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3.2. Behavior near isolated singularities.

3.2.1. Laurent series. Next, we talk about some possible singularities of a holomorphic function.
For simplicity, we introduce a notation

B̂r(z0) := Br(z0) \ {z0}

for r > 0 and z0 ∈ C. This is not a standard notation, but we will use it from time to time.

Definition 3.7. If f is a holomorphic function on B̂r(z0) for some r > 0 and z0 ∈ C, then we say
f has an isolated singularity at z0.

This is the simplest type of singularities, since it is isolated. It already has some complicated
behavior. However, we can still see some very straightforward examples.

Example 3.8. We consider the 1-ball B1.

(1) If f is a holomorphic function on B1, by considering g := f |B̂1(0)
, we get a holomorphic

function g with an isolated singularity at the origin. We can see that this is a “fake”
singularity since we can in fact extend g to the whole ball. Thus, such a singularity is not
too bad.

(2) If f is a holomorphic function on B1 with f(0) = 0 and f(z) ̸= 0 for z ∈ B̂1(0), then

g := 1/f defines a holomorphic function on B̂1(0), and hence has an isolated singularity.
We know that a non-trivial zero of a holomorphic function is isolated, so there are many
such examples.

We will start from a general discussion of isolated singularities. The main tool will be Proposi-
tion 2.4 and the Cauchy theorem 2.38. After that, we will classify singularities into three categories
and talk about them separately. We introduce a notation

AR,r(z0) := BR(z0) \Br(z0)

for z0 ∈ C and R > r ≥ 0. This is an open annulus centered at z0. When z0 = 0, we may just
write AR,r := AR,r(0). We will look at holomorphic functions on an annulus, since a holomorphic

function with an isolated singularity can be viewed as a special case of these because AR,0 = B̂R(0).

Theorem 3.9. Let f be a holomorphic function on an annulus AR,r(z0). Then we can define

an :=
1

2πi

∫
∂Bs(z0)

f(z)

(z − z0)n+1
dz

for any s ∈ (r,R) and n ∈ Z, so that

f(w) =

∞∑
n=−∞

an(w − z0)
n(3.10)

for all w ∈ AR,r. The convergence is locally uniform in AR,r and the expression is unique. (In
particular, the coefficients an’s are independent of s.)
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Proof. For simplicity, we assume z0 = 0 and work on the annulus AR,r. Then for w ∈ AR,r, we can
choose r1 and r2 such that r < r1 < |w| < r2 < R and

f(w) =
1

2πi

∫
∂Br2

f(z)

z − w
dz − 1

2πi

∫
∂Br1

f(z)

z − w
dz.(3.11)

This follows from the Cauchy theorem (Theorem 2.38) when we take γ = ∂Br2−∂Br1 , both oriented
counterclockwise.

Now, we analyze the sum (3.11). We know that they are both analytic function in w by Propo-
sition 2.4, and we can follow the proof idea of Proposition 2.4 (with a = 0) to get an expansion.
That is, for z ∈ ∂Br2 , we have

1

z − w
=

1

z
· 1

1− w
z

=
1

z

∞∑
n=0

(w
z

)n
=

∞∑
n=0

wn

zn+1
,

while for z ∈ ∂Br1 , we have

− 1

z − w
=

1

w
· 1

1− z
w

=
1

w

∞∑
m=0

( z

w

)m
=

∞∑
m=0

zm

wm+1
.

As in Proposition 2.4, these both converge locally uniformly. Thus, combining these, we derive

f(w) =
1

2πi

∞∑
n=0

(∫
∂Br2

f(z)

zn+1
dz

)
wn +

1

2πi

∞∑
m=0

(∫
∂Br1

f(z) · zmdz

)
1

wm+1
.

By letting m = −n− 1, we get a summation in n, and the result follows since for any n ∈ Z,∫
∂Br2

f(z)

zn+1
dz =

∫
∂Br1

f(z)

zn+1
dz =

∫
∂Bs

f(z)

zn+1
dz

for any s ∈ (r,R) because f(z)/zn+1 is holomorphic in AR,r.

