Homework 3 Solutions

Sam Mundy

Exercise (I). Write down the Cayley table for the group Z/5. Remember that the group
operation is addition. Is your table symmetric?

Solution. The Cayley table for Z/5 is

+10(1]2]|3]|4
0]011]2|3|4
111123410
2121314]0/|1
313410112
4141011]2|3

The table is symmetric across the diagonal because Z/5 is abelian.

Exercise (Judson, Chapter 3, Exercise 7). Let S = R\{—1} and define a binary operation
on S by axb=a+ b+ ab. Prove that (5, *) is an abelian group.

Solution. The very first thing to check is that this set .S is really closed under the operation
*. We know that given a,b € S then a * b is always a real number, but we need to see
that a xb #% —1. To see this, let us simply write down what it means for a,b € S to have
a * b= —1. This means

a+b+ab=-1,

or equivalently
ab+a+b+1=0.

But ab+a+b+1=(a+1)(b+1), so if this is zero, then one of a+ 1 or b+ 1 is zero. This
is impossible since a,b € S so neither are —1. Thus S is really closed under .
Now let us check that * is associative. Let a,b,c € S. We have

(axb)xc=(a+b+ab)xc=a+b+ab+c+ (a+b+ab)c=a+b+ab+c+ ac+ bc+ abe.
We also have
ax(bxc)=ax(b+c+bc)=a+b+c+bc+alb+c+bc)=a+b+c+bc+ ab+ ac+ abe.

After rearranging, we see that both expressions are equal. So * is associative.
Now we need to find an identity element. I claim that 0 is an identity element for (S, ).
To see this, let a € S. We compute

Oxa=04+a+0a=a



and
ax0=a+0+a0=a,

so 0 is an identity element.

Next we check for the existence of inverses. This means for every a € S, we need to find
an a’ such that a * a’ = a’ ¥ a = 0. The formula for a’ is @’ = 7% which can be derived by
solving the equation a + a’ 4+ aa’ = 0. We compute

—a —a a? a’+a

k = — — —
a+1 “ a+1+a a—+1 @ a+1

=a—a=0.

Similarly, one can compute that a * ' = 0 (though, strictly speaking, we do not need to
do this since we are about to check that x is commutative!) This completes the verification
that (S, ) is a group.

Finally, we check that (S, %) is abelian. Let a,b € S. Then we compute

axb=a+b+ab=b+a+ba=">bxa,
which shows that (S, *) is abelian. So we are done.

Exercise (Judson, Chapter 3, Exercise 45). Prove that the intersection of two subgroups
of a group G is also a subgroup of G.

Solution. Let H, K be two subgroups of G. Let e denote the identity of G. We need to
check that e € HN K, that H N K is closed under the group operation, and that H N K has
inverses. To see that e € H N K, we note that since H and K are subgroups of G, e € H
andee€ K. Soec HNK.

Now let g,h € HN K. Then g,h € H and g,h € K. Since H and K are subgroups,
gh € H and gh € K. Thus gh € HN K. Similarly if g € H N K, then g € H and g € K.
Thus ¢! € H and ¢! € K, and so ¢g°' € HN K. Thus H N K is a subgroup of G.

Exercise (Judson, Chapter 3, Exercise 49). Let a and b be elements of a group G. If
a*b = ba and a® = e, prove that ab = ba.

Solution. We substitute the second relation into the first: we have ba = a*b = a?ab =
eab = ab, which solves the exercise.

Exercise (III). Find all subgroups of the Klein four group Vj. (Don’t forget the trivial
subgroup and Vj itself.)

Solution. Recall that V; = {e,a,b, c} where the elements e, a, b, ¢ are multiplied according
to the following Cayley table:

O|S|®

QO ®
oo
QIS
DI O




Since every subgroup must contain the identity element e, there are eight sets that may be
subgroups:

{e},
{e.a}, {eb}, {ec}
{e,a,b}, {e,a,c}, {e,b,c},
{e,a,b,c}.

We know that {e} and {e,a, b, c} are subgroups, but so are the three subsets in the second
row. For instance, since aa = e = ee, this shows that {a,e} has inverses, and since
ee = e = aa and ae = ea = e, it is also closed. So it is a subgroup, and a similar verification
shows {e, b} and {e, c} are subgroups.

The sets with three element in the third row are not subgroups. Actually, this follows
from a theorem we will see later in the course, attributed to Lagrange, that says if H is a
subgroup of a finite group G, then the order of H divides the order of G. 3 does not divide
4, so these cannot be subgroups. But this can also be checked directly: a + b = ¢ shows
that {e,a,b} is not closed, a + ¢ = b shows that {e,a,c} is not closed, and b+ ¢ = a shows
that {e, b, c} is not closed. Thus there are five subgroups, namely

{e}, {e,a}, {e,b}, {e,c}, {e,a,b,c}.



