Modern Algebra I HW 2 Solutions

Theo Coyne

Problem 1.

1. Reflexivity: $a \leq a$ holds for every $a \in \mathbb{Q}$.

Symmetry: $a \leq b$ does not imply $b \leq a$. Take any a < b to see this.

Transitivity: $a \leq b$ and $b \leq c$ does imply $a \leq c$. Since symmetry fails, R isn't an equivalence relation.

2. Reflexivity: $a - a = 0 \in \mathbb{Z}$ is true for every $a \in \mathbb{R}$

Symmetry: If $a - b \in \mathbb{Z}$, then b - a = -(a - b) is an integer too, since integers are closed under negation.

Transitivity: If $a-b \in \mathbb{Z}$ and $b-c \in \mathbb{Z}$, then $a-c = (a-b)+(b-c) \in \mathbb{Z}$ since the integers are closed under addition.

So, R is an equivalence relation

3. Reflexivity: a + a = 2a is even for every $a \in \mathbb{Z}$. So $(a, a) \notin R$ for every $a \in \mathbb{Z}$.

Symmetry: If a + b is odd, then b + a is odd too since b + a = a + b (addition is commutative).

Transitivity: If a + b is odd and b + c is odd, then a + c = (a+b) + (b+c) - 2b is of the form odd + odd - even and so is even. So, for any choice of $(a, b) \in R$ and $(b, c) \in R$, it is necessarily the case that $(a, c) \notin R$. Since such a, b, c exist, transitivity fails.

Since reflexivity and transitivity fail, R isn't an equivalence relation. Of course, it's not necessary to check that reflexivity and transitivity fail this strongly; it's enough to give a single example of an a for which $(a, a) \notin R$ (for reflexivity) and a single example of a, b, c for which $(a, b) \in R$ and $(b, c) \in R$ but $(a, c) \notin R$ (for transitivity). For example, note that $(1,1) \notin R$ because 1 + 1 = 2 is even and $(0,1) \in R$, $(1,0) \in R$, but $(0,0) \notin R$.

4. There's not much to check here. Equality satisfies reflexivity, symmetry, transitivity. It is an equivalence relation.

5. All of reflexivity, symmetry, and transitivity follow from the same properties of equality on \mathbb{R} .

Reflexivity: For any $a \in \mathbb{C}$, we have |a| = |a| because equality (on \mathbb{R}) is reflexive, so $(a, a) \in R$.

Symmetry: If $a, b \in \mathbb{C}$ satisfy |a| = |b|, then we must have |b| = |a|, by symmetry of equality on \mathbb{R} .

Transitivity: If |a| = |b| and |b| = |c|, then |a| = |c|, because, you guessed it, equality is transitive.

6. The condition n = m or n = -m is equivalent to |n| = |m|, which defines an equivalence relation on \mathbb{Q} by the above argument.

Remark 1. In general, if X is a set and $f: X \to Y$ is a function, we can define an equivalence relation on X by $(x_1, x_2) \in R$ if $f(x_1) = f(x_2)$ since equality (on Y) is an equivalence relation. The last three items are the clearest examples of this in the problem (take $f: X \to X$ the identity, $f: \mathbb{C} \to \mathbb{R}$ absolute value and $f: \mathbb{Q} \to \mathbb{R}$ absolute value, respectively) but in fact every equivalence relation can be realized this way by careful choice of f. To see this, let Y be the set of equivalence classes of X and set f(x) to be the equivalence class of x for each x.

Problem 2.

- 1. gcd(-100, 16) = gcd(-100 + 96(6), 16) = gcd(-4, 16) = 4
- 2. gcd(468, 528) = gcd(468, 528-467) = gcd(468, 60) = gcd(468-7(60), 60) = gcd(48, 60) = gcd(48, 12) = 12
- 3. gcd(-30, -27) = gcd(-30 (-27), -27) = gcd(-3, -27) = 3
- 4. Every factor of -15 is also a factor of 0, so the greatest common divisor of -15 and 0 is just the largest divisor of -15, which is 15.
- 5. gcd(1, -1) = 1
- 6. $lcm(100, 16) = \frac{(100)(16)}{\gcd(100, 16)} = \frac{(100)(16)}{4} = 400$
- 7. lcm(27, -5) = 27(5) = 135 since 5,27 are coprime. Keep in mind that lcm is always defined to be positive.

Problem 3.

First, we verify the fact that a natural number has only even exponents in its prime factorization if and only if it is a perfect square. Let a be a perfect square and write $a = b^2$ for some natural b. Let $b = \prod_{p \in P} p^{e_p}$ be the prime factorization of b with the product taken over the (possibly empty) set P of primes dividing b (the empty product is by convention equal to 1). Then $a = b^2 = \prod_{p \in P} p^{2e_p}$ has all even exponents as required. For the other direction, suppose $c \in \mathbb{N}$ has

prime factorization $c = \prod_p p^{e_p}$ with all of the e_p even, say equal to $2f_p$. Then $c = \left(\prod_p p^{f_p}\right)^2$ is a perfect square.

Now, onto the problem: let $x = \prod_{p \in P} p^{e_p}$ be the prime factorization of x and let $y = \prod_{q \in Q} q^{f_q}$ be the prime factorization of y, where P and Q are the sets of primes dividing x and y, respectively. Then, $p \neq q$ for all $p \in P$ and $q \in Q$, i.e. $P \cap Q = \emptyset$, because x and y are coprime. So, the prime factorization of xy is

$$xy = \prod_{p \in P} p^{e_p} \prod_{q \in Q} q^{f_q} = \prod_{p \in P \cup Q} p^{g_p}$$

where g_p is defined to be e_p if $p \in P$ and f_p if $p \in Q$; this is well-defined because every element of $P \cup Q$ is in either P or Q and no such element is in both. Since xy is a perfect square, all of the g_p are even and for all $p \in P$, we have $e_p = g_p$, so x is a perfect square by the first paragraph. Similarly for y. Notice that this argument works even if P or Q is empty, corresponding to x = 1 or y = 1.

Problem 4.

- 1. Since d|m and e|n, there are integers q, r such that dq = m and er = n. So, mn = (dq)(er) = (de)(qr) and we see that de divides mn.
- 2. Since d|n, we may write n = dq for some $q \in \mathbb{Z}$. Since $n \neq 0$ and $d \neq 0$ (because $d \in \mathbb{N}$), we also have $q \neq 0$, which implies $|q| \ge 1$. Now, $|n| = |q| \cdot |d| \ge |d|$.
- 3. Since c|m and c|n, there exist integers q, r such that m = cq and n = cr. So, xm + yn = xcq + ycr = c(xq + yr) and it follows that c divides xm + yn.

Problem 5.

Suppose $n = dq_1 + r_1 = dq_2 + r_2$ are as stated in the problem. Then, $d(q_2 - q_1) = r_1 - r_2$. Suppose for contradiction $q_1 \neq q_2$. Since r_1 and r_2 are elements of $\{0, \ldots, d-1\}$, we have $-r_2 \leq r_1 - r_2 \leq r_1$ and so $|r_1 - r_2| \leq \max(r_1, r_2) < d$. But by part 2 of the previous problem, we know $d \leq |r_1 - r_2|$ since d divides $r_1 - r_2 = d(q_2 - q_1) \neq 0$. This is a contradiction. So, $q_1 = q_2$ and also $r_1 = r_2$ follows from $d(q_2 - q_1) = r_1 - r_2$.