BONUS PROBLEM FROM MATH W4051 FINAL EXAM **DECEMBER 16, 2008**

INSTRUCTOR: ROBERT LIPSHITZ

Consider $UTS^2 = \{(x, v) \in S^2 \times \mathbb{R}^3 \mid |v| = 1, v \cdot x = 0\}$. (Here, the dot product comes from viewing S^2 as sitting inside \mathbb{R}^3 . This is the "unit tangent space to S^2 .")

- (1) Prove that UTS^2 is path connected.
- (1) Prove that 0.1 S path connected?
 (2) Compute π₁(UTS²).
 (3) Conclude that S² does not admit a nonvanishing tangent vector field. (Hint: show that if it did then UTS² ≅ S² × S¹.)

E-mail address: rl2327@columbia.edu