MATH W4051 PROBLEM SET 10 DUE NOVEMBER 19, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

- (1) Computing π_1 through clever homotopy equivalences...
 - (a) Let $S \subset \mathbb{R}^3$ consist of *n* lines through the origin. What is $\pi_1(\mathbb{R}^3 \setminus S)$? Prove (explain) your answer.
 - (b) Let $S \subset \mathbb{R}^3$ consist of *n* parallel lines. What is $\pi_1(\mathbb{R}^3 \setminus S)$? Prove (explain) your answer.
 - (c) Let $S \subset \mathbb{R}^3$ consist of *n* points. What is $\pi_1(\mathbb{R}^2 \setminus S)$? Prove (explain) your answer.
 - (d) Let S denote the unit circle in $\mathbb{R}^2 \subset \mathbb{R}^3$. What is $\pi_1(\mathbb{R}^3 \setminus S)$? Prove (explain) your answer.
- (2) Prove the following strengthening of the Brouwer fixed point theorem: let $f: \mathbb{D}^2 \to \mathbb{R}^2$ be a map such that $f(S^1) \subset \mathbb{D}^2$. Then f has a fixed point $p \in \mathbb{D}^2$.
- (3) Consider the letters of the alphabet, in the font shown:
 - a b c d e f g h i j k l m n o p q r s t u v w x y z (a) Group the letters into homotopy equivalence classes. Explain (briefly) your answers.
 - (b) Group the letters into homeomorphism classes. Explain (briefly) your answers.
- (4) Hatcher, exercise 6(a,b), p. 18, quoted here:

6. (a) Let *X* be the subspace of \mathbb{R}^2 consisting of the horizontal segment $[0,1] \times \{0\}$ together with all the vertical segments $\{r\} \times [0,1-r]$ for *r* a rational number in [0,1]. Show that *X* deformation retracts to any point in the segment $[0,1] \times \{0\}$, but not to any other point. [See the preceding problem.]

(b) Let *Y* be the subspace of \mathbb{R}^2 that is the union of an infinite number of copies of *X* arranged as in the figure below. Show that *Y* is contractible but does not deformation retract onto any point.

- (5) What is the product in the category of abelian groups? The coproduct? (Prove your answers, one of which might surprise you.)
- (6) Here's another abstract description of free groups. The free group F_n on n symbols a_1, \ldots, a_n is characterized as follows: there is a map of sets $i: \{a_1, \ldots, a_n\} \to F_n$, and for any group G and map of sets $f: \{a_1, \ldots, a_n\} \to G$ there is a unique map $g: F_n \to G$ such that $f = g \circ i$.

In terms of diagrams:

(a) Prove that this property characterizes F_n up to unique isomorphism. That is, given any two groups E and F and maps i_E : $\{a_1, \ldots, a_n\} \to E$ and i_F : $\{a_1, \ldots, a_n\} \to F$ satisfying the condition given above there is a unique isomorphism $f: E \to F$ so that the following diagram commutes:

- (b) Explain briefly that \mathbb{Z} has this property for n = 1, so $\mathbb{Z} \cong F_1$.
- (c) Explain why F_2 , as defined in class, has this property for n = 2. (You may use either the construction in terms of words or the definition as a coproduct.)

Optional but particularly encouraged:

(6) Pushouts and amalgamated products. Given a category \mathcal{C} , objects $X, Y, Z \in ob(\mathcal{C})$ and morphisms $i_X \colon Z \to X$, $i_Y \colon Z \to Y$, a pushout of (X, Y, Z, i_X, i_Y) is an object P together with maps $j_X \colon X \to P$, $j_Y \colon Y \to P$ so that $j_X \circ i_X = j_Y \circ i_Y$ and, further, so that for any other object Q and maps $f \colon X \to Q$, $g \colon Y \to Q$ satisfying $f \circ i_X = g \circ i_Y$ there is a unique map $h \colon P \to Q$ so that $f = h \circ j_X$ and $g = h \circ j_Y$. In terms of diagrams: we have

and, further,

(This looks very complicated. You'll see from some examples that it isn't so complicated.)

- (a) Prove that if a pushout exists then it is unique up to unique isomorphism.
- (b) What is the pushout in the category of sets? (Hint: think first about the case when $Z = X \cap Y$.)
- (c) What is the pushout in the category of topological spaces? (Hint: similar to sets.)

(d) The pushout in the category of groups is called the *amalgamated product*. Give an explicit description of it, and sketch a proof that it is, indeed, the pushout. (Hint: it's a quotient of the free product (a.k.a. coproduct).)

More **optional** problems:

- (7) Give a definition of the product of arbitrarily many objects in a category. Check that the product topology is the product in the category of topological spaces.
- (8) What's the product in the category of based topological spaces?

E-mail address: r12327@columbia.edu