To get the uniqueness of the expression, suppose

f(w) =
∞∑

n=−∞
cn(w − z0)

n

is another expansion that converges absolutely and locally uniformly. Then for any s ∈ (r,R),

aj =
1

2πi

∫
∂Bs(z0)

f(z)

(z − z0)j+1
dz =

∞∑
n=−∞

cn · 1

2πi

∫
∂Bs(z0)

(z − z0)
n

(z − z0)j+1
dz.

Note that by parametrizing ∂Bs(z0) by z0 + seit for t ∈ [0, 2π], we can calculate that for each n,

1

2πi

∫
∂Bs(z0)

(z − z0)
n

(z − z0)j+1
dz =

1

2πi

∫ 2π

0

(
seit
)n−j−1 · iseitdt

=
1

2π

∫ 2π

0

(
seit
)n−j

dt = δnj :=

{
1 if n = j

0 if n ̸= j
.

Putting this back to the summation, we get aj =
∑
n
cn · δnj = cj . This proves the uniqueness and

the theorem follows. □
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The expansion (3.10) is called the Laurent series of f centered at z0. It can be thought of as
a generalization of power series expansion, which is exactly when an = 0 for all n < 0. Note that
this happens when f is a holomorphic function on the whole ball BR(z0), and the Cauchy theorem
implies an = 0 for n < 0. In general, if f has an isolated singularity at z0, then based on the general
behavior of the function near z0, we can have the following classification.

Definition 3.12. Suppose f is a holomorphic function on AR,0(z0) = B̂R(z0), and let

f(z) =
∑
n∈Z

an(z − z0)
n

be the Laurent series of f at z0.

(1) We say z0 is a removable singularity of f if an = 0 for n < 0.

(2) We say z0 is a pole of f if there exists n0 < 0 such that an0 ̸= 0 and an = 0 for n < n0.

(3) We say z0 is an essential singularity of f if there are infinitely many n < 0 with an ̸= 0.

Example 3.13. We mention a few examples of singularities before starting analyzing them.

(1) A rational function of the form R(z) = P (z)/Q(z) with P and Q having no common factors
has poles at the zeros of Q.

(2) Let f(z) = e1/z for z ∈ C \ {0} . Then

e1/z =

∞∑
n=0

1

n!

(
1

z

)n

=

∞∑
n=0

1

n!

1

zn

for z ̸= 0. Thus, f has an essential singularity at 0.

Singularities are not necessarily isolated (unlike zeros). We mention two examples.

(3) The function 1
sin(1/z) has poles at z = 1/(2πn) for all n ∈ N. Thus, 0 is an accumulated

singularity of the function.

(4) A function defined as in Proposition 2.4 has a curve of singularities. That is, if γ is a path
in U and φ : U → C is a continuous function, then the function

f(w) :=

∫
γ

φ(z)

z − w
dz

is holomorphic on U \ γ but has the whole path γ as its singular set.

We can also look at possible singular behavior at ∞. When a function f(z) is holomorphic outside
a ball, we can consider g(w) := f(1/w). We say that f has a removable singularity/pole/essential
singularity at ∞ if g does at 0.

(5) Given a non-constant polynomial f(z) =
N∑

n=0
anz

n, if we let g(w) = f(1/w), we get

g(w) =
N∑

n=0

an
wn

,
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so g has a pole at 0 and hence f has a pole at ∞. We will see that this property in fact
characterizes a polynomial in Assignment 4.

(6) A non-constant entire function cannot have a removable singularity at ∞; otherwise, it will
be bounded, which cannot be the case by the Liouville theorem.

(7) By (2), f(z) = ez has an essential singularity at ∞.

