MATH V1201 PROBLEM SET 9 DUE NOVEMBER 24, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

Revision. The problems on $\S 14.8$ are due December 3. All other problems are due November 24.
(1) In the textbook:
(§14.7) 4, 9, 16, 19, 34, 41, 54.
Read (but you don't have to do): 37, 38, 55.
(§14.8) 3, 5, 9, 23, 29.
(2) Some more practice with limits...

- Use polar coordinates to compute

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y+x^{2} y^{2}}{x^{2}+y^{2}} .
$$

- Use polar coordinates to compute

$$
\lim _{(x, y) \rightarrow(3,4)} \frac{(x-3)^{2}(y-4)}{\sqrt{(x-3)^{2}+(y-4)^{2}}}
$$

Hint: first substitute $u=x-3, v=y-4$.

- Use the "approaching from various directions" technique to show that

$$
\lim _{(x, y) \rightarrow(2,5)} \frac{(x-2)(y-5)}{(x-2)^{2}+(y-5)^{2}}
$$

does not exist.

- Does

$$
\lim _{(x, y) \rightarrow(-1,1)} \frac{x^{2}-y^{2}+2 x+2 y}{x^{2}+2 x+1+y^{2}-2 y+1}
$$

exist? Why or why not?
(3) ... and continuity:

- Define a function

$$
f(x, y)= \begin{cases}\frac{x^{2}}{\sin (y)} & \text { if } y \text { is not a multiple of } \pi \\ 0 & \text { if } y \text { is a multiple of } \pi\end{cases}
$$

At what points is f continuous? Discontinuous?

- Define a function

$$
f(x, y)= \begin{cases}x^{2} / y & \text { if } y \neq 0 \\ 0 & \text { if } y=0\end{cases}
$$

At what points is f continuous? Discontinuous?

If you had trouble with	Do problems
14.7 .4	$14.7 .1-3$
$14.7 .9,16$	$14.7 .5-18$
14.7 .19	14.7 .20
14.7 .34	$14.7 .29-36$
14.7 .41	$14.7 .39-51$
14.7 .54	
$14.8 .3,5,9$	$14.8 .1-17$
14.8 .23	14.8 .24
14.8 .29	$14.8 .40-42$

E-mail address: rl2327@columbia.edu

