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1 Review of ramification theory
Let OK be a henselian DVR of characteristic p ą 0 with fraction field K and residue field k. Then
there is a tower Ksep Ą Ktr Ą Kur Ą K, where Kur is the maximal unramified extension of K and
Ktr is the maximal tamely ramified extension (i.e. the degree of any finite subextension of Ktr{Kur

is coprime to p). We have the following description of Galois groups:

GalpKur{Kq – Galpksep{kq

GalpKtr{Kurq –
ź

ℓ‰p

Zℓp1q.

We denote the inertia group I :“ GalpKsep{Kurq and the wild inertia group P :“ GalpKsep{Ktrq.
Since we only care about ramification, we’ll assume that k is separably closed, so that OK is

strictly henselian. Let v : K Ñ Z be the valuation on K. Let L{K be a finite Galois extension
with Galois group G. We can define a decreasing filtration G “ G0 Ą G1 Ą G2 Ą ¨ ¨ ¨ as follows:
Gi “ tσ P G|vpσpπLq ´ πLq ě i ` 1u. Any σ P G0 sends πL to a unit multiple uπL; the map σ ÞÑ u
pmod πLq defines an injective homomorphism G0{G1 ãÝÑ kˆ. Similarly, any σ P Gi sends πL to
πL ` aπi`1

L ; the map σ ÞÑ a pmod πLq defines an injective homomorphism Gi{Gi`1 ãÝÑ k. Hence,
G1 is a maximal p-subgroup of G a.k.a. the wild inertia subgroup.

2 The Swan conductor
Let X be a smooth projective curve with function field K over an algebraically closed field k, and
let U Ă X be a nonempty open subset. Let F be a finite field of characteristic ℓ ‰ p. Given an
F-local system F on U , we get an GalpKsep{Kq-representation M by restricting to the generic point,
which factors through some finite GalpL{Kq. For every closed point x P U , the inertia group Ix acts
trivially on M . Now fix a closed point x P X ´ U , and let G “ Ix.

Theorem 1. The rational number
ÿ

iě1

1

rG0 : Gis
dimFpM{MGiq

is independent of the choice of L and is an integer.
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Remark 1. We can also define the Swan conductor using the upper numbering Gv, defined as
follows. First we say that for u P Rě0, Gu :“ Grus. We then define the unique continuous piecewise
linear function ϕ : Rě0 Ñ Rě0 such that ϕp0q “ 0 and ϕ1puq “ pG0 : Guq´1. The upper numbering
is defined by Gv :“ Gϕ´1pvq. The set of jumps of G is defined as the image ϕpNq Ă Rě0, and we
can define SwanxpFq :“

ř

v v dimFpMGv

{MGąv

q, where v ranges over the jumps.
The convenient thing about the upper numbering is that for a normal subgroupN Ă G, pG{Nqv “

impGv Ñ G{Nq, so that we can define the upper numbering on the entire Galois group GalpKsep
x {Kxq.

Also, there’s the Hasse-Arf theorem, which states that for G abelian, the jumps are integers.

This integer is called the Swan conductor of F at x and is denoted SwanxpFq. Note that

• SwanxpFq “ 0 iff the wild inertia subgroup acts trivially, i.e. F is tamely ramified at x.

• For F tamely ramified at x and G another local system on some open subset of X, SwanxpF b

Gq “ SwanxpGq ¨ rkF

Given a Qℓ-local system F on U with fiber V , we get a corresponding representation Ix Ñ GLpV q

defined over some finite extension OE{Zℓ (here, V “ F0 bOE
Qℓ for some free OE-module F0). We

have an action of Ix on the F-vector space M0 :“ F0{πEF0. We define SwanxpFq :“ SwanxpM0q.
It’s not too hard to show that this is independent of choice of F0.

Example 1. (1) For a finite field Fq, the Kummer cover is the finite étale cover Gm0 Ñ Gm0

given by taking pq ´ 1qth powers. It is Galois with Galois group Fˆ
q . For a multiplicative

character χ : Fˆ
q Ñ Cˆ, we can define the Kummer sheaf Lpχq on Gm0. Since the Kummer

cover is tamely ramified above 0 and 8 (it has degree q´1), Swan0pLpχqq “ Swan8pLpχqq “ 0.

