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[11-13]. This means that we can find a function J, called the free energy and

formally denoted by
F(t) = <exp (Z ti/q)i>> ; (5.7)
i 0

which satisfies the third derivative condition
3iajk5t(t) = Cijk- (5.8)

In terms of F, the commutativity and associativity conditions of the operator
algebra with structure constants c;jx(t) become a system of differential equa-
tions of third order, called the Witten-Dijkgraaf-Verlinde-Verlinde (WDVYV)
equation.

C. The Framework of Solitons

In their original work [11-12], Dijkgraaf, Verlinde, and Verlinde derived an
explicit expression for the free energy F(t) in the case of topological Landau-
Ginzburg theories. These are the topological theories arising from twisting
an N=2 superconformal field theory, which is itself obtained by following the
renormalization group flow to the fixed point of a Landau-Ginzburg model.
Although the renormalization group flow modifies the kinetic terms in the
Landau-Ginzburg action, the superpotential W(z) remains unchanged, and
thus characterizes both the associated superconformal and the topological mod-
els [30]{61][67]. Our goal in this section is to show how this theory can fit in the
framework of solitons, and to exhibit the natural emergence of the differential
Q) dFE and Whitham times.

We consider first the case of genus 0, with I' = {# € CUoo}. The role of the
superpotential W (z) is played in our context by the Abelian integral £ with a
unique pole of order n at co. We consider then a leaf in the space Mq(n,1),
characterized by the condition that ) = z, and E is of the form

n—2
E=2"+ Z uizt + 0(z7h). (5.9)
=0

This is of dimension n—1, and can be parametrized by the n —1 Whitham times
T4, A=1,...,n—1, with the other times fixed to T, = 0, Tp41 = o At
each point E on the leaf, the primary fields ¢; can be identified with df2;/dQ.
The structure constants are defined by

dQ;dQ; dQ ;) dQ;ydQ
(9165) = Res (%) . (9ix) = Resco (Jﬁfj’é—ﬂ) . (5.10)

We note that d@) corresponds to the field defined by the vacuum. The following
can be derived from Theorem 16:
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Theorem 20. Let F(T') be the T-function of the (complez normalized) Whitham
hierarchy, restricted to the (n — 1) dimensional leaf described above. Then

(i) the fields ¢; anti-diagonalize the pairing 1;j, i-e., (pid;) = biyjn;

(ii) F(T) is the free energy of the theory, i.e., 3%Tka F(T) = cijr. In partic-
ular, F(T') satisfies the system of WDVV equations.
More generally, the case of I' of genus g (with one puncture to simplify the

notation) has been treated in [22][38]. In this case, the relevant leaf within
My(n,1) is of dimension n — 1 + 2g and is given by the constraints

n
T, =0, Thy1 = ——,
T
dE =0, dE = fized, (5.11)
A)C Bk
dQ = 0.
Ak

Thus the leaf is parametrized by the (n—1) Whitham times T4, A =1,... ,n—1,
and by the periods a; and T} of (4.28). The fields ¢4 of the theory need to be
augmented accordingly. We take the 2g additional ones to be given by dw;/dQ
and d1¥ /dQ, where the differentials dw; and dQ2¥ are the ones associated to a;
and T, as described earlier in (4.30).

Theorem 21. Let nap and capc be defined as

dQ4dQY
N4,B = ZRequ 7215 B (5.12)
Qs
dQ2 4dQpdQ
CABC = ZResq, W, (513)
qs

with g, the zeroes of dE, and the indices A,B,C running this time through the
augmented set of n — 1+ 2g indices given by T4 = (T3,0;,Tk ;). Then

(1) M = divjn, N, (Ex) = 04,k All other pairings vanish;

(ii) Let F(T;,a;, Tk, ;) be the T-function of the Whitham hierarchy restricted
to the leaf (5.11). Then 035-F(T) = capc, where A runs through the
augmented set of n — 1+ 2g indices.

Note that in the genus 0 case when @ = z, the sum in (5.12-5.13) over the
residues at the zeros of dF reduces to the residue at infinity.

