MATH W4051 PROBLEM SET 8 DUE OCTOBER 27, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

- (1) Munkres 51.1
- (2) Munkres 51.2
- (3) Munkres 51.3
- (4) Let Homeo(X) denote the set of homeomorphisms $f: X \to X$.
 - (a) Explain briefly why Homeo(X) is a group. Explain briefly how Homeo(X) acts on X. (If you've forgotten, look up what "acts on" means in a book on group theory.)
 - (b) Show that for any nonempty spaces X and Y there is an injective group homomorphism $Homeo(X) \to Homeo(X \times Y)$.
 - (c) Show that Homeo(S^1) acts *transitively* on S^1 . That is, show that for any points $x, y \in S^1$ there is an element $\phi \in \text{Homeo}(S^1)$ so that $\phi(x) = y$. (Hint: this should be easy.) Conclude that Homeo(S^1) is uncountable.
 - (d) Let X be the union of the x- and y-axes in \mathbb{R}^2 , with the subspace topology (so X is shaped like an X). Prove that Homeo(X) does not act transitively on X. (This takes a little insight.)
 - (e) Find a space X with at least 3 points so that Homeo(X) is the trivial group.
 - (f) Optional, challenge problem: can you find an infinite subspace X of \mathbb{R}^n such that Homeo(X) is the trivial group?

 $E\text{-}mail\ address:\ rl2327@columbia.edu$