(2) The Artin-Schreier cover is the finite étale cover A1
0 Ñ A1

0 given by x ÞÑ xq ´x with Galois
group Fq. Given an additive character ψ : Fq Ñ Cˆ, we can define the Artin-Schreier
sheaf Lpψq. For ψ nontrivial, we can show that Swan8pLpψqq “ 1 as follows. We identify
Fq – GalpFqrru´1ss{Fqrrt´1ssq, where uq ´ u “ t. Now u´1 is a uniformizer of the big field,
and for a P Fq, the corresponding automorphism sends u´1 ÞÑ pu ` aq´1 “ u´1p1 ` au´1q´1,
so that pu` aq´1 ´u´1 “ ´au´2 `Opu´3q. Thus, G1 “ G, and G2 “ 0. Since ψ is nontrivial,
there are no G1-fixed points, and everything is G2-fixed. Thus, the terms in the above sum
are 0 except for i “ 1, so we get Swan8pLpψqq “ 1.

3 The Grothendieck-Ogg-Shafarevich formula
Let F be a Qℓ-local system on U . The Grothendieck-Ogg-Shafarevich formula is an index formula
for the Euler characteristic χcpU,Fq (it can be shown that χcpU,Fq “ χpU,Fq).

Theorem 2 (Grothendieck-Ogg-Shafarevich).

χcpU,Fq “ χcpUq rkF ´
ÿ

xPX´U

SwanxpFq

4 Applications to exponential sums
As Deligne noted very early on, étale cohomology is extremely useful for bounding exponential sums,
since exponential sums can often naturally be expressed as sums of traces of Frobenius.
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4.1 Gauss sums
We’ll start with a classical example. Fix a multiplicative character χ : Fˆ

q Ñ Cˆ and a nontrivial
additive character ψ : Fq Ñ Cˆ. The Gauss sum Gpχ, ψq is defined as the sum

ř

aPFˆ
q
χpaqψpaq.

This can also be thought of as the sum over GmpFqq of the traces of Frobenius of the rank 1
local system F :“ Lpχ´1q bLpψ´1q, which is

ř2
i“0p´1qi tr FrHi

cpGm,Fq by the Grothendieck trace
formula. By the properties in Section 2, we have Swan0pFq “ 0 and Swan8pFq “ 1. Since χcpGmq “

0, the GOS formula tells us that χcpGm,Fq “ ´1. Since Gm is non-proper, H0
c pGm,Fq – 0.

Since F_ – Lpχq b Lpψq is nontrivial, H2
c pGm,Fq – H0pGm,F_q_ – 0. Thus, H1

c pGm,Fq is
1-dimensional. Similarly, H1pGm,Fq is 1-dimensional.

Consider j : Gm ãÝÑ P1. We have a distinguished triangle j!F Ñ Rj˚F Ñ K of complexes on P1,
where K is supported at t0,8u. Since the map j!F Ñ j˚F is an isomorphism (F is a nontrivial rank
1 local system), H0K – 0, so that the map H1

c pGm,Fq Ñ H1pGm,Fq is an injection and thus an
isomorphism. By Weil II, since F is pure of weight 0, we know that H1

c pGm,Fq is mixed of weight
ď 1 and that H1pGm,Fq is mixed of weight ě 1 (by Poincaré duality). Our isomorphism tells us that
both groups are pure of weight 1, so that the Gauss sum Gpχ, ψq “

ř2
i“0p´1qi tr FrHi

cpGm,Fq “

´ tr FrH1
c pGm,Fq has absolute value q1{2, as is classically known about Gauss sums.

4.2 Kloosterman sums
Again fix a nontrivial additive character ψ : Fq Ñ Cˆ. For n ě 1 and a P Fq, the Kloosterman
sums are defined

Kn,a :“
ÿ

x1¨¨¨xn“a

ψpx1 ` ¨ ¨ ¨ ` xnq.