3.2.2. Classification of singularities. We will now see many different properties of different types
of singularities.

First, for a removable singularity of a holomorphic function f, from its definition, we know that
it literally means that f can extend to a holomorphic function on the whole disc. This is also a
common definition of a removable singularity. We know that such a singularity can trivially happen
from Example 3.8. In that example, the function is naturally bounded near the singularity. We
will see that in general, this property characterizes removable singularities.

Proposition 3.14. Let z0 ∈ U and f be a holomorphic function on U \ {z0} . Then the following
are equivalent.

(1) z0 is a removable singularity of f.

(2) f extends to a holomorphic function on U.

(3) There exists r > 0 such that f is bounded on B̂r(z0).

(4) lim
z→z0

(z − z0)f(z) = 0.

The implication from (3) to (1) is often referred as the simplest case of the Riemann extension
theorem.

Proof. The first two conditions are equivalent, as mentioned, based on the definition. It is straight-
forward to see (1)⇒(3)⇒(4). Thus, we will prove (4)⇒(1).

One approach is to use the Laurent series directly. We instead proceed without relying on that.
We again assume z0 = 0 for simplicity. We consider the function

g(z) :=

{
z2f(z) if z ∈ B̂r(0)

0 if z = 0
.

By (4), g is a continuous function. Moreover, we can see that

lim
z→0

g(z)− g(0)

z − 0
= lim

z→0

z2f(z)

z
= lim

z→0
zf(z) = 0

by (4) again. Thus, g is a holomorphic function (since it is evidently holomorphic on B̂r(0)). In
particular, we can write

g(z) =
∞∑
n=2

anz
n

in Br(z0). We can then define f(0) := a2, which makes f(z) = g(z)/z2 a holomorphic function. □
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We note that condition (4) is a priori weaker than (3). In fact, (4) includes the possibility that
f ∼ (z − z0)

−α for some α ∈ (0, 1). It turns out that this cannot happen based on the nature of
Laurent series.

Next, we study poles. If a holomorphic function f on B̂r(z0) has a pole at z0, with

f(z) =
∑

n≥−N

an(z − z0)
n

and a−N ̸= 0, then we say z0 is a pole of order N. When N = 1, z0 is called a simple pole.

Proposition 3.15. Let z0 ∈ U and f be a holomorphic function on U \ {z0} . Then the following
are equivalent.

(1) z0 is a pole of f.

(2) There exist N ∈ N and a−1, · · · , a−N where a−N ̸= 0 such that

f(z)−
−1∑

n=−N

an(z − z0)
n

has a removable singularity at z0.

(3) There exists N ∈ N such that (z − z0)
Nf(z) has a removable singularity and extends to a

non-zero value at z0.

(4) There exists r > 0 such that 1/f is holomorphic in B̂r(z0) and has a removable singularity
and extends to zero at z0.

(5) lim
z→z0

f(z) = ∞. This means lim
z→z0

|f(z)| = ∞.

When (2) and (3) happen, the number N is exactly the order of the pole z0. The part of functions
−1∑

n=−N

an(z − z0)
n is called the principal part of f at z0. As said in (2), it is a rational function

P (z) which is a polynomial in 1/(z − z0) such that f − P is holomorphic near z0. It captures the
singular behavior of the function near the pole.

Example 3.16. Let f(z) = 1
z(z−2) . Then f has a simple pole at 0. Moreover, we can write

1

z(z − 2)
=

1

2

(
1

z − 2
− 1

z

)
.

Since 1/(z − 2) is holomorphic near 0, we know that the principal part of f at 0 is − 1
2z .

Proof of Proposition 3.15. The equivalence among (1), (2), and (3) is clearer from the Laurent
series expansion, so we focus on (4) and (5). We will more or less see (3) from the proof. We again
assume z0 = 0 for simplicity.

For (1)⇒(5), note that if 0 is a pole of order N, say

f(z) =
∑

n≥−N

anz
n
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on B̂r(0) with a−N ̸= 0, then we can write f(z) = h(z)/zN if we let

h(z) :=
∑
n≥0

an−Nzn,

which defines a holomorphic function on Br (which proves (3)). Since h(0) ̸= 0, we have

lim
z→0

|f(z)| = lim
z→0

|h(z)|
|z|N

= ∞.

