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This talk is based on Deligne’s Théorie de Hodge, II (Sections 3 and 4) and Peters-Steenbrink’s
Mixed Hodge Structures (Chapter 4).

1 Recap
Recall the setup. We have a smooth variety U with a smooth compactification X such that D “

X ´ U is a simple normal crossings divisor. The inclusion U ãÝÑ X is denoted j. The logarithmic de
Rham complex Ω‚

XplogDq is generated by differential forms locally of the form dzi
zi

(near zi “ 0) and
dzi (otherwise). We denote the indivudal m-fold intersections of the components D1, . . . , Ds by DI

(I Ă t1, . . . , su) and denote the closed embeddings DI ãÝÑ X by aI . We denote the disjoint union of
the m-fold intersections DI (|I| “ m) by Dpmq, and we denote the natural map Dpmq Ñ X by am.

Our goal is the following theorem.

Theorem 1. H˚pU ;Zq carries a natural mixed Hodge structure. These mixed Hodge structures
are functorial with respect to maps of smooth varieties U Ñ V .

2 The logarithmic de Rham complex
We can use Ω‚

XplogDq to compute the cohomology of U by the following proposition, which can be
proven using the residue map (we will introduce this in a bit).

Lemma 1. The inclusion Ω‚
XplogDq ãÝÑ j˚Ω

‚
U is a quasi-isomorphism.

To summarize, we have a zig-zag of quasi-isomorphisms

Rj˚C
„

ÝÑ j˚ΩU
„

ÐÝ Ω‚
XplogDq,

so we have a natural isomorphism H˚pU ;Cq – H˚pX,Ω‚
XplogDqq, along with a natural isomorphism

of hypercohomology spectral sequences with respect to the canonical filtration.
Why Ω‚

XplogDq? There is a natural weight filtration W on Ω‚
XplogDq, which is the increasing

filtration where WmpΩ‚
XplogDqq is locally spanned by forms of the form α^

dzi1
zi1

^ ¨ ¨ ¨ ^
dzim
zi

m1
, where

α is holomorphic on X and m1 ď m. The key feature of the weight filtration is that it captures the
geometry of the DI via the residue map. For each I Ă t1, . . . , su, define a map

resI : WmΩ‚
XplogDq Ñ aI˚Ω

‚
DI

r´ms

α ^
dz1
z1

^ ¨ ¨ ¨ ^
dzm
zm

` α1 ÞÑ α|DI
,
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where z1, . . . , zn are local coordinates on X such that DI is cut out by z1 “ ¨ ¨ ¨ “ zm “ 0 (these must
be ordered compatibly with I). Note that resIpWm´1Ω

‚
XplogDqq “ 0, so resI descends to a map

resI : GrWm Ω‚
XplogDq Ñ aI˚Ω

‚
DI

. We can patch together all the resI to get resm “
À

|I|“m resI :

GrWm Ω‚
XplogDq Ñ am˚Ω

‚
Dpmq .

Lemma 2. resm defines an isomorphism GrWm Ω‚
XplogDq

–
ÝÑ am˚Ω

‚
Dpmq .

Corollary 1. (a) The cohomology sheaves of GrWm Ω‚
XplogDq are all 0 except the mth cohomol-

ogy, which is am˚C.

(b) The identity map is a filtered quasi-isomorphism pΩ‚
XplogDq, τq

„
ÝÑ pΩ‚

XplogDq,W q.

To sum up, we have a zig-zag of filtered quasi-isomorphisms

pRj˚C, τq
„

ÝÑ pj˚ΩU , τq
„

ÐÝ pΩ‚
XplogDq, τq

„
ÝÑ pΩ‚

XplogDq,W q.

From this, we get an identification of the hypercohomology spectral sequences of pRj˚C, τq and
pΩ‚

XplogDq,W q.
The last piece of geometry we need is the following. This can be proven by looking at explicit

generators of cohomology near points of X.

Lemma 3. Consider the identification of cohomology sheaves Rmj˚CU – am˚CDpmq. The image
of Rmj˚ZU Ñ Rmj˚CU is identified with am˚ZDpmqp´mq Ă am˚CDpmq.

3 The weight spectral sequence
The rest of the proof is homological algebra.

The main object here is the weight spectral sequence, which is the hypercohomology spectral
sequence for pΩ‚

XplogDq,W q:

E´p,q
1 “ H´p`qpX,GrWp Ω‚

XplogDqq – H´2p`qpDppq;Cq ùñ H´p`qpU ;Cq.