Remarkably, the larger spaces M, (n, m) can accommodate the gravitational
descendants of the fields ¢ 4. More precisely, consider for g = 0 the leaf of the
space Mg (n, mn + 1) given by the following evident modification of the earlier
normalization (5.11)

nm
nm+1

Tin=0,i=1,...,m, Tnums1 = (5.14)
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The space of Whitham times is automatically increased to the correct number
by taking all the coefficients of @ dE. The additional m(n — 1) fields may
be identified with the first mn gravitational descendants of the prlmary fields.
Namely, the p-th descendant o,{¢;) of the primary field ¢; is just _m_ This
statement is a direct corollary of the following theorem.

Theorem 22. The correlation functions given by (padpdc) = 0%5cF with
0p(¢:) = dQitpn/dQ satisfy the factorization properties for descendant fields

(0p(0:)PBOC) = (Tp—1(8:)b5 )0 (DB dC), (5.15)

where ¢;,i = 1,...,n — 1 are primary fields, and ¢4 are all fields (including
descendants).

Factorization properties for descendant fields were derived by Witten [63-
66]. We note that the completeness of the operator algebra requires a larger
set of fields that just g, which is the dimension of the small leaves of the canon-
ical foliation of My(n,m), and which will be shown in the next section to be
the dimension of the moduli space of vacua of certain supersymmetric gauge
theories. This is one of the difficulties in establishing direct contact between
topological field theories and supersymmetric gauge theories, although there
has been progress in this direction [6][44][45].

VI. Seiberg-Witten Solutions of N=2 Supersym-
metric Gauge Theories

Moduli spaces of geometric structures are appearing increasingly frequently as
the key to the physics of certain supersymmetric gauge or string theories. One
recurrent feature is a moduli space of degenerate vacua in the physical theory.
The physics of the theory is then encoded in a K&hler geometry on the space of
vacua, or, in presence of powerful constraints such as N=2 supersymmetry, in
an even more restrictive special geometry, where the Kahler potential is dictated
by single holomorphic function F, called the prepotential. This was the case
for Type ITA and Type IIB strings, where the vacua corresponding to compact-
ifications on Calabi-Yau threefolds [31][68] produce effective N=2 four dimen-
sional supergravity theories. The massless scalars of such theories (in this case,
the moduli of the Calabi-Yau threefold) must parametrize a manifold equipped
with special geometry [9][561][57]. More recently, a similar phenomenon has been
brought to light by Seiberg-Witten [52][53] for N=2 supersymmetric gauge the-
ories. Remarkably, the space of vacua of these theories, which is classically just
a space of diagonalizable and traceless matrices, becomes upon quantization a
moduli space of Riemann surfaces. The prepotential F for the quantum effective
theory can then be derived from a meromorphic one-form dX on each surface. A
particularly striking feature of these effective theories, noticed by many authors
[24][28][42-43][49][56], is a strong but as yet ill-understood similarity with the
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Whitham theory of solitons. Indeed, the quantum spaces of vacua for many
N=2 SUSY theories actually coincide with certain leaves of the canonical fo-
liation of My(n,m) [39], the Seiberg-Witten form dX with the one-form Q dE
central to Whitham theory, and the effective prepotential of the gauge theories
with the exponential of the 7-function of the Whitham theory! The purpose of
this section is to review some of these developments.

A. N=2 Supersymmetric Gauge Theories

We begin with a brief account of N=2 SUSY Yang-Mills theories in four di-
mensions with gauge group G [2]. The Yang-Mills gauge field A = A,dz* is
imbedded in an N=2 gauge multiplet consisting of A, left and right Weyl spinors
AL and AR, and a complex scalar field ¢, with all fields valued in the adjoint
representation of G. The requirement of N=2 SUSY and renormalizability fixes
uniquely the action

I= /M‘1 d*z Tr [éF/\F*+§%F/\F+D¢T/\*D¢+[¢, ¢'1?] + fermions, (6.1)
where g is the coupling constant, 6 is the instanton angle, and we have written
explicitly only the bosonic part of the action. The classical vacua are given by
the critical points of the action. In this case, they work out to be A =0, ¢ is
constant (up to a gauge transformation), and

[¢,¢'] =0. (6.2)

Thus ¢ must lie in the Cartan subalgebra. For G=SU(N,) (N, is commonly
referred to as number of “colors”), we set

N
.. k=1

an,
Thus the classical space of vacua is parametrized by the ai, up to a Weyl
permutation.

