} \circ i_{Y}$ and, further, so that for any other object $Q$ and maps $f: X \rightarrow Q, g: Y \rightarrow Q$ satisfying $f \circ i_{X}=g \circ i_{Y}$ there is a unique map $h: P \rightarrow Q$ so that $f=h \circ j_{X}$ and $g=h \circ j_{Y}$. In terms of diagrams: we have

and, further,

(This looks very complicated. You'll see from some examples that it isn't so complicated.)
(a) Prove that if a pushout exists then it is unique up to unique isomorphism.
(b) What is the pushout in the category of sets? (Hint: think first about the case when $Z=X \cap Y$.)
(c) What is the pushout in the category of topological spaces? (Hint: similar to sets.)
(d) The pushout in the category of groups is called the amalgamated product. Give an explicit description of it, and sketch a proof that it is, indeed, the pushout. (Hint: it's a quotient of the free product (a.k.a. coproduct).)
More optional problems:
(7) Give a definition of the product of arbitrarily many objects in a category. Check that the product topology is the product in the category of topological spaces.
(8) What's the product in the category of based topological spaces?

E-mail address: rl2327@columbia.edu

