MATH W4051 PROBLEM SET 11 DUE DECEMBER 15, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

- (1) Let $p: \tilde{X} \to X$ be a covering space. Prove: if \tilde{X} is compact then for any $x \in X$, $p^{-1}(x)$ is finite.
- (2) Draw the universal covers of the following spaces:
 - (a) The union of a sphere and a diameter of the sphere.
 - (b) A sphere and a circle glued together at one point.
- (3) Find a 2-fold cover of the Möbius strip by an orientable surface. Find a 2-fold cover of the Klein bottle by an orientable surface. (I know, we haven't defined orientable.) To what subgroups of π_1 do these covers correspond?
- (4) Prove that any map $\mathbb{R}P^2 \to S^1$ is nullhomotopic. (Hint: what is the induced map on π_1 ?)

Optional:

(1) Recall from problem set 3: The group $\mathbb{Z}/5$ acts on S^3 as follows. Write $S^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}$ and $\mathbb{Z}/5 = \{1, \zeta, \zeta^2, \zeta^3, \zeta^4\}$. Then define

$$\zeta^n(z,w) = (e^{2\pi i n/5}z, e^{6\pi i n/5}w).$$

The quotient S^3/G is called the *lens space* L(5,3).

- (a) Prove that S^3 is the universal cover of L(5,3). (The work here is proving that the map $S^3 \to L(5,3)$ is a covering map.)
- (b) Use covering space theory to compute $\pi_1(L(5,3))$.
- (c) Generalize this to define lens spaces L(p,q) for any relatively prime p and q. Use covering spaces to compute $\pi_1(L(p,q))$.
- (2) (If you've taken a course in differential geometry...) Prove that if M is a non-orientable smooth manifold then M has a 2-fold cover by an orientable manifold. (If you want a hint, ask.)

E-mail address: r12327@columbia.edu