For a generic configuration ax, we have a; # ax for any j # k, and the gauge
group SU(N,) is spontaneously broken down to U(1)N‘_1. At the quantum
level, we expect then the space of inequivalent vacua to be parametrized by
N, — 1 parameters a;, (thought of as renormalizations of the ay, EQIQ ar = 0),
with each vacuum corresponding to a theory of N, — 1 interacting U(1) gauge
fields A;, i.e., N, — 1 copies of electromagnetism. In the weak coupling regime,
we expect singularities at ar = a;, where the gauge symmetry is suddenly
enhanced. Since N=2 SUSY remains unbroken, each gauge field A; is part
of an N=2 SUSY U(1) gauge multiplet (A;, Az, Arj,¢;), all in the adjoint
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representation of U(1). Again, the action for a theory with such a field content is
fixed by N=2 supersymmetry. To leading order in the low momentum expansion
for these fields, it must be of the form

Ig = él? d4x[(1m TI%)Fj A xFy + (Re 79%) F; A Fy, + do' A dgl] + fermions
(6.4)

where 925 o5
ik = = (6.5)

- Bajaak’ % - a_aj(qb)

for a suitable complex and analytic function F(a,A), called the prepotential.
We note that the prepotential F is a function not just of the vacua parameters
ax, but also of a scale A introduced by renormalization.

Thus the physics of the quantum theory is encoded in a single function 3.
What is known about F7? To insure the positivity of the kinetic energy, we must
have

g
I . .
maa,-aak >0 (6.6)
Geometrically, F defines then a Kéhler metric on the quantum moduli space by
ds* = Im ( 5a; Bak) da;day. (6.7)

Furthermore, at weak-coupling A < 1, F can be evaluated in perturbation
theory. For pure SU(N,) Yang-Mills, one finds

N, (o]

2N, 1 a;)?

Fla,A) = o— i— 5 > (ak —a;) 2log(LA-2—i +Y FaAPN (6.8)
k=1 7,k=1 d=1

The first term on the right hand side is the classical prepotential. The second
term is the perturbative one-loop quantum correction. In view of N=2 non-
renormalization theorems, it is known that higher loops do not contribute. The
third term is the instanton contribution, consisting of d-instanton processes for
all d. We observe that the expansion (6.8) implies in particular that F has non-
trivial monodromy around a; = ax in the A « 1 regime. The exact solution
of N=2 Yang-Mills theories is reduced in this way to finding a holomorphic ¥
satisfying the constraints (6.6) and (6.8).

We have just described the main problem for N=2 SUSY pure SU(N) Yang-
Mills theories. However, the same problem should be addressed for general
N=2 SUSY gauge theories with gauge group G, with matter fields (“hyper-
multiplets”) in a representation R of G. As in the case of pure Yang-Mills,
the Wilson effective Lagrangian of these theories is dictated by a prepotential
Fc.r(a,A), and the problem is to determine Fg gr(a, A), subject to the con-
straints (6.6) and (6.8), where the right hand side of (6.8) has been modified to
incorporate the contributions of the hypermultiplets. For example, in presence
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of Ny hypermultiplets in the fundamental representation of bare masses m;,
1 <i < Ny, the one-loop correction to the prepotential for the SU(N,) theory
contains the additional term

N. Ny

a m; 2
> (ax+ mj)Qlog(—k—}z,;)-

k=1 i=1

B. The Seiberg-Witten Ansatz

The requirements that ¥ have monodromy and a Hessian with positive definite
imaginary part, suggest an underlying non-trivial geometry on the quantum
space of vacua. In [52][53], Seiberg and Witten made the fundamental Ansatz
that

e For each A, the quantum moduli space should parametrize a family of
Riemann surfaces I'(a, A) of genus ¢ = N, — 1, now known as the spectral
curves of the theory;

e on each I'(a, A), there is a meromorphic one-form dA;

e 7 is determined by the periods of d\ 2

1 1 oF
-4 = b, Zoap .
W= o A 4Dk = o ﬁk " Oag @D,k (6.9)

