Modern Algebra I HW 2 Solutions

Theo Coyne

Problem 1.

1. Reflexivity: a < a holds for every a € Q.
Symmetry: a < b does not imply b < a. Take any a < b to see this.

Transitivity: a < b and b < ¢ does imply a < c.
Since symmetry fails, R isn’t an equivalence relation.

2. Reflexivity: a —a =0 € Z is true for every a € R

Symmetry: If a —b € Z, then b—a = —(a — b) is an integer too, since
integers are closed under negation.

Transitivity: If a—b € Z and b—c¢ € Z, then a—c = (a—b)+(b—c) € Z
since the integers are closed under addition.

So, R is an equivalence relation

3. Reflexivity: a + a = 2a is even for every a € Z. So (a,a) ¢ R for
every a € Z.

Symmetry: If a + b is odd, then b+ a is odd too since b+a =a+b
(addition is commutative).

Transitivity: If a+b is odd and b+ c is odd, then a+¢ = (a+b)+ (b+
¢) — 2b is of the form odd + odd — even and so is even. So, for any choice
of (a,b) € R and (b, c) € R, it is necessarily the case that (a,c) ¢ R. Since
such a, b, ¢ exist, transitivity fails.

Since reflexivity and transitivity fail, R isn’t an equivalence relation. Of
course, it’s not necessary to check that reflexivity and transitivity fail this
strongly; it’s enough to give a single example of an a for which (a,a) ¢ R
(for reflexivity) and a single example of a,b, ¢ for which (a,b) € R and
(b,c) € R but (a,c) ¢ R (for transitivity). For example, note that
(1,1) ¢ R because 1 +1 = 2 is even and (0,1) € R, (1,0) € R, but
(0,0) ¢ R.

4. There’s not much to check here. Equality satisfies reflexivity, symmetry,
transitivity. It is an equivalence relation.



5. All of reflexivity, symmetry, and transitivity follow from the same proper-
ties of equality on R.

Reflexivity: For any a € C, we have |a| = |a| because equality (on R)
is reflexive, so (a,a) € R.

Symmetry: If a,b € C satisfy |a| = |b], then we must have |b| = |a],
by symmetry of equality on R.

Transitivity: If |a| = |b] and |b| = |¢|, then |a| = ||, because, you
guessed it, equality is transitive.

6. The condition n = m or n = —m is equivalent to |n| = |m/|, which defines
an equivalence relation on QQ by the above argument.

Remark 1. In general, if X is a set and f : X — Y is a function, we
can define an equivalence relation on X by (xz1,22) € R if f(x1) = f(z2)
since equality (on'Y' ) is an equivalence relation. The last three items are
the clearest examples of this in the problem (take f : X — X the identity,
f: C — R absolute value and [ : Q — R absolute value, respectively) but
in fact every equivalence relation can be realized this way by careful choice
of f. To see this, let Y be the set of equivalence classes of X and set f(x)
to be the equivalence class of x for each x.

Problem 2.

100, 16) = ged(—100 + 96(6), 16) = ged(—4,16) = 4

cd(—
2. gcd(468 528) = ged (468, 528—467) = ged (468, 60) = ged (468—T7(60), 60) =
ged(48,60) = ged(48,12) = 12

(=

3. ged(—30, —27) = ged(—30 — (—27), —27) = ged(—3,—27) = 3

4. Every factor of —15 is also a factor of 0, so the greatest common divisor
of —15 and 0 is just the largest divisor of —15, which is 15.

5. ged(1,-1) =1

6. Lem(100,16) = (it ey = S = 400

7. lem(27,—5) = 27(5) = 135 since 5,27 are coprime. Keep in mind that
lem is always defined to be positive.

Problem 3.

First, we verify the fact that a natural number has only even exponents in its
prime factorization if and only if it is a perfect square. Let a be a perfect square
and write a = b? for some natural b. Let b = HpeP p°? be the prime factorization
of b with the product taken over the (possibly empty) set P of primes dividing
b (the empty product is by convention equal to 1). Then a = b? = Hpeppzep
has all even exponents as required. For the other direction, suppose ¢ € N has



prime factorization ¢ = [[,p® with all of the e, even, say equal to 2f,. Then
2
c= (Hp pr> is a perfect square.

Now, onto the problem: let x = Hpe p P be the prime factorization of x and
let y = quQ g’e be the prime factorization of y, where P and Q are the sets of
primes dividing x and y, respectively. Then, p # g for all p € P and ¢ € Q, i.e.
PN Q =0, because x and y are coprime. So, the prime factorization of xy is

ay=[p" [[d= [ »*

peEP qeQ PEPUQR

where g, is defined to be e, if p € P and f,, if p € @Q; this is well-defined because
every element of PUQ is in either P or () and no such element is in both. Since
xy is a perfect square, all of the g, are even and for all p € P, we have e, = g,
so x is a perfect square by the first paragraph. Similarly for y. Notice that this
argument works even if P or () is empty, corresponding to x =1 or y = 1.

Problem 4.

1. Since d|m and e|n, there are integers ¢, r such that dg = m and er = n.
So, mn = (dq)(er) = (de)(gr) and we see that de divides mn.

2. Since d|n, we may write n = dq for some ¢ € Z. Since n # 0 and
d # 0 (because d € N), we also have ¢ # 0, which implies |¢g| > 1. Now,
In| = lql - |d] = |d].

3. Since ¢/m and c|n, there exist integers g, r such that m = ¢qg and n = cr.
So, xm-+yn = zeq+yer = c(xq+yr) and it follows that ¢ divides xm+yn.

Problem 5.

Suppose n = dq; +11 = dga+12 are as stated in the problem. Then, d(¢g;—q1) =
r1 — ro. Suppose for contradiction gq; # ¢2. Since r; and ro are elements of
{0,...,d — 1}, we have —ry <1y — 19 < 1y and so |r; — ro| < max(ry,re) < d.
But by part 2 of the previous problem, we know d < |r; — | since d divides
r1 — 719 = d(g2 — q1) # 0. This is a contradiction. So, g1 = g2 and also r; = ry
follows from d(g2 — q1) =11 — 72.



