Putting bordered Floer homology in its place: a contextualization of an extension of a categorification of a generalization of a specialization of Whitehead torsion

Robert Lipshitz, Joint with Peter Ozsváth and Dylan Thurston

April 4, 2009

То а	Heegaard Floer assigns
Closed Y^3 , $\mathfrak{s} \in \operatorname{spin}^c(Y)$	Groups $\widehat{HF}(Y,\mathfrak{s}) = H_*(\widehat{CF}(Y,\mathfrak{s}))$,
	$HF^{-}(Y,\mathfrak{s})=H_{*}(CF^{-}(Y,\mathfrak{s})),\ldots$
$(W^4,\mathfrak{t}), \ \partial W^4 = -Y_1 \cup Y_2,$	$Maps\; \widehat{F}_{W,\mathfrak{t}} \colon \widehat{\mathit{HF}}(Y_1,\mathfrak{t} _{Y_1}) \to \widehat{\mathit{HF}}(Y_2,\mathfrak{t} _{Y_2}),$
$\mathfrak{t} \in spin^{c}(W^{4})$	

such that...

То а	Heegaard Floer assigns
Closed Y^3 , $\mathfrak{s} \in \operatorname{spin}^c(Y)$	Groups $\widehat{HF}(Y, \mathfrak{s}) = H_*(\widehat{CF}(Y, \mathfrak{s}))$,
	$HF^{-}(Y,\mathfrak{s})=H_{*}(CF^{-}(Y,\mathfrak{s})),\ldots$
$(W^4,\mathfrak{t}), \ \partial W^4 = -Y_1 \cup Y_2,$	$Maps\; \widehat{F}_{W,\mathfrak{t}} \colon \widehat{HF}(Y_1,\mathfrak{t} _{Y_1}) \to \widehat{HF}(Y_2,\mathfrak{t} _{Y_2}),$
$\mathfrak{t}\in spin^{c}(W^{4})$	

such that...

Theorem

If $W = W_1 \cup_{Y_2} W_2$ then

$$\mathsf{F}_{W_2,\mathfrak{t}_2}\circ\mathsf{F}_{W_1,\mathfrak{t}_1}=\sum_{\mathfrak{t}\mid_{W_i}=\mathfrak{t}_i}\mathsf{F}_{W,\mathfrak{t}}.$$

To a	Heegaard Floer assigns
Closed Y^3 , $\mathfrak{s} \in spin^c(Y)$	Groups $\widehat{HF}(Y, \mathfrak{s}) = H_*(\widehat{CF}(Y, \mathfrak{s}))$,
	$HF^{-}(Y,\mathfrak{s})=H_{*}(CF^{-}(Y,\mathfrak{s})),\ldots$
$(W^4,\mathfrak{t}),\ \partial W^4=-Y_1\cup Y_2,$	$Maps\; \hat{F}_{W,\mathfrak{t}} \colon \widehat{\mathit{HF}}(Y_1,\mathfrak{t} _{Y_1}) \to \widehat{\mathit{HF}}(Y_2,\mathfrak{t} _{Y_2}),$
$\mathfrak{t} \in spin^{c}(W^{4})$	

such that...

Theorem

If $W = W_1 \cup_{Y_2} W_2$ then

$$F_{W_2,\mathfrak{t}_2} \circ F_{W_1,\mathfrak{t}_1} = \sum_{\mathfrak{t}|_{W_i} = \mathfrak{t}_i} F_{W,\mathfrak{t}}.$$

 Heegaard Floer is inspired by Seiberg-Witten gauge theory and defined via holomorphic curves.

Lipshitz-Ozsváth-Thurston () Putting bordered Floer homology in its place

To a	Heegaard Floer assigns
Closed Y^3 , $\mathfrak{s} \in spin^c(Y)$	Groups $\widehat{HF}(Y,\mathfrak{s}) = H_*(\widehat{CF}(Y,\mathfrak{s}))$,
	$HF^{-}(Y,\mathfrak{s})=H_{*}(CF^{-}(Y,\mathfrak{s})),\ldots$
$(W^4,\mathfrak{t}),\ \partial W^4=-Y_1\cup Y_2,$	$Maps\; \hat{F}_{W,\mathfrak{t}} \colon \widehat{\mathit{HF}}(Y_1,\mathfrak{t} _{Y_1}) \to \widehat{\mathit{HF}}(Y_2,\mathfrak{t} _{Y_2}),$
$\mathfrak{t} \in spin^{c}(W^{4})$	

such that...

Theorem

If $W = W_1 \cup_{Y_2} W_2$ then

$$F_{W_2,\mathfrak{t}_2} \circ F_{W_1,\mathfrak{t}_1} = \sum_{\mathfrak{t}|_{W_i} = \mathfrak{t}_i} F_{W,\mathfrak{t}}.$$

- Heegaard Floer is inspired by Seiberg-Witten gauge theory and defined via holomorphic curves.

Extend the Heegaard Floer invariant \widehat{HF} to 3-manifolds with boundary in a way that is:

- Simple enough to be computable in examples and
- Contains enough information to recover the closed invariant.

- Coefficients will be $\mathbb{Z}/2$ unless otherwise specified
- Theorems about bordered HF are joint work (sometimes in progress) with Peter Ozsváth and Dylan Thurston.
- To be efficient, I will tell some lies.
- I apologize if I miss relevant work.