The gauge theories under consideration contain dyons, i.e., particles which
carry both electric and magnetic charges. Let (n,m) € ZNe=1 x ZN<~1 be their
charges, with (n;,m;) the charge with respect to the i-th U(1) factor. The
N=2 SUSY algebra implies the bound M? > 2|an + apm|? from below for their
masses. Thus the states saturating this bound, known as Bogomolny-Prasad-
Sommerfeld or BPS states, are described by the lattice spanned by the periods
of d\. The singular locus of the fibration I'(a, A), namely the points where the
curve degenerates and a period a; or ap ; vanishes, corresponds then to vacua
where one or several dyons become massless.

For pure SU(2) Yang-Mills, the monodromy prescription at oo is restrictive
enough to suggest the identification of the quantum moduli space of vacua with
H/T'(2) (H denotes the upper half space, and I'(2) the subgroup of SL(2,Z)
matrices congruent to 1 mod 2), assuming the minimal number two of singular-
ities in the interior, of the quantum moduli space. Since then, spectral curves
have been proposed for a variety of gauge theories with matter, based on phys-
ical considerations such as decoupling, or analogies with singularity theory or
soliton theory (see e.g. [40] and references therein). However, at the present

2In this section, we adopt the normalization (6.9) for the periods a; of dA rather than (3.39),
in keeping with the literature on Seiberg-Witten theory. Similarly, the present F differs from
the earlier 7-function Fwhitham of soliton theory (c.f. (4.35)) by F = —ﬁ?‘wmtham.
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time, we still do not have a complete correspondence between the group the-
oretic characterization of the gauge theory, consisting of the group G and the
representation R for the hypermultiplets, and the fibration of spectral curves
which characterizes its geometric and physical content.

C. The Framework of the Theory of Solitons

Nevertheless, an intriguing feature of most of the spectral curves for N=2 SUSY
gauge theories known so far, is that they, together with the one-form dJ, fit
exactly in the framework of the foliation on My(n,m) with dA = QdE. In
particular,

e The spectral curves for SU(NV,) theories with Ny < 2N, hypermultiplets
in the fundamental representation of bare masses m;, 1 <4 < Ny, are given by
the leaf (T', F, Q) with the following properties.

- dE has simple poles, at points P, P_, P;,with residues —N., N, — Ny,
and 1 (1 <14 < Ny) respectively. Its periods around homology cycles are
integer multiples of 2i;

- @ is a well-defined meromorphic function, with simple poles only at P,
and P_;

- The other parameters of the leaf are fixed by the following normalization
of the one-form d\ = QdFE
Resp, (d)\) = —my,
Resp, (zd)\) = =N,271/Ne Resp_(zd))
A2Ne—Ng\ 1/(Ne=Ny) (6.10)
v (2
Resp, (dA) = 0.

Here z = E~1/Ne or z = E1/(Ne=Ns) i5 as usual the holomorphic coordi-
nate system near P, or near P_ adapted to the Abelian integral E.

These conditions imply that I' is hyperelliptic, and admits an equation of
the form (see [39])

N, Ny
y? = [[(@—an)? - AN [](Q +m;) = AQ)* - B(Q). (6.11)
k=1 Jj=1

Strictly speaking, the parameters @, of (6.11) agree with the classical vacua in
(6.3) only when N, < Ny. For Ny > N,, there are O(A) corrections, which
can be absorbed in a reparametrization leaving the prepotential F invariant
[15]. Thus we may view the @ of (6.3) and (6.11) as identical. If we represent
the Riemann surface (6.11) by a two-sheeted covering of the complex plane,



