BONUS PROBLEM FROM MATH W4051 FINAL EXAM DECEMBER 16, 2008

INSTRUCTOR: ROBERT LIPSHITZ

Consider $U T S^{2}=\left\{(x, v) \in S^{2} \times \mathbb{R}^{3}| | v \mid=1, v \cdot x=0\right\}$. (Here, the dot product comes from viewing S^{2} as sitting inside \mathbb{R}^{3}. This is the "unit tangent space to S^{2}.")
(1) Prove that $U T S^{2}$ is path connected.
(2) Compute $\pi_{1}\left(U T S^{2}\right)$.
(3) Conclude that S^{2} does not admit a nonvanishing tangent vector field. (Hint: show that if it did then $U T S^{2} \cong S^{2} \times S^{1}$.)
E-mail address: rl2327@columbia.edu