1 Basic structure of bordered HF

- 2 Bimodules and reparametrization
- 3 Self-gluing and Hochschild Homology
- 4 Other extensions of Heegaard Floer

То а	bordered HF assigns
F^2 closed, oriented	dg algebra $\mathcal{A}(F)$
Y^3 , $\partial Y = F$	Left $dg \ \mathcal{A}(-F)$ -module $\widehat{CFD}(Y)$
	Right $\mathcal{A}_{\infty} \mathcal{A}(F)$ -module $\widehat{\mathit{CFA}}(Y)$.

such that...

Тоа	bordered HF assigns
F^2 closed, oriented	dg algebra $\mathcal{A}(F)$
Y^3 , $\partial Y = F$	Left dg $\mathcal{A}(-F)$ -module $\widehat{CFD}(Y)$
	Right $\mathcal{A}_{\infty} \mathcal{A}(F)$ -module $\widehat{CFA}(Y)$.

such that...

Theorem

(Ozsváth-Szabó) Let
$$Y = Y_1 \# Y_2$$
. Then $\widehat{CF}(Y) \simeq \widehat{CF}(Y_1) \otimes \widehat{CF}(Y_2)$.

Theorem

(Ozsváth-Szabó) Let
$$Y = Y_1 \# Y_2$$
. Then $\widehat{CF}(Y) \simeq \widehat{CF}(Y_1) \otimes \widehat{CF}(Y_2)$.

Interpreting this in the bordered way...

- $\mathcal{A}(S^2) \simeq \mathbb{Z}/2.$
- $\widehat{\mathit{CFA}}(Y \setminus \mathbb{D}^3) \cong \widehat{\mathit{CFD}}(Y \setminus \mathbb{D}^3) \cong \widehat{\mathit{CF}}(Y).$

Theorem

(Ozsváth-Szabó) Let
$$Y = Y_1 \# Y_2$$
. Then $\widehat{CF}(Y) \simeq \widehat{CF}(Y_1) \otimes \widehat{CF}(Y_2)$.

Interpreting this in the bordered way...

- $\mathcal{A}(S^2) \simeq \mathbb{Z}/2.$
- $\widehat{\mathit{CFA}}(Y \setminus \mathbb{D}^3) \cong \widehat{\mathit{CFD}}(Y \setminus \mathbb{D}^3) \cong \widehat{\mathit{CF}}(Y).$
- $\bullet\,$ Note that with $\mathbb Z\text{-coefficients},$ working at the chain level avoids Tor-terms.

.⊒ →

Image: A image: A

< 4 ₽ > < E

< 4 ₽ > < E

۲

۲

$$\mathcal{A}(S^2) = \mathbb{Z}/2$$

▶ ∢ ≣

A few words on constructing \widehat{CFD} and \widehat{CFA} .

• \widehat{CFD} and \widehat{CFA} defined via bordered Heegaard diagrams...

A few words on constructing \widehat{CFD} and \widehat{CFA} .

• \widehat{CFD} and \widehat{CFA} defined via bordered Heegaard diagrams...

A few words on constructing \widehat{CFD} and \widehat{CFA} .

• \widehat{CFD} and \widehat{CFA} defined via bordered Heegaard diagrams...

• Treating the boundary as a puncture, count curves in $\Sigma \times [0,1] \times \mathbb{R}$.

- \widehat{CFD} and \widehat{CFA} defined via bordered Heegaard diagrams...
- Treating the boundary as a puncture, count curves in $\Sigma \times [0,1] \times \mathbb{R}$.
- Boundary is a pointed matched circle. Asymptotics at boundary give algebra elements.

• \widehat{CFD} and \widehat{CFA} defined via bordered Heegaard diagrams...

- Treating the boundary as a puncture, count curves in $\Sigma \times [0,1] \times \mathbb{R}.$
- Boundary is a pointed matched circle. Asymptotics at boundary give algebra elements.
- Interesting curves contribute to the differential (\widehat{CFD}) or the module structure (\widehat{CFA}) .

An Atiyah-Segal (3 + 1)-dimensional TQFT assigns:

 Y^3 closed \longrightarrow vector space Z(Y)

An Atiyah-Segal (3 + 1)-dimensional TQFT assigns:

$$Y^3$$
 closed \longrightarrow vector space $Z(Y)$
 W^4 , $\partial W = -Y_1 \cup Y_2 \longrightarrow$ homomorphism $Z_W : Z(Y_1) \rightarrow Z(Y_2)$

An Atiyah-Segal (2 + 1 + 1)-dimensional TQFT assigns:

$$\begin{array}{cccc} Y^3 \text{ closed} & \longrightarrow & \text{vector space } Z(Y) \\ W^4, \ \partial W = -Y_1 \cup Y_2 & \longrightarrow & \text{homomorphism } Z_W \colon Z(Y_1) \to Z(Y_2) \\ F^2 \text{ closed} & \longrightarrow & \text{category } \mathcal{C}(F) \text{ enriched over vector spaces} \\ Y^3, \ \partial Y = F & \longrightarrow & \text{element } Z(Y) \in \mathcal{C}(F) \end{array}$$