Since pRj˚C, τq » pΩ‚
XplogDq,W q and pRj˚C, τq » pRj˚Q, τq bQC, the weight spectral sequence is

defined over Q. By Lemma 3, the weight spectral sequence over Q is given by

E´p,q
1 “ H´2p`qpDppq;Qqp´pq ùñ H´p`qpU ;Qq.

Since it is defined over Q, the weight spectral sequence (over C) has an action by complex
conjugation. Recall that Ω‚

XplogDq has a second filtration F , the bête filtration. F induces three
filtrations on the terms of the spectral sequence, called the first direct filtration Fd, the second
direct filtration Fd˚ , and the inductive filtration Fr. These filtrations do not agree in general.
Rather than define them and waste your time, I will state the key properties of the filtrations.

Lemma 4. Suppose pK,W,F q is a doubly filtered complex, where F has finitely many associated
gradeds in each component (i.e. it is biregular). Then there are filtrations Fd, Fr, Fd˚ on the terms
of the spectral sequence of the filtered complex pK,W q.

(a) Fd Ă Fr Ă Fd˚ .

(b) The differentials dr are compatible with Fd and Fd˚ .
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(c) Suppose the dr are strictly compatible with Fr for r P t0, . . . , r0 ´ 2u. Then for all 0 ď r ď r0,
Fd “ Fr “ Fd˚ . In particular, Fd “ Fr “ Fd˚ automatically on E0 and E1.

(d) Suppose the dr are strictly compatible with Fr for all r. Then Fd “ Fr “ Fd˚ on E8, and this
filtration is the filtration induced by F on the associated gradeds GrWm H˚pKq.

Now I’ll state the actual result.

Theorem 2. (a) Fd “ Fr “ Fd˚ for all terms of the weight spectral sequence.

(b) The filtration on H˚pU ;Cq obtained from the weight spectral sequence is induced by a filtration
W on H˚pU ;Qq. Neither W nor F (the Hodge filtration, which is obtained from the bête
filtration) depends on the choice of compactification X.

(c) The filtrations W rks (W rksm “ Wm´k) and F make HkpU ;Zq into a mixed Hodge structure.

Proof. We have already proven the first claim of (b), since the weight spectral sequence is defined
over Q.

The proof proceeds in a series of lemmas.

Lemma 5. The hypercohomology spectral sequence of pGrWm Ω‚
XplogDq, F q degenerates at E1. The

filtration on E´p,q
1 – H´2p`qpDppq;Cq induced by this spectral sequence (i.e. induced by F ) is

q-opposite with respect to complex conjugation (note that the complex conjugation comes from
H´2p`qpDppq;Qqp´pq, not H´2p`qpDppq;Qq).

Proof. Recall that GrWm Ω‚
XplogDq – am˚Ω

‚
Dpmq r´ms, so the hypercohomology spectral sequence

here is just the Hodge-de Rham spectral sequence, which degenerates at E1. The second claim
follows because the Hodge filtration on H´2p`qpDppq;Cq “ H´2p`qpDppq;Qqp´pqbQC is q-opposite.

From this lemma, we see that the terms E´p,q
1 over Q are actually H´2p`qpDppq;Qqp´pq as

Q-Hodge structures, with the filtration induced by F .

Lemma 6. d1 (on the weight spectral sequence) is strictly compatible with the filtration induced
by F (we will call this filtration F ).

Proof. d1 : H´2p`qpDppq;Cq Ñ H´2p`q`2pDpp´1q;Cq is automatically compatible with F , if we view
F as the first direct filtration. Thus, d1 : H´2p`qpDppq;Qqp´pq Ñ H´2p`q`2pDpp´1q;Qqp´p ` 1q is
a morphism of Q-Hodge structures, which must automatically be strict.

Lemma 7. The inductive filtration on E´p,q
2 is q-opposite.

Proof. This follows from the strict compatibility of d1 with F . More precisely, the inductive filtration
is the filtration induced on E´p,q

r`1 by E´p,q
r , where we treat Er`1 as the cohomology of Er. The

lemma then follows because the d1 differentials are morphisms of Q-Hodge structures.

Lemma 8. For r ě 0, dr is strictly compatible with the inductive filtration. For r ě 2, dr “ 0.
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Proof. For r “ 0 (I haven’t exactly explained what the E0 page is, but trust me), the claim follows
from Lemma 5. For r “ 1, we have already proven the claim in Lemma 6. Thus, it suffices to show
that dr “ 0 for all r ě 2.

