BORDERED FLOER HOMOLOGY HOMEWORK 3

ROBERT LIPSHITZ

- (1) After today's lecture, we (hopefully) have enough background for Problems 1, 3 and 4 from Homework 2.
- (2) Show that if \mathcal{Z}_1 and \mathcal{Z}_2 are pointed matched circles so that $F(\mathcal{Z}_1)$ and $F(\mathcal{Z}_2)$ are homeomorphic then $\mathcal{A}(\mathcal{Z}_1)$ is derived (Morita) equivalent to $\mathcal{A}(\mathcal{Z}_2)$. (Hint: recall that if $\mathbb{I}_{\mathcal{Z}}$ denotes the mapping cylinder of the identity map of $F(\mathcal{Z})$ then $\widehat{CFDA}(\mathbb{I}_{\mathcal{Z}}) \simeq \mathcal{A}(\mathcal{Z})$ as an $\mathcal{A}(\mathcal{Z})$ -bimodule. See also [1, Corollary 8.1].)
- (3) Define the 0-framed split handlebody of genus g, HB_0^g , to be the boundary connect sum of g 0-framed solid tori. Compute $\widehat{CFD}(HB_0^g)$.

References

 Robert Lipshitz, Peter S. Ozsváth, and Dylan P. Thurston, Bimodules in bordered Heegaard Floer homology, 2010, arXiv:1003.0598.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NY 10027 *E-mail address*: lipshitz@math.columbia.edu

Date: July 22, 2010.