An Atiyah-Segal (2 + 1 + 1)-dimensional TQFT assigns:

$$\begin{array}{cccc} Y^3 \ \text{closed} & \longrightarrow & \text{vector space } Z(Y) \\ W^4, \ \partial W = -Y_1 \cup Y_2 & \longrightarrow & \text{homomorphism } Z_W \colon Z(Y_1) \to Z(Y_2) \\ F^2 \ \text{closed} & \longrightarrow & \text{category } \mathcal{C}(F) \ \text{enriched over vector spaces} \\ Y^3, \ \partial Y = F & \longrightarrow & \text{element } Z(Y) \in \mathcal{C}(F) \end{array}$$

Such that: $Z(Y_1 \cup_F - Y_2) = \text{Hom}(Z(Y_1), Z(Y_2))$ (plus more axioms). • The category $\mathcal{C}(F)$ is $\mathcal{A}(F)$ -Mod or $D^b(\mathcal{A}(F)$ -Mod).

- The category $\mathcal{C}(F)$ is $\mathcal{A}(F)$ -Mod or $D^b(\mathcal{A}(F)$ -Mod).
- The object Z(Y) is $\widehat{CFD}(Y)$ or $\widehat{CFA}(Y)$.

Relationship with Segal's axioms

- The category $\mathcal{C}(F)$ is $\mathcal{A}(F)$ -Mod or $D^b(\mathcal{A}(F)$ -Mod).
- The object Z(Y) is $\widehat{CFD}(Y)$ or $\widehat{CFA}(Y)$.
- Hom is like tensor product. In fact...

Theorem

(in progress) $\widehat{CF}(Y_1 \cup_F Y_2) \simeq \operatorname{RHom}(\widehat{CFD}(Y_1), \widehat{CFD}(-Y_2)) \simeq \operatorname{RHom}(\widehat{CFA}(-Y_1), \widehat{CFA}(Y_2)).$

Relationship with Segal's axioms

- The category $\mathcal{C}(F)$ is $\mathcal{A}(F)$ -Mod or $D^b(\mathcal{A}(F)$ -Mod).
- The object Z(Y) is $\widehat{CFD}(Y)$ or $\widehat{CFA}(Y)$.
- Hom is like tensor product. In fact...

Theorem

(in progress)
$$\widehat{CF}(Y_1 \cup_F Y_2) \simeq \operatorname{RHom}(\widehat{CFD}(Y_1), \widehat{CFD}(-Y_2)) \simeq$$

 $\operatorname{RHom}(\widehat{CFA}(-Y_1), \widehat{CFA}(Y_2)).$

(This follows from the fact that $\widehat{CFD}(Y)$ is Koszul dual to $\widehat{CFA}(-Y)$.)

Khovanov homology assigns a bigraded abelian group $Kh_{*,*}(K)$ to a knot K. It categorifies the Jones polynomial.

Khovanov homology assigns a bigraded abelian group $Kh_{*,*}(K)$ to a knot K. It categorifies the Jones polynomial. The extension to tangles¹ assigns:

 $n \in \mathbb{N} \longrightarrow algebra H^n$ (m, n)-tangle $T \longrightarrow complex of <math>(H^n, H^m)$ -bimodules $\mathcal{F}(T)$.

such that...

Khovanov homology assigns a bigraded abelian group $Kh_{*,*}(K)$ to a knot K. It categorifies the Jones polynomial. The extension to tangles¹ assigns:

$$n \in \mathbb{N} \longrightarrow algebra H^n$$

 (m, n) -tangle $T \longrightarrow complex of (H^n, H^m) -bimodules $\mathcal{F}(T)$$

such that...

Theorem

If
$$K = T_1 \cup_n T_2$$
 then $Kh(K) = H_*(\mathcal{F}(T_1) \otimes_{H^n} \mathcal{F}(T_2)).$

 $^{-1}$ M. Khovanov, "A functor-valued invariant of tangles" (\square) (\square) (\square) (\square) (
The *nilCoxeter algebra* A_n has generators Y_1, \ldots, Y_{n-1} and relations $Y_i^2 = 0$; $Y_i Y_j = Y_j Y_i$ if |i - j| > 1; and $Y_i Y_{i+1} Y_i = Y_{i+1} Y_i Y_{i+1}$.

i.e. flattened braids modulo (double crossings)=0.

The *nilCoxeter algebra* A_n has generators Y_1, \ldots, Y_{n-1} and relations $Y_i^2 = 0$; $Y_i Y_j = Y_j Y_i$ if |i - j| > 1; and $Y_i Y_{i+1} Y_i = Y_{i+1} Y_i Y_{i+1}$.

i.e. flattened braids modulo (double crossings)=0.

Our algebra is a kind of distributed, differential super nilCoxeter algebra.

The *nilCoxeter algebra* A_n has generators Y_1, \ldots, Y_{n-1} and relations $Y_i^2 = 0$; $Y_i Y_j = Y_j Y_i$ if |i - j| > 1; and $Y_i Y_{i+1} Y_i = Y_{i+1} Y_i Y_{i+1}$.

i.e. flattened braids modulo (double crossings)=0.

Our algebra is a kind of *distributed*, *differential super nilCoxeter algebra*. The classical nilCoxeter algebra

 $\bullet\,$ categorifies the Weyl algebra^2 and

 2 M. Khovanov, "nilCoxeter algebras categorify the Weyl=algebra" $_{4}$

The *nilCoxeter algebra* A_n has generators Y_1, \ldots, Y_{n-1} and relations $Y_i^2 = 0$; $Y_i Y_j = Y_j Y_i$ if |i - j| > 1; and $Y_i Y_{i+1} Y_i = Y_{i+1} Y_i Y_{i+1}$.

i.e. flattened braids modulo (double crossings)=0.