Induct on r, starting from r “ 2. By induction, Fd “ Fr “ Fd˚ on E´p,q
r (use Lemma 4(c)), so dr

is compatible with Fr. Call this common filtration F . F is the same filtrations as on E´p,q
2 “ E´p,q

r .
Thus, Lemma 7 implies that F is q-opposite with respect to complex conjugation. Now

drpE´p,q
r q “ dr

˜

ÿ

a`b“q

F apE´p,q
r q X F

b
pE´p,q

r q

¸

Ă
ÿ

a`b“q

F apE´p`r,q´r`1
r q X F

b
pE´p`r,q´r`1

r q

“ 0,

where in the last step, we use that F is pq ´ r ` 1q-opposite on Ep`r,q´r`1
r and q ´ r ` 1 ă q. This

proves that dr “ 0.

We are basically done. Lemma 4(d) implies that the filtration F on E´p,q
2 “ E´p,q

8 agrees with
the filtration induced by F on H´p`qpU ;Cq (it also implies (a)). Hence, the associated graded
GrW r´p`qs

q H´p`qpU ;Qq “ GrWp H´p`qpU ;Qq “ Gr´p
W H´p`qpU ;Qq is E´p,q

2 , which is a Q-Hodge
structure of weight q (more precisely, recall that E´p,q

2 is a subquotient of H´2p`qpDppq;Qqp´pq).
We have thus constructed a mixed Hodge structure on HkpU ;Qq.

What remains is to prove the independence of choice of compactification in (b) and the functo-
riality in (c). We prove the functoriality first. Suppose f : U Ñ V is a map of smooth varieties. We
can find some good compactifications X and Y (of U and V , respectively) with a compatible map
f : X Ñ Y (first get a rational map X 1 99K Y and then take a resolution of the closure of the graph
of this rational map). Then we get a map f

˚
Ω‚

Y plogDY q Ñ Ω‚
XplogDXq compatible with the weight

and bête filtrations, so we get a map on hypercohomology H˚pY,Ω‚
Y plogDY qq Ñ H˚pX,Ω‚

XplogDXq

compatible with the filtrations. This map is a map of mixed Hodge structures, so we have our func-
toriality, and we have proven (c).

Finally, we prove independence of choice of compactification, using the functoriality. Given two
compactifications X1, X2 of U , we can pick some compactification X with maps X Ñ X1 and
X Ñ X2 (take a resolution of the closure of U ∆

ãÝÑ X1 ˆX2). Then the maps H˚pX,Ω‚
XplogDXqq Ñ

H˚pXi,Ω
‚
Xi

plogDXi
qq are bijective maps compatible with the filtrations. By strictness of maps of

mixed Hodge structures, bijective maps compatible with the filtrations must be isomorphisms of
mixed Hodge structures, so we have proven (b).

Corollary 2. (a) The hypercohomology spectral sequence of pΩ‚
XplogDq,W q degenerates at E2.

The differential d1 : H´2p`qpDppq;Qqp´pq Ñ H´2p`q`2pDpp´1q;Qqp´p ` 1q is identified with
the alternating sum of the Gysin maps with respect to DI ãÝÑ DI ´ tiu.

(b) The hypercohomology spectral sequence of pΩ‚
XplogDq, F q degenerates at E1.

Corollary 3. If HkpU ;Cq has a nonzero weight space Hp,q in some associated graded, then p, q ď k,
and p ` q ě k.
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Corollary 4. If X is any smooth compactification of U , then the image of HkpX;Qq Ñ HkpU ;Qq

is the bottom weight part WkpHkpU ;Qqq. If we have maps Y Ñ U ãÝÑ X with Y smooth and proper,
then the image of HkpXq Ñ HkpY q equals the image of HkpUq Ñ HkpY q.

Theorem 3 (Global invariant cycles theorem). If U Ñ S is a smooth proper map with S smooth
and separated and U ãÝÑ X is a smooth compactification, then the image of HkpX;Qq Ñ HkpXs;Qq

(Xs is a smooth fiber) is the monodromy invariants HkpXs;Qqπ1pS,sq.

Sketch. The surjectivity of HkpU ;Qq Ñ HkpXs;Qqπ1pS,sq U Ñ S is projective was proven by Deligne
in an earlier paper (this is a corollary of the degeneration of the Leray spectral sequence for smooth
proper maps). We then apply the previous corollary to prove the projective case. To prove the
general proper case, we can use Chow’s lemma.
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