MATH W4051 PROBLEM SET 8 PART 1 OF 2 DUE NOVEMBER 17, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

For reasons of "I'm not completely sure what we'll cover next week yet, but I want you to get a feeling for homotopy equivalence now," the homework is coming in two parts. Note that you have a week and a half to do it.

- (1) Let $f, g: S^1 \to S^1$ be continuous maps and $x_0 \in S^1$.
 - (a) Assume that $f(x_0) = g(x_0)$ and f is homotopic to g. Prove that $f_* = g_* \colon \pi_1(S^1, x_0) \to \pi_1(S^1, f(x_0))$. Conclude that $\deg(f) = \deg(g)$. (Hint: I did not say f is homotopic to g rel x_0 ; this is the tricky part. Use Munkres Theorem 58.4.)
 - (b) Without the assumption that $f(x_0) = g(x_0)$ prove that $\deg(f) = \deg(g)$.
 - (c) Prove that the degree of f is independent of the choice of x_0 .
- (2) Munkres 58.2
- (3) Munkres 58.4
- (4) Munkres 58.6

Optional: Hatcher, exercise 6(a,b), p. 18, quoted here:

6. (a) Let *X* be the subspace of \mathbb{R}^2 consisting of the horizontal segment $[0,1] \times \{0\}$ together with all the vertical segments $\{r\} \times [0,1-r]$ for *r* a rational number in [0,1]. Show that *X* deformation retracts to any point in the segment $[0,1] \times \{0\}$, but not to any other point. [See the preceding problem.]

(b) Let *Y* be the subspace of \mathbb{R}^2 that is the union of an infinite number of copies of *X* arranged as in the figure below. Show that *Y* is contractible but does not deformation retract onto any point.

If you want more practice, here are some suggested problems in Hatcher. All from Chapter 0 (p. 18): 1, 2, 4, 5, 10, 12, 16, 17 (repace "2-dimensional cell complex" with "space"), 20. (Hatcher's Algebraic Topology book is available at: http://www.math.cornell.edu/~hatcher/) E-mail address: rl2327@columbia.edu