Our algebra is a kind of *distributed*, *differential super nilCoxeter algebra*. The classical nilCoxeter algebra

- categorifies the Weyl algebra and
- appears in Khovanov-Lauda's categorification of $U_q(\mathfrak{sl}_n)$.

Basic structure of bordered HF

2 Bimodules and reparametrization

3 Self-gluing and Hochschild Homology

4 Other extensions of Heegaard Floer

• The $\mathcal{A}(F)$ -modules $\widehat{CFD}(Y)$ and $\widehat{CFA}(Y)$ depend on Y together with a parametrization of ∂Y by F.

- The $\mathcal{A}(F)$ -modules $\widehat{CFD}(Y)$ and $\widehat{CFA}(Y)$ depend on Y together with a parametrization of ∂Y by F.
- (This must be the case for CF(Y₁ ∪_F Y₂) ≃ CFA(Y₁) ⊗ CFD(Y₂) to make sense.)

- The $\mathcal{A}(F)$ -modules $\widehat{CFD}(Y)$ and $\widehat{CFA}(Y)$ depend on Y together with a parametrization of ∂Y by F.
- (This must be the case for CF(Y₁ ∪_F Y₂) ≃ CFA(Y₁) ⊗ CFD(Y₂) to make sense.)

Theorem

For $\phi \in MCG_0(F)$ there is a bimodule $\widehat{CFDA}(\phi)$ so that

$$\widehat{CFD}(\phi(Y)) \simeq \widehat{CFDA}(\phi) \widetilde{\otimes} \widehat{CFD}(Y)$$
$$\widehat{CFA}(\phi^{-1}(Y)) \simeq \widehat{CFA}(Y) \widetilde{\otimes} \widehat{CFDA}(\phi).$$

- The $\mathcal{A}(F)$ -modules $\widehat{CFD}(Y)$ and $\widehat{CFA}(Y)$ depend on Y together with a parametrization of ∂Y by F.
- (This must be the case for CF(Y₁ ∪_F Y₂) ≃ CFA(Y₁) ⊗ CFD(Y₂) to make sense.)

Theorem

For $\phi \in MCG_0(F)$ there is a bimodule $\widehat{CFDA}(\phi)$ so that

$$\widehat{CFD}(\phi(Y)) \simeq \widehat{CFDA}(\phi) \widetilde{\otimes} \widehat{CFD}(Y)$$
$$\widehat{CFA}(\phi^{-1}(Y)) \simeq \widehat{CFA}(Y) \widetilde{\otimes} \widehat{CFDA}(\phi).$$

• (More generally, for any Y with two boundary components there is an associated bimodule $\widehat{CFDA}(Y)$.)

Analogue in Khovanov homology

• We already saw the analogue in Khovanov homology:

Theorem

(Khovanov) Associated to a braid B on n strands is a complex of (H^n, H^n) -bimodules $\mathcal{F}(B)$ such that for any tangle T,

 $\mathcal{F}(B \cup T) \simeq \mathcal{F}(B) \otimes \mathcal{F}(T).$

Analogue in Khovanov homology

• We already saw the analogue in Khovanov homology:

Theorem

(Khovanov) Associated to a braid B on n strands is a complex of (H^n, H^n) -bimodules $\mathcal{F}(B)$ such that for any tangle T,

 $\mathcal{F}(B\cup T)\simeq \mathcal{F}(B)\otimes \mathcal{F}(T).$

In fact, the bimodules \$\mathcal{F}(B)\$ induce an action of the braid group \$B_n\$ on \$D^b(H^n\$-Mod)\$.

Analogue in Khovanov homology

• We already saw the analogue in Khovanov homology:

Theorem

(Khovanov) Associated to a braid B on n strands is a complex of (H^n, H^n) -bimodules $\mathcal{F}(B)$ such that for any tangle T,

 $\mathcal{F}(B \cup T) \simeq \mathcal{F}(B) \otimes \mathcal{F}(T).$

- In fact, the bimodules \$\mathcal{F}(B)\$ induce an action of the braid group \$B_n\$ on \$D^b(H^n\$-Mod)\$.
- Similarly,

Theorem

The bimodules $\widehat{CFDA}(\phi)$ induce an action of $MCG_0(F)$ on $D^b(\mathcal{A}(F)-Mod)$.

イロト イポト イヨト イヨト

Group actions on categories have also appeared as:

• construction of the HOMFLY homology (Khovanov-Rozansky)

Group actions on categories have also appeared as:

- construction of the HOMFLY homology (Khovanov-Rozansky)
- actions on the Fukaya category (Khovanov-Seidel, Seidel-Smith,...)

Group actions on categories have also appeared as:

- construction of the HOMFLY homology (Khovanov-Rozansky)
- actions on the Fukaya category (Khovanov-Seidel, Seidel-Smith,...)
- actions on categories of sheaves in geometric representation theory (Rouquier, Seidel-Thomas, Stroppel,...)

(See intro to Khovanov-Thomas "Braid cobordisms, triangulated categories and flag varieties" for references.)

