
Homework 3 Solutions

Sam Mundy

Exercise (I). Write down the Cayley table for the group Z/5. Remember that the group
operation is addition. Is your table symmetric?

Solution. The Cayley table for Z/5 is

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

The table is symmetric across the diagonal because Z/5 is abelian.

Exercise (Judson, Chapter 3, Exercise 7). Let S = R\{−1} and define a binary operation
on S by a ∗ b = a + b + ab. Prove that (S, ∗) is an abelian group.

Solution. The very first thing to check is that this set S is really closed under the operation
∗. We know that given a, b ∈ S then a ∗ b is always a real number, but we need to see
that a ∗ b 6= −1. To see this, let us simply write down what it means for a, b ∈ S to have
a ∗ b = −1. This means

a + b + ab = −1,

or equivalently
ab + a + b + 1 = 0.

But ab+ a+ b+ 1 = (a+ 1)(b+ 1), so if this is zero, then one of a+ 1 or b+ 1 is zero. This
is impossible since a, b ∈ S so neither are −1. Thus S is really closed under ∗.

Now let us check that ∗ is associative. Let a, b, c ∈ S. We have

(a ∗ b) ∗ c = (a+ b+ ab) ∗ c = a+ b+ ab+ c+ (a+ b+ ab)c = a+ b+ ab+ c+ ac+ bc+ abc.

We also have

a ∗ (b ∗ c) = a ∗ (b + c + bc) = a + b + c + bc + a(b + c + bc) = a + b + c + bc + ab + ac + abc.

After rearranging, we see that both expressions are equal. So ∗ is associative.
Now we need to find an identity element. I claim that 0 is an identity element for (S, ∗).

To see this, let a ∈ S. We compute

0 ∗ a = 0 + a + 0a = a
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and
a ∗ 0 = a + 0 + a0 = a,

so 0 is an identity element.
Next we check for the existence of inverses. This means for every a ∈ S, we need to find

an a′ such that a ∗ a′ = a′ ∗ a = 0. The formula for a′ is a′ = −a
a+1 which can be derived by

solving the equation a + a′ + aa′ = 0. We compute

−a
a + 1

∗ a =
−a
a + 1

+ a− a2

a + 1
= a− a2 + a

a + 1
= a− a = 0.

Similarly, one can compute that a ∗ a′ = 0 (though, strictly speaking, we do not need to
do this since we are about to check that ∗ is commutative!) This completes the verification
that (S, ∗) is a group.

Finally, we check that (S, ∗) is abelian. Let a, b ∈ S. Then we compute

a ∗ b = a + b + ab = b + a + ba = b ∗ a,

which shows that (S, ∗) is abelian. So we are done.

Exercise (Judson, Chapter 3, Exercise 45). Prove that the intersection of two subgroups
of a group G is also a subgroup of G.

Solution. Let H,K be two subgroups of G. Let e denote the identity of G. We need to
check that e ∈ H ∩K, that H ∩K is closed under the group operation, and that H ∩K has
inverses. To see that e ∈ H ∩K, we note that since H and K are subgroups of G, e ∈ H
and e ∈ K. So e ∈ H ∩K.

Now let g, h ∈ H ∩ K. Then g, h ∈ H and g, h ∈ K. Since H and K are subgroups,
gh ∈ H and gh ∈ K. Thus gh ∈ H ∩K. Similarly if g ∈ H ∩K, then g ∈ H and g ∈ K.
Thus g−1 ∈ H and g−1 ∈ K, and so g−1 ∈ H ∩K. Thus H ∩K is a subgroup of G.

Exercise (Judson, Chapter 3, Exercise 49). Let a and b be elements of a group G. If
a4b = ba and a3 = e, prove that ab = ba.

Solution. We substitute the second relation into the first: we have ba = a4b = a3ab =
eab = ab, which solves the exercise.

Exercise (III). Find all subgroups of the Klein four group V4. (Don’t forget the trivial
subgroup and V4 itself.)

Solution. Recall that V4 = {e, a, b, c} where the elements e, a, b, c are multiplied according
to the following Cayley table:

e a b c

e e a b c

a a e c b

b b c e a

c c b a e
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Since every subgroup must contain the identity element e, there are eight sets that may be
subgroups:

{e},
{e, a}, {e, b}, {e, c},

{e, a, b}, {e, a, c}, {e, b, c},
{e, a, b, c}.

We know that {e} and {e, a, b, c} are subgroups, but so are the three subsets in the second
row. For instance, since aa = e = ee, this shows that {a, e} has inverses, and since
ee = e = aa and ae = ea = e, it is also closed. So it is a subgroup, and a similar verification
shows {e, b} and {e, c} are subgroups.

The sets with three element in the third row are not subgroups. Actually, this follows
from a theorem we will see later in the course, attributed to Lagrange, that says if H is a
subgroup of a finite group G, then the order of H divides the order of G. 3 does not divide
4, so these cannot be subgroups. But this can also be checked directly: a + b = c shows
that {e, a, b} is not closed, a + c = b shows that {e, a, c} is not closed, and b + c = a shows
that {e, b, c} is not closed. Thus there are five subgroups, namely

{e}, {e, a}, {e, b}, {e, c}, {e, a, b, c}.
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