Symplectic Forms in the Theory of Solitons 305

then the meromorphic function @ on I in d\ = Q dE is just the coordinate in
each sheet, while the Abelian integral FE is given by E = log(y + A(Q)). The
points Py correspond to the points at infinity, with the two possible choices of
signs + for y = £v/ A2 — B. To choose a canonical homology basis, we let zk ,
1 < k < N, be the branch points A(z¥)? — B(z¥), Ax be a simple contour
enclosing the slit from zj to z for 2 < k < N, and By, be the curve going
from z; to z; on each sheet. We can now give a preliminary and easy check
that the curve (6.11) is consistent with the expected behavior of the theory at
weak-coupling. Consider for simplicity the case of pure Yang-Mills, Ny = 0.
Then as A — 0, the discriminant of the curve behaves as A" [] j<k(@j — ar)?,
and the singularities are at the expected location. Furthermore, in this limit,

QMdQ +..., and the cycles A are just contours in the complex plane
around a sht Wthh shrinks to a single point @x. The residue formula gives at

once 1 AI(Q)
2mi £y, CAQ)

identifying as as a classical order parameter.

ax = dQ + O(AN<) = ay, + O(ANe), (6.12)

e The spectral curves for the other classical gauge groups with matter in
the fundamental representation are restrictions of the ones for SU(N.) [4][16];

e The SU(N,) theory with matter in the adjoint representation is of par-
ticular interest. For massless matter, the theory has actually an N=4 super-
symmetry, and is conformally invariant. As the hypermultiplet acquires mass,
the N=4 SUSY is broken down to an N=2 SUSY. In [18], Donagi and Witten
argued that the spectral curves for the theory are then given by Hitchin sys-
tems. Expressed in terms of elliptic Calogero-Moser systems, the curves they
proposed are given precisely by the leaf (T', k, z) in Section III.D. Here the hy-
permultiplet mass has been scaled to 1, and the moduli 7 = ws/w; of the torus
is the microscopic gauge coupling.

Although this suggests a deep relation between N=2 gauge theories and
integrable models, such a relation is still not fully understood at the present
time. Nevertheless, the parallelism between the two fields allows us to apply to
the study of the prepotential F of gauge theories the methods developed in the
theory of solitons. Thus Theorem 16 implies readily [17]

Theorem 23. The prepotential F for SU(N.) gauge theories with Ny < 2N,
hypermultiplets of masses m; in the fundamental representation, satisfies the
following differential equation

ZaJ +Zm]a =

- é%[Resm (2d)) Resp, (27'd)) + Resp_(z d)\) Resp_(27'd))]  (6.13)
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We observe that there is a slight abuse of language here, since in the case of
the effective prepotential of gauge theories, F is only fixed up to ax independent
terms by (6.9). This is consistent with the fact that only derivatives of  with
respect to a occur in the effective action. Thus the a; independent terms on
the right hand side of (6.13) can be ignored by adjusting F. The prepotential
(4.35) (restricted to the leaf corresponding to the SU(N,) theory) is one choice
of F. Another choice suggested by dimensional analysis (c.f. (6.8)) is the
prepotential F satisfying the homogeneity condition (% + D)F = 0. In this
case, we recognize (6.13) as a renormalization group equation, with the beta
function given by the right hand side of (6.13). Earlier versions of (6.13) appear
in [24][46][47][56].

To illustrate the power of Theorem 20, we shall show how it can generate
explicit expressions for the contributions of instanton processes to any order.
Thus we consider the regime where A is small and all the Ag-cycles degenerate
simultaneously. A fundamental observation is that in this regime, the quantum
order parameters aj are perturbations of their classical counterparts @, which
can be determined explicitly to any order. In fact, as noted in the arguments
leading to (6.12), the Ay cycles are simple contours shrinking to a point in one
sheet of the Riemann surface and residue formulae apply. The approximation
(6.12) can be improved to

el A(2N°_Nf)m 6

ar = ag + W -ﬁ)Qm_lgk(dk),
e 6.14
Suta) = e+ ) .
¢ Hl;&k(ﬂ? —-a)?