 Heegaard Floer was originally defined via Lagrangians in Sym^g(Σ). That is:

Construction

To a handlebody \mathcal{H} , $\partial \mathcal{H} = \Sigma$ is associated an element $T(\mathcal{H}) \in \mathsf{Fuk}(\mathsf{Sym}^{g}(\Sigma)).$

 Heegaard Floer was originally defined via Lagrangians in Sym^g(Σ). That is:

Construction

To a handlebody \mathcal{H} , $\partial \mathcal{H} = \Sigma$ is associated an element $T(\mathcal{H}) \in \mathsf{Fuk}(\mathsf{Sym}^g(\Sigma)).$

- Wehrheim-Woodward's theory of quilted Floer theory indicates how to extend this:
 - Surface $F \longrightarrow Fuk(Sym^{g}(F))$ $Y^{3}, \partial Y = -F_{1} \cup F_{2} \longrightarrow Lagrangian correspondence$ from $Sym^{g_{1}}(F_{1})$ to $Sym^{g_{2}}(F_{2})$.

 Heegaard Floer was originally defined via Lagrangians in Sym^g(Σ). That is:

Construction

To a handlebody \mathcal{H} , $\partial \mathcal{H} = \Sigma$ is associated an element $T(\mathcal{H}) \in \mathsf{Fuk}(\mathsf{Sym}^{\mathsf{g}}(\Sigma)).$

- Wehrheim-Woodward's theory of quilted Floer theory indicates how to extend this:
 - Surface $F \longrightarrow Fuk(Sym^{g}(F))$ $Y^{3}, \partial Y = -F_{1} \cup F_{2} \longrightarrow Lagrangian correspondence$ from $Sym^{g_{1}}(F_{1})$ to $Sym^{g_{2}}(F_{2})$.
- Modulo details, it's "clear" from work of Perutz how to construct these correspondences.

 Heegaard Floer was originally defined via Lagrangians in Sym^g(Σ). That is:

Construction

To a handlebody \mathcal{H} , $\partial \mathcal{H} = \Sigma$ is associated an element $T(\mathcal{H}) \in \mathsf{Fuk}(\mathsf{Sym}^{g}(\Sigma)).$

- Wehrheim-Woodward's theory of quilted Floer theory indicates how to extend this:
 - Surface $F \longrightarrow Fuk(Sym^{g}(F))$ $Y^{3}, \partial Y = -F_{1} \cup F_{2} \longrightarrow Lagrangian correspondence$ from $Sym^{g_{1}}(F_{1})$ to $Sym^{g_{2}}(F_{2})$.
- Modulo details, it's "clear" from work of Perutz how to construct these correspondences.
- (This has not been carried-out.)

 Heegaard Floer was originally defined via Lagrangians in Sym^g(Σ). That is:

Construction

To a handlebody \mathcal{H} , $\partial \mathcal{H} = \Sigma$ is associated an element $T(\mathcal{H}) \in \mathsf{Fuk}(\mathsf{Sym}^g(\Sigma)).$

 $\widehat{CF}(H_1 \cup_F H_2) \cong \operatorname{Hom}_{\operatorname{Fuk}(\operatorname{Sym}^{\mathscr{G}}(\Sigma))}(T(H_1), T(H_2)).$

- Wehrheim-Woodward's theory of quilted Floer theory indicates how to extend this:
 - Surface $F \longrightarrow Fuk(Sym^{g}(F))$ $Y^{3}, \partial Y = -F_{1} \cup F_{2} \longrightarrow Lagrangian correspondence$ from $Sym^{g_{1}}(F_{1})$ to $Sym^{g_{2}}(F_{2})$.

Question

How does this story relate to bordered Floer homology?

Lipshitz-Ozsváth-Thurston () Putting bordered Floer homology in its place

- Seidel-Smith introduced a knot invariant *Kh_{symp}* via symplectic geometry which is:
 - conjectured to agree with Khovanov homology and
 - defined similarly to Heegaard Floer homology.

- Seidel-Smith introduced a knot invariant *Kh_{symp}* via symplectic geometry which is:
 - conjectured to agree with Khovanov homology and
 - defined similarly to Heegaard Floer homology.
- Rezazadegan extended *Kh_{symp}* to tangles via the Woodward-Wehrheim philosophy.

- Seidel-Smith introduced a knot invariant *Kh_{symp}* via symplectic geometry which is:
 - · conjectured to agree with Khovanov homology and
 - defined similarly to Heegaard Floer homology.
- Rezazadegan extended *Kh_{symp}* to tangles via the Woodward-Wehrheim philosophy.

Question

Is there an analogue of bordered Floer theory for Kh_{symp} ? If so, how does it relate to Rezazadegan's theory?

Basic structure of bordered HF

2 Bimodules and reparametrization

3 Self-gluing and Hochschild Homology

Other extensions of Heegaard Floer

• Fix $p \in F$, $v \in T_pF$. Then $MCG_0 = \{\phi \colon (F, p, v) \to (F, p, v)\} / \sim$.

Fix p ∈ F, v ∈ T_pF. Then MCG₀ = {φ: (F, p, v) → (F, p, v)}/ ~.
For φ ∈ MCG₀(F), T_φ = [0,1] × F/((1,x) ~ (0,φ(x))).

