MATH W4051 PROBLEM SET 8 PART 2 OF 2 DUE NOVEMBER 17, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

Don't forget to do part 1, which was already posted!
(1) Munkres 68.2.
(2) Munkres 69.1.
(3) Munkres 69.3.
(4) Munkres 69.4.
(5) Let $G=\left\langle g_{1}, g_{2}, \ldots, g_{k} \mid r_{1}, r_{2}, \ldots, r_{l}\right\rangle$ be a group given in terms of generators and relations. Write $r_{i}=g_{i, 1}^{n_{i, 1}} g_{i, 2}^{n_{i, 2}} \ldots g_{i, j_{i}}^{n_{i, j_{i}}}$.

Let H be any group, and $h_{1}, \ldots, h_{k} \in H$. Then there is a group homomorphism $f: G \rightarrow H$ such that $f\left(g_{i}\right)=h_{i}(i=1, \ldots, k)$ if and only if, for all

$$
h_{i, 1}^{n_{i, 1}} h_{i, 2}^{n_{i, 2}} \ldots h_{i, j_{i}}^{n_{i, j_{i}}}=1_{H}
$$

for $i=1, \ldots, l$.
Prove this. (Hint: one direction is easy. For the other, you'll use the definition of G as a quotient group of a free group, and probably the property of free groups in Optional Problem (6), below.)

Optional:

(6) Here's another abstract description of free groups. The free group F_{n} on n symbols a_{1}, \ldots, a_{n} is characterized as follows: there is a map of sets $i:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow F_{n}$, and for any group G and map of sets $f:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow G$ there is a unique map $g: F_{n} \rightarrow G$ such that $f=g \circ i$.

In terms of diagrams:

(a) Prove that this property characterizes F_{n} up to unique isomorphism. That is, given any two groups E and F and maps $i_{E}:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow E$ and $i_{F}:\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow F$ satisfying the condition given above there is a unique isomorphism $f: E \rightarrow F$ so that the following diagram commutes:

(b) Explain briefly that \mathbb{Z} has this property for $n=1$, so $\mathbb{Z} \cong F_{1}$.
(c) Explain why F_{2}, as defined in class, has this property for $n=2$.
(7) Let $G L_{n}(\mathbb{R})$ denote the set of invertible $n \times n$ matrices, which we topologize as a subspace of $\mathbb{R}^{n^{2}}$. Let $O_{n}(\mathbb{R})$ denote the subgroup of $G L_{n}(\mathbb{R})$ of $n \times n$ orthogonal matrices (i.e., matrices P so that $P^{T} P=I$), topologized as a subspace.
(a) Prove that $G L_{n}(\mathbb{R})$ deformation retracts to $O_{n}(\mathbb{R})$. (Hint: one way to do this is by doing the Gram-Schmidt process gradually to the columns.)
(b) Prove that $O_{n}(\mathbb{R})$ has two connected components. (Hint: to see it has at least two, consider the determinant. To see it has at most two, use the spectral theorem. For the latter, you could restrict to the case $n=3$ if you prefer.)
E-mail address: rl2327@columbia.edu