The evaluation of the dual periods apy is of course more difficult. We need
to show that the prepotential F, as defined by the By-periods, reproduces the
classical prepotential ¥ in (6.8) (with hypermultiplets) and satisfies the non-
renormalization theorem. This requires an analytic continuation in an auxiliary
parameter £, as explained in [15]. However, once this is established, the dif-
ficult instanton contributions can be derived from the renormalization group
equation. Setting F = F(© + FU 4 F@) 4 | we have, say up to 2-instanton
order and using Euler’s homogeneity relation,

N,
N L
E:% + E : Ja = (Ny — 2N.) (E > ai + 30 +2?(2>) . (6.15)
k=1

(We note the overall factor Ny — 2N,, which confirms the known conformal
invariance of the theory with Ny = 2N.. For the spectral curves of this theory,
we refer to [4]). On the other hand, dropping all ai-independent terms, the
right hand side of (6.13) is easily found

Z

N ) :
Zaj +Zm,a 25 = —(N; —2No) 1ak. (6.16)

ES
i
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We can now use (6.14) to reexpress the right hand side of (6.16) in terms of the
quantum order parameters ax. The instanton contributions can then be read
off after suitable rearrangements [15][17]

N,
1 .
FO = — APNN S " S (),

81 P

B (6.17)
@ _ 1 r2eN-Ny Sk(ax)Si(a 1

= A Z_‘— ZZ Sk(ar)0?, Sk(ax)

327i pavy (ar — a1)
Here the function Si(z) is defined in analogy with (6.14) by

Hj'vzfl(z‘*“mj)
Sp(z) = ==~ 7,
Ho) 1%, (@ — a)?

We turn next to a determination of the effective prepotential at strong
coupling. In general, when a single cycle Ay or By degenerates, we expect
the effective prepotential to be expressible in terms of functions on the resulting
surface of lower genus. A particularly interesting case is the behavior of J near a
point on the quantum moduli space of maximum degeneracy, where all By, cycles
degenerate simultaneously, and the spectral curve degenerates to two spheres
connected by thin tubes. Physically, this means that a maximum number of
mutually local dyons become simultaneously massless. As shown in [20], the
points of maximum degeneracy occur at the curves y% = 4¢(Q)? —4A%"<, where
Ao(Q) is given by the N-th Chebyshev polynomial

Ap = 2AN<C, (%) , Co(z) = cos(Narccos(z)). (6.18)

A neighborhood of the maximum degeneracy point on the quantum moduli
space 1s parametrized by polynomlals P(Q) of degree N — 2, with the spectral
curve y? = A(Q)?—4ANe, A(Q) = Ao(Q)+2AN: P(2A) Since it is the By, cycle
which degenerates this time, it is more convenient to express the prepotential
F(apk) and the beta function in terms of the dual variables apg, which can
then be evaluated to an arbitrary order of accuracy by residue methods. The
renormalization group equation remains the same under interchange of the dual
variables a; ¢ apk

2N,

N,

‘ oF
E apry— —2F = —
Pt dapk 2mi

(6.19)

where u is the coefficient of Q<2 in A(Q). Residue calculations show next
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apy is of first order in P and that

apg = i(-) —P )+ZaDk,

k k
skzsin<ﬁi),ck=cos(7€;>, k=1,...,N

where the a(g,? are of order O™(ap) and can be evaluated explicitly. To third

order in ap, we find for u

(6.20)

N.-1 N.-1 N.—-1 0,2 N.—1 0,2 an:s

DISI

u=2iA E skapk+ E aDk+32N2A E %-4 E (C_Dk___c_)z
k=1 k=1 °k k2l BT

(6.21)
Solving the renormalization group equation, we obtain [14]

Theorem 24. Near the point of mazimum degeneracy on the quantum moduli
space given by (6.19), the prepotential F is given by the following expression

N.-1

2N,
Flap) = A aDIc
1 et a3 a ap;s;
Dk Dk
_— —4 e .22
+327rNCA ; 53 kZ;él (ck — 1) (6.22)

up to third order in the order parameters apy. Here Ay is determined by
loglt = 2 + logsy.

We should mention that there is by now an extensive literature on Seiberg-
Witten theories, and we refer to [40] for a description of other recent advances
and for a more complete list of references.
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