- Fix $p \in F$, $v \in T_pF$. Then $MCG_0 = \{\phi \colon (F, p, v) \to (F, p, v)\} / \sim$.
- For $\phi \in MCG_0(F)$, $T_{\phi} = [0,1] \times F/((1,x) \sim (0,\phi(x)))$.
- $K = p \times [0, 1]$ is a framed knot in T_{ϕ} .

- Fix $p \in F$, $v \in T_pF$. Then $MCG_0 = \{\phi \colon (F, p, v) \to (F, p, v)\} / \sim$.
- For $\phi \in MCG_0(F)$, $T_{\phi} = [0,1] \times F/((1,x) \sim (0,\phi(x)))$.
- $K = p \times [0, 1]$ is a framed knot in T_{ϕ} .
- Let Y_{ϕ} denote 0-surgery of T_{ϕ} along K. Then:

Theorem

Let HH_{*} denote Hochschild homology. Then

$$HH_*(\widehat{CFDA}(\phi)) \cong \widehat{HFK}(Y_\phi, K).$$

Theorem

(Khovanov) Associated to each braid $B \in B_n$ is a complex F(B) of bimodules so that the Hochschild homology $HH_*(F(B))$ is isomorphic to the Khovanov-Rozansky HOMFLY homology.

Conjecture

(Kontsevich^a, Seidel^b) Let $\phi: F \to F$ be a symplectomorphism, and $HF^*(\phi)$ its Floer cohomology. ϕ induces a functor $\phi_*: Fuk(F) \to Fuk(F)$. Then

 $HF^*(\phi) \cong HH^*(\mathbb{I}_*, \phi_*).$

^a "Homological algebra of mirror symmetry"
^b "Fukaya categories and deformations"

Warnings:

Conjecture

(Kontsevich^a, Seidel^b) Let $\phi: F \to F$ be a symplectomorphism, and $HF^*(\phi)$ its Floer cohomology. ϕ induces a functor $\phi_*: Fuk(F) \to Fuk(F)$. Then

 $HF^*(\phi) \cong HH^*(\mathbb{I}_*, \phi_*).$

^a "Homological algebra of mirror symmetry" ^b "Fukaya categories and deformations"

Warnings:

- This is not literally what they say.
- The precise definitions of the objects involved (homology of the symplectomorphism ϕ , Fukaya category) are important.

"By the general philosophy, A_{∞} -deformations of first order of F(V) should correspond to Ext-groups in a category of functors $F(V) \rightarrow F(V)$. The natural candidate for such a category is $F(V \times V)$ where the symplectic structure on $V \times V$ is $(\omega, -\omega)$. The diagonal $V_{diag} \subset V \times V$ is a Lagrangian submanifold and it corresponds to the identity functor. By a version of Floer'es theorem (see [F]) there is a canonical isomorphism between the Floer cohomology $H^*(\text{Hom}_{F(V \times V)}(V_{diag}, V_{diag})$ and the ordinary topological cohomology $H^*(V, \mathbb{C})$"

-M. Kontsevich, "Homological Algebra of Mirror Symmetry", ICM 1994.

"By the general philosophy, A_{∞} -deformations of first order of F(V) should correspond to Ext-groups in a category of functors $F(V) \rightarrow F(V)$. The natural candidate for such a category is $F(V \times V)$ where the symplectic structure on $V \times V$ is $(\omega, -\omega)$. The diagonal $V_{diag} \subset V \times V$ is a Lagrangian submanifold and it corresponds to the identity functor. By a version of Floer'es theorem (see [F]) there is a canonical isomorphism between the Floer cohomology $H^*(\text{Hom}_{F(V \times V)}(V_{diag}, V_{diag})$ and the ordinary topological cohomology $H^*(V, \mathbb{C})$" —M. Kontsevich, "Homological Algebra of Mirror Symmetry", ICM 1994.

Translation: The Hochschild homology of the Fukaya category of M should be the Floer homology of the identity map $M \rightarrow M$.

"By the general philosophy, A_{∞} -deformations of first order of F(V) should correspond to Ext-groups in a category of functors $F(V) \rightarrow F(V)$. The natural candidate for such a category is $F(V \times V)$ where the symplectic structure on $V \times V$ is $(\omega, -\omega)$. The diagonal $V_{diag} \subset V \times V$ is a Lagrangian submanifold and it corresponds to the identity functor. By a version of Floer'es theorem (see [F]) there is a canonical isomorphism between the Floer cohomology $H^*(\text{Hom}_{F(V \times V)}(V_{diag}, V_{diag})$ and the ordinary topological cohomology $H^*(V, \mathbb{C})$" —M. Kontsevich, "Homological Algebra of Mirror Symmetry", ICM 1994.

Translation: The Hochschild homology of the Fukaya category of M should be the Floer homology of the identity map $M \rightarrow M$.

(Thanks to Tim Perutz for the translation.)

Paul Seidel, "Fukaya categories and deformations":

Theorem

Suppose that M is a compact, exact symplectic manifold with contact type boundary. Then there is a natural map

 $SH^*(M) \rightarrow HH^*(Fuk(M), Fuk(M))$

where $SH^*(M)$ denotes the symplectic homology of M.

Conjecture

Under appropriate conditions, the map $SH^*(M) \rightarrow HH^*(Fuk(M), Fuk(M))$ is an isomorphism.

