
Modern Algebra I HW 2 Solutions

Theo Coyne

Problem 1.

1. Reflexivity: a ≤ a holds for every a ∈ Q.

Symmetry: a ≤ b does not imply b ≤ a. Take any a < b to see this.

Transitivity: a ≤ b and b ≤ c does imply a ≤ c.
Since symmetry fails, R isn’t an equivalence relation.

2. Reflexivity: a− a = 0 ∈ Z is true for every a ∈ R
Symmetry: If a− b ∈ Z, then b− a = −(a− b) is an integer too, since

integers are closed under negation.

Transitivity: If a−b ∈ Z and b−c ∈ Z, then a−c = (a−b)+(b−c) ∈ Z
since the integers are closed under addition.

So, R is an equivalence relation

3. Reflexivity: a + a = 2a is even for every a ∈ Z. So (a, a) /∈ R for
every a ∈ Z.

Symmetry: If a + b is odd, then b + a is odd too since b + a = a + b
(addition is commutative).

Transitivity: If a+b is odd and b+c is odd, then a+c = (a+b)+(b+
c)− 2b is of the form odd + odd− even and so is even. So, for any choice
of (a, b) ∈ R and (b, c) ∈ R, it is necessarily the case that (a, c) /∈ R. Since
such a, b, c exist, transitivity fails.

Since reflexivity and transitivity fail, R isn’t an equivalence relation. Of
course, it’s not necessary to check that reflexivity and transitivity fail this
strongly; it’s enough to give a single example of an a for which (a, a) /∈ R
(for reflexivity) and a single example of a, b, c for which (a, b) ∈ R and
(b, c) ∈ R but (a, c) /∈ R (for transitivity). For example, note that
(1, 1) /∈ R because 1 + 1 = 2 is even and (0, 1) ∈ R, (1, 0) ∈ R, but
(0, 0) /∈ R.

4. There’s not much to check here. Equality satisfies reflexivity, symmetry,
transitivity. It is an equivalence relation.
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5. All of reflexivity, symmetry, and transitivity follow from the same proper-
ties of equality on R.

Reflexivity: For any a ∈ C, we have |a| = |a| because equality (on R)
is reflexive, so (a, a) ∈ R.

Symmetry: If a, b ∈ C satisfy |a| = |b|, then we must have |b| = |a|,
by symmetry of equality on R.

Transitivity: If |a| = |b| and |b| = |c|, then |a| = |c|, because, you
guessed it, equality is transitive.

6. The condition n = m or n = −m is equivalent to |n| = |m|, which defines
an equivalence relation on Q by the above argument.

Remark 1. In general, if X is a set and f : X → Y is a function, we
can define an equivalence relation on X by (x1, x2) ∈ R if f(x1) = f(x2)
since equality (on Y ) is an equivalence relation. The last three items are
the clearest examples of this in the problem (take f : X → X the identity,
f : C → R absolute value and f : Q → R absolute value, respectively) but
in fact every equivalence relation can be realized this way by careful choice
of f . To see this, let Y be the set of equivalence classes of X and set f(x)
to be the equivalence class of x for each x.

Problem 2.

1. gcd(−100, 16) = gcd(−100 + 96(6), 16) = gcd(−4, 16) = 4

2. gcd(468, 528) = gcd(468, 528−467) = gcd(468, 60) = gcd(468−7(60), 60) =
gcd(48, 60) = gcd(48, 12) = 12

3. gcd(−30,−27) = gcd(−30− (−27),−27) = gcd(−3,−27) = 3

4. Every factor of −15 is also a factor of 0, so the greatest common divisor
of −15 and 0 is just the largest divisor of −15, which is 15.

5. gcd(1,−1) = 1

6. lcm(100, 16) = (100)(16)
gcd(100,16) = (100)(16)

4 = 400

7. lcm(27,−5) = 27(5) = 135 since 5, 27 are coprime. Keep in mind that
lcm is always defined to be positive.

Problem 3.

First, we verify the fact that a natural number has only even exponents in its
prime factorization if and only if it is a perfect square. Let a be a perfect square
and write a = b2 for some natural b. Let b =

∏
p∈P pep be the prime factorization

of b with the product taken over the (possibly empty) set P of primes dividing
b (the empty product is by convention equal to 1). Then a = b2 =

∏
p∈P p2eP

has all even exponents as required. For the other direction, suppose c ∈ N has
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prime factorization c =
∏

p p
ep with all of the ep even, say equal to 2fp. Then

c =
(∏

p p
fp
)2

is a perfect square.

Now, onto the problem: let x =
∏

p∈P pep be the prime factorization of x and

let y =
∏

q∈Q qfq be the prime factorization of y, where P and Q are the sets of
primes dividing x and y, respectively. Then, p 6= q for all p ∈ P and q ∈ Q, i.e.
P ∩Q = ∅, because x and y are coprime. So, the prime factorization of xy is

xy =
∏
p∈P

pep
∏
q∈Q

qfq =
∏

p∈P∪Q

pgp

where gp is defined to be ep if p ∈ P and fp if p ∈ Q; this is well-defined because
every element of P ∪Q is in either P or Q and no such element is in both. Since
xy is a perfect square, all of the gp are even and for all p ∈ P , we have ep = gp,
so x is a perfect square by the first paragraph. Similarly for y. Notice that this
argument works even if P or Q is empty, corresponding to x = 1 or y = 1.

Problem 4.

1. Since d|m and e|n, there are integers q, r such that dq = m and er = n.
So, mn = (dq)(er) = (de)(qr) and we see that de divides mn.

2. Since d|n, we may write n = dq for some q ∈ Z. Since n 6= 0 and
d 6= 0 (because d ∈ N), we also have q 6= 0, which implies |q| ≥ 1. Now,
|n| = |q| · |d| ≥ |d|.

3. Since c|m and c|n, there exist integers q, r such that m = cq and n = cr.
So, xm+yn = xcq+ycr = c(xq+yr) and it follows that c divides xm+yn.

Problem 5.

Suppose n = dq1+r1 = dq2+r2 are as stated in the problem. Then, d(q2−q1) =
r1 − r2. Suppose for contradiction q1 6= q2. Since r1 and r2 are elements of
{0, . . . , d − 1}, we have −r2 ≤ r1 − r2 ≤ r1 and so |r1 − r2| ≤ max(r1, r2) < d.
But by part 2 of the previous problem, we know d ≤ |r1 − r2| since d divides
r1 − r2 = d(q2 − q1) 6= 0. This is a contradiction. So, q1 = q2 and also r1 = r2
follows from d(q2 − q1) = r1 − r2.
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