For (5)⇒(4), note that (5) implies that we can find r > 0 such that |f | > 10 on B̂r(0). In

particular, f ̸= 0 on B̂r(0). Thus, we can define g := 1/f, a holomorphic function on B̂r(0). Since

|g| ≤ 1/10 on B̂r(0), by Proposition 3.14 (3), g extends to a holomorphic function on Br, with

g(0) = lim
z→0

1

f(z)
= 0.

Hence, we get (4).

For (4)⇒(1), finally, we can write

g(z) =
1

f(z)
=
∑
n≥n0

anz
n

in Br with an0 ̸= 0 for some n0 ≥ 1. Thus, we get a holomorphic function

h(z) :=
g(z)

zn0
=
∑
n≥0

an+n0z
n

with h(0) ̸= 0. That is, h is a non-vanishing function on Br after shrinking r. In particular, 1/h is
still holomorphic. We then get

f(z) =
1

zn0
· 1

h(z)
,

and we are done. □

Finally, we look at essential singularities.

Proposition 3.17 (Casorati–Weierstrass theorem). Let z0 ∈ U and f be a holomorphic function
on U \ {z0} . Then the following are equivalent.

(1) z0 is an essential singularity of f.

(2) For r > 0 such that Br(z0) ⊆ U, f
(
B̂r(z0)

)
= C.

Example 3.18. Let f(z) = e1/z. Then the image of f is C \ {0} , which is dense in C.

The Casorati–Weierstrass says that if z0 is an essential singularity of f, then given any w ∈ C,
there exists a sequence zn → z0 such that f(zn) → w as n → ∞. This is how the name, “essential”
singularity, comes from. Note that, combined with Proposition 3.14 (2) and Proposition 3.15 (5),
Proposition 3.17 also allows us to summarize the three different kinds of behavior based on the
asymptotics near a singularity.



COMPLEX ANALYSIS NOTES 45

Corollary 3.19. Let z0 ∈ U and f be a holomorphic function on U \ {z0} .

(1) z0 is a removable singularity if and only if lim
z→z0

f(z) exists and is finite.

(2) z0 is a pole if and only if lim
z→z0

f(z) = ∞.

(3) z0 is an essential singularity if and only if lim
z→z0

f(z) does not exist (and can be any number

sequentially).

Proof of Proposition 3.17. It is clear that (2) implies (1) based on Proposition 3.14 (2) and Propo-
sition 3.15 (5). Thus, we will prove (1) implies (2).

We prove it by contradiction. Suppose not, that is, there exists r > 0 and w ∈ C such that

Br(z0) ⊆ U but w ̸∈ f
(
B̂r(z0)

)
. Then we can find δ > 0 such that

Bδ(w) ⊆ C \ f
(
B̂r(z0)

)
.(3.20)

This then suggests considering the function

h(z) :=
1

f(z)− w
,

which is still holomorphic in B̂r(z0). Note that the property (3.20) implies that

|h(z)| = 1

|f(z)− w|
≤ 1

δ
.

Hence, Proposition 3.14 (3) implies that h extends to a holomorphic function on the whole Br(z0).

We can now conclude the proof by looking into two case. If h(z0) = 0, then f(z) has a pole at z0,
a contradiction. If h(z0) ̸= 0, then f(z) has a removable singularity at z0, another contradiction.
Hence, the conclusion follows. □

For an essential singularity, we can’t really say much, but if time permits, we will see a generaliza-
tion of the Casorati–Weierstrass theorem, Picard’s theorem, which gives more precise information
about the image of a holomorphic function near an essential singularity. (See Theorem 4.10 and
Theorem 5.24.) Among different singularities, the most interesting ones are poles. Especially, when
there is a simple pole of a holomorphic function, it is important to study its Laurent coefficients.
We will talk about some of them in the next section.