(Again, thanks to Tim Perutz for pointing these out.)

Conjecture

For $\phi \colon F \to F$ a symplectomorphism,

$$HF(\phi) \cong \widehat{HF}(T_{\phi}, \mathfrak{s}_{g-2}).$$

(Part of the Heegaard-Floer = Seiberg-Witten = embedded contact = periodic Floer = quilted Floer =...conjecture.)
Conjecture

For $\phi \colon F \to F$ a symplectomorphism,

$$HF(\phi) \cong \widehat{HF}(T_{\phi}, \mathfrak{s}_{g-2}).$$

(Part of the Heegaard-Floer = Seiberg-Witten = embedded contact = periodic Floer = quilted Floer =... conjecture.)

Pseudo-conjecture

The bordered Floer
$$\mathcal{A}(F)$$
 "is" $\bigoplus_{n=0}^{2g(F)} \operatorname{Fuk}(\operatorname{Sym}^{n}(F))$.

Given both conjectures, the bordered Floer self-gluing theorem would be some version of the Kontsevich-Seidel conjecture.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Basic structure of bordered HF

2 Bimodules and reparametrization

3 Self-gluing and Hochschild Homology

Other extensions of Heegaard Floer

Knot Floer homology (Osváth-Szabó, Rasmussen) associates to nullhomologous knot $K \hookrightarrow Y$ filtered complexes $\widehat{CFK}(Y, K)$, $CFK^{-}(Y, K)$, ...

Knot Floer homology (Osváth-Szabó, Rasmussen) associates to nullhomologous knot $K \hookrightarrow Y$ filtered complexes $\widehat{CFK}(Y, K)$, $CFK^{-}(Y, K)$, ...

Theorem

There is an $\mathcal{A}(T^2)$ -module $\widehat{\mathit{CFA}}(S^1 \times \mathbb{D}^2, S^1 \times \{0\})$ so that

$$\widehat{\mathit{CFK}}(Y,K)\simeq \widehat{\mathit{CFA}}(S^1 imes \mathbb{D}^2,S^1 imes \{0\})\,\widetilde{\otimes}\,\widehat{\mathit{CFD}}(Y)$$

Conversely...

Theorem

For $K \hookrightarrow S^3$ a knot, $\widehat{CFD}(S^3 \setminus K)$ is determined by $CFK^-(S^3, K)$.

Image: A image: A

Conversely...

Theorem

For
$$K \hookrightarrow S^3$$
 a knot, $\widehat{CFD}(S^3 \setminus K)$ is determined by $CFK^-(S^3, K)$.

This is not so surprising, since:

Theorem

(Ozsváth-Szabó) For K a knot in S³, CFK⁻(S³, K) determines $HF^{\pm}(S^3_{p/q}(K))$ and $\widehat{HF}(S^3_{p/q}(K))$.

Conversely...

Theorem

For
$$K \hookrightarrow S^3$$
 a knot, $\widehat{CFD}(S^3 \setminus K)$ is determined by $CFK^-(S^3, K)$.

This is not so surprising, since:

Theorem

(Ozsváth-Szabó) For K a knot in S³, CFK⁻(S³, K) determines
$$HF^{\pm}(S^{3}_{p/q}(K))$$
 and $\widehat{HF}(S^{3}_{p/q}(K))$.

The analogue for links is not known.

Eftekhary's splicing theorems

Theorem

(Eftekhary) Let $K \hookrightarrow Y$ be a knot and $\mathbb{H}_n = \widehat{HFK}(Y_n(K), K)$. Then there are maps $\phi, \overline{\phi} \colon \mathbb{H}_\infty \to \mathbb{H}_1$ and $\psi, \overline{\psi} \colon \mathbb{H}_1 \to \mathbb{H}_0$ so that for (Y', K') another knot, $\widehat{CF}(Y_K \#_{K'} Y') \simeq$

Lipshitz-Ozsváth-Thurston ()

Putting bordered Floer homology in its place

April 4, 2009 31 / 36

Theorem

(Eftekhary) Let $K \hookrightarrow Y$ be a knot and $\mathbb{H}_n = \widehat{HFK}(Y_n(K), K)$. Then there are maps $\phi, \overline{\phi} \colon \mathbb{H}_\infty \to \mathbb{H}_1$ and $\psi, \overline{\psi} \colon \mathbb{H}_1 \to \mathbb{H}_0$ so that for (Y', K') another knot, $\widehat{CF}(Y_K \#_{K'} Y') \simeq \ldots$

• The construction of these maps is similar to the construction of bordered Floer.

Theorem

(Eftekhary) Let $K \hookrightarrow Y$ be a knot and $\mathbb{H}_n = \widehat{HFK}(Y_n(K), K)$. Then there are maps $\phi, \overline{\phi} \colon \mathbb{H}_\infty \to \mathbb{H}_1$ and $\psi, \overline{\psi} \colon \mathbb{H}_1 \to \mathbb{H}_0$ so that for (Y', K') another knot, $\widehat{CF}(Y_K \#_{K'} Y') \simeq \ldots$

- The construction of these maps is similar to the construction of bordered Floer.
- (An exact relationship between Eftekhary's theory and bordered Floer is not yet known.)

Sutured Floer homology

• Sutured Floer homology (Juhasz) is an extension of \widehat{HF} to sutured 3-manifolds.

