MATH W4051 PROBLEM SET 7 DUE NOVEMBER 5, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

- (1) Munkres 52.1
- (2) Munkres 55.2
- (3) Munkres 55.4 parts (a)–(d)
- (4) Does every continuous map $S^2 \to S^2$ have a fixed point? If so, prove it. If not, give a counterexample, and see if you can find a more restrictive statement which you think is true.
- (5) The fundamental group of products...
 - (a) Let X and Y be path-connected spaces. Prove that $\pi_1(X \times Y) = \pi_1(X) \times \pi_1(Y)$.
 - (b) Conclude that T^2 is not homeomorphic to S^2 .
 - (c) What is $\pi_1(\mathbb{R}^2 \setminus 0)$?
 - (d) Show that T^3 , $S^1 \times S^2$ and S^3 are all distinct (i.e., no pair of them is homeomorphic). (Recall that $T^3 = S^1 \times S^1 \times S^1$.)
- (6) (From Hatcher): Show that composition of paths has the following cancellation property: Let γ_0, γ_1 be paths from p to q and η_0, η_1 paths from q to r. Suppose that $\gamma_0 * \eta_0 \sim \gamma_1 * \eta_1$ (rel endpoints) and $\eta_0 \sim \eta_1$ (rel endpoints). Then $\gamma_0 \sim \gamma_1$ (rel endpoints).

 $E\text{-}mail\ address:\ rl2327@columbia.edu$