We can easily compute Kn,0 “ p´1qn´1, but the other Kloosterman sums are more mysterious.
The trivial bound is |Kn,a| ď pq ´ 1qn´1, but Deligne improved this to |Kn,a| ď nq

n´1
2 using étale

cohomology.
We consider the Kloosterman manifolds V n´1

a “ tx1 ¨ ¨ ¨xn “ au Ă An. There is a map σ : An Ñ

A1 sending px1, . . . , xnq ÞÑ x1 ` ¨ ¨ ¨ ` xn and a map π : An Ñ A1 sending px1, . . . , xnq ÞÑ x1 ¨ ¨ ¨xn.
Kn,a is the sum over V n´1

a pFqq of the traces of Frobenius of the pullback σ˚Lpψ´1q. Since it doesn’t
matter whether we use ψ or ψ´1, we’ll set F “ Fpψσq :“ σ˚Lpψq for convenience. Deligne’s estimate
on Kloosterman sums follows from (a) and (c) of the following geometric result, along with Weil II.

Theorem 3. H˚
c pV n´1

a ,Fq satisfies the following:

(a) Hi
c – 0 for i ‰ n´ 1.

(b) H˚
c

„
ÝÑ H˚.

(c) For a ‰ 0, dimHn´1
c “ n.

(d) For a “ 0, dimHn´1
c “ 1.

This theorem is proven by a simultaneous induction on n with the following theorem on the
pushforward Rn´1π!F .

Theorem 4. (a) Rn´1π!F |Gm
is lisse of rank n.

(b) The extension by 0 to P1 is the same as the direct image sheaf.

(c) Swan0pRn´1π!Fq “ 0; the monodromy around 0 is unipotent with a single Jordan block.
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(d) Swan8pRn´1π!Fq “ 1; the wild inertia has no fixed points.

(e) Riπ!F
„

ÝÑ Riπ˚F

We take for granted that Theorem 3 for a given n implies Theorem 4 for n (the proof is in SGA
4.5, Section 7 of the chapter on trigonometric sums). The cases n “ 1 and a “ 0 aren’t too hard, so
we’ll omit them. It remains to show that Theorem 4 for n implies Theorem 3 for n` 1 for nonzero
a.

Let V n
a Ă An`1 have coordinates x0, . . . , xn, and let g : V n

a Ñ Gm be the projection to the first
coordinate, and let h : V n

a Ñ Gn
m be the projection to the last n coordinates (h is an isomorphism).

By the projection formula, Rg˚Fpψσn`1q » Rg˚pg˚Lpψq b h˚Fpψσnqq » Lpψq b Rg˚h
˚Fpψσnq.

Note that g factors as V n
a

h
ÝÑ
„

Gn
m

πn
ÝÝÑ Gm

τ
ÝÑ
„

Gm, where τpxq “ ax´1. Thus, Rg˚Fpψσn`1q »

Lpψq b τ˚Rπ˚Fpψσnq. The same thing is true for lower shriek: Rg!Fpψσn`1q » τ˚Rπ!Fpψσnq. We
have Leray spectral sequences

!Epq
2 “ Hp

c pGm,Lpψq b τ˚R
qπ!Fpψσnqq ùñ Hp`q

c pVa,Fpψσn`1qq

˚Epq
2 “ HppGm,Lpψq b τ˚R

qπ˚Fpψσnqq ùñ Hp`qpVa,Fpψσn`1qq

By the inductive hypothesis, Rqπ!ψFpψσnq – 0 unless q “ n´ 1, so the only possible nonzero terms
are !E

ppn´1q

2 for p P t0, 1, 2u. Moreover, the inductive hypothesis implies that Rqπ!ψFpψσnq Ñ

Rqπ˚ψFpψσnq is an isomorphism, so the same thing applies to ˚Epq
2 . Since Gm is non-proper,

!E0q
2 – 0, so ˚E0q

2 – 0. By Poincaré duality (apply everything we’ve said to ψ´1), !E
2pn´1q

2 – 0.
Thus, the only possible nonzero term is !E

1pn´1q

2 – ˚E
1pn´1q

2 .
We can compute Swan0pLpψqbτ˚R

n´1π!Fpψσnqq “ 1 and Swan8pLpψqbτ˚R
n´1π!Fpψσnqq “ n.

Thus, GOS tells us that χcpGm,Lpψqbτ˚R
n´1π!Fpψσnqq “ ´n´1. Since there is only one nonzero

cohomology group, we see that Hn
c pV n

a ,Fpψσnqq – H1
c pGm,Lpψqbτ˚R

n´1π!Fpψσnqq has dimension
n, as desired.
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