Sutured Floer homology

- Sutured Floer homology (Juhasz) is an extension of \widehat{HF} to sutured 3-manifolds.
- It has many applications, notably:

Theorem

(Ozsáth-Szabó, Ghiggini, Ni, Ai-Peters, Ai-Ni) \widehat{HFK} detects fibered knots and \widehat{HF} detects fibered Y³.

Sutured Floer homology

- Sutured Floer homology (Juhasz) is an extension of \widehat{HF} to sutured 3-manifolds.
- It has many applications, notably:

Theorem

(Ozsáth-Szabó, Ghiggini, Ni, Ai-Peters, Ai-Ni) \widehat{HFK} detects fibered knots and \widehat{HF} detects fibered Y³.

Theorem

Let S be a collection of sutures on F^2 . There is an $\mathcal{A}(F)$ -module M(S) so that for any Y with $\partial Y = F$,

$$SFH(Y,S) = H_*(\widehat{CFA}(Y) \otimes M(S)).$$

The contact element in Sutured Floer

If (Y, ξ) is contact and ∂Y convex then ξ has a *dividing set*, a set of curves in ∂Y.

The contact element in Sutured Floer

If (Y, ξ) is contact and ∂Y convex then ξ has a *dividing set*, a set of curves in ∂Y.

Construction

(Honda-Kazez-Matic) Let (M, Γ) be a balanced sutured manifold with Γ the dividing set of ξ . Then there is an invariant $EH(M, \Gamma, \xi) \in SFH(-M, -\Gamma)$.

The contact element in Sutured Floer

If (Y, ξ) is contact and ∂Y convex then ξ has a *dividing set*, a set of curves in ∂Y.

Construction

(Honda-Kazez-Matic) Let (M, Γ) be a balanced sutured manifold with Γ the dividing set of ξ . Then there is an invariant $EH(M, \Gamma, \xi) \in SFH(-M, -\Gamma)$.

• This raises a natural...

Question

Is there a contact element in bordered Floer homology.

Don't think about this question: I think it's already been solved (not by us).

• $SFH(Y_1)$ and $SFH(Y_2)$ is not enough information to reconstruct $\widehat{HF}(Y_1 \cup_{\partial} Y_2)$. But...

• $SFH(Y_1)$ and $SFH(Y_2)$ is not enough information to reconstruct $\widehat{HF}(Y_1 \cup_{\partial} Y_2)$. But...

Theorem

(Honda-Kazez-Matic) Let $\partial N^3 = -F_1 \cup F_2$ and $\partial M = F_1$. A contact structure ξ on N induces a map

$$SFH(M \cup_{F_1} N, \Gamma|_{\xi_{F_2}} \to SFH(M, \Gamma_{\xi|_{F_1}}) \otimes V^{\otimes m}.$$

• $SFH(Y_1)$ and $SFH(Y_2)$ is not enough information to reconstruct $\widehat{HF}(Y_1 \cup_{\partial} Y_2)$. But...

Theorem

(Honda-Kazez-Matic) Let $\partial N^3 = -F_1 \cup F_2$ and $\partial M = F_1$. A contact structure ξ on N induces a map

$$SFH(M \cup_{F_1} N, \Gamma|_{\xi_{F_2}} \to SFH(M, \Gamma_{\xi|_{F_1}}) \otimes V^{\otimes m}.$$

• Idea (Honda): encode (some of) this data in a kind of triangulated functor from the "triangulated category of contact structures on *M*."

• $SFH(Y_1)$ and $SFH(Y_2)$ is not enough information to reconstruct $\widehat{HF}(Y_1 \cup_{\partial} Y_2)$. But...

Theorem

(Honda-Kazez-Matic) Let $\partial N^3 = -F_1 \cup F_2$ and $\partial M = F_1$. A contact structure ξ on N induces a map

$$SFH(M \cup_{F_1} N, \Gamma|_{\xi_{F_2}} \to SFH(M, \Gamma_{\xi|_{F_1}}) \otimes V^{\otimes m}.$$

• Idea (Honda): encode (some of) this data in a kind of triangulated functor from the "triangulated category of contact structures on *M*."

Question

Does the contact category contain enough information to reconstruct bordered Floer?

 Kronheimer-Mrowka defined a version of sutured Floer homology in monopole (Seiberg-Witten) Floer homology (and in instanton Floer homology).

- Kronheimer-Mrowka defined a version of sutured Floer homology in monopole (Seiberg-Witten) Floer homology (and in instanton Floer homology).
- Their definition uses formal properties of the closed 3-manifold invariant, and 4-dimensional cobordism maps.

- Kronheimer-Mrowka defined a version of sutured Floer homology in monopole (Seiberg-Witten) Floer homology (and in instanton Floer homology).
- Their definition uses formal properties of the closed 3-manifold invariant, and 4-dimensional cobordism maps.

Question

Is bordered Floer determined by the cobordism maps in classical Heegaard Floer?

- Kronheimer-Mrowka defined a version of sutured Floer homology in monopole (Seiberg-Witten) Floer homology (and in instanton Floer homology).
- Their definition uses formal properties of the closed 3-manifold invariant, and 4-dimensional cobordism maps.

Question

Is bordered Floer determined by the cobordism maps in classical Heegaard Floer?

• If so. . .

- Thanks for listening.
- And thanks again to the organizers for organizing!