MATH W4051 PROBLEM SET 7 DUE NOVEMBER 5, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

(1) Munkres 52.1
(2) Munkres 55.2
(3) Munkres 55.4 parts (a)-(d)
(4) Does every continuous map $S^{2} \rightarrow S^{2}$ have a fixed point? If so, prove it. If not, give a counterexample, and see if you can find a more restrictive statement which you think is true.
(5) The fundamental group of products...
(a) Let X and Y be path-connected spaces. Prove that $\pi_{1}(X \times Y)=\pi_{1}(X) \times \pi_{1}(Y)$.
(b) Conclude that T^{2} is not homeomorphic to S^{2}.
(c) What is $\pi_{1}\left(\mathbb{R}^{2} \backslash 0\right)$?
(d) Show that $T^{3}, S^{1} \times S^{2}$ and S^{3} are all distinct (i.e., no pair of them is homeomorphic). (Recall that $T^{3}=S^{1} \times S^{1} \times S^{1}$.)
(6) (From Hatcher): Show that composition of paths has the following cancellation property: Let γ_{0}, γ_{1} be paths from p to q and η_{0}, η_{1} paths from q to r. Suppose that $\gamma_{0} * \eta_{0} \sim \gamma_{1} * \eta_{1}$ (rel endpoints) and $\eta_{0} \sim \eta_{1}$ (rel endpoints). Then $\gamma_{0} \sim \gamma_{1}$ (rel endpoints).
E-mail address: rl2327@columbia.edu

