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Appendix C 

Ruler-Compass Constructions 

We are going to show that the classical Greek problems: squaring the circle, 
duplicating the cube, and trisecting an angle, are impossible to solve. As we 
shall see, the discussion uses only elementary field theory; no Galois theory 
is required. 

It is clear one that can trisect a 60° angle with a protractor (or any other 
device than can measure an angle); after all, one can divide any number 
by 3. Therefore, it is essential to state the problems carefully and to agree 
on certain ground rules. The Greek problems specify that only two tools are 
allowed, and each must be used in only one way. Let P and Q be points 
in the plane; we denote the line segment with endpoints P and Q by P Q, 
and we denote the length of this segment by 1 P Q I. A ruler (or straight­
edge) is a tool that can draw the line L(P, Q) determined by P and Q; a 
compass is a tool that draws the circle with radius 1 P Q 1 and center either 
P or Q; denote these circles by C(P; Q) or C(Q; P), respectively. Since 
every construction has only a finite number of steps, we shall be able to 
define "constructible" points inductively. 

Given the plane, we establish a coordinate system by first choosing two 
distinct points, A and A; call the line they determine the x-axis. Use a com­
pass to draw the two circles C(A; A) and C(A; A) of radius IAAI withcen­
ters A and A, respectively. These two circles intersect in two points; the 
line they determine is called the y- axis; it is the perpendicular bisector of 
AA, and it intersects the x-axis in a point 0, called the origin. We define 
the distance lOA 1 to be 1. We have introduced coordinates in the plane; in 
particular, A = (1,0) and A = (-1,0) . 

... -- .... 

Figure 5 
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Informally, one constructs a new point T from (not necessarily distinct) 
old points P, Q, R, and S by using the first pair P, Q to draw a line or cir­
cle, the second pair R, S to draw a line or circle, and then obtaining T as 
one of the points of intersection of the two drawn lines, the drawn line and 
the drawn circle, or the two drawn circles. More generally, a point is called 
constructible if it is obtained from A and A by a finite number of such steps. 
Given a pair of constructible points, we do not assert that every point on the 
drawn line or the drawn circles they determine is constructible. 

Here is the formal discussion. 

Definition. Let E, F, G, and H be (not necessarily distinct) points in the 
plane. A point Z is constructible from E, F, G, and H if either 

(i) Z E L(E, F) n L(G, H), where L(E, F) =1= L(G, H); 

(ii) Z E L(E, F) n C(G; H); 

(iii) Z E C(E; F) n C(G; H), where C(E; F) =1= C(G; H). 

A point Z is constructible if Z = A or Z = A or if there are points 
PI, .. . ,Pn with Z = Pn so that, for all j :::: 1, the point PJ+I is constructible 
from points in {A, A, PI, ... , Pj }. 

Example 38. Let us show that Z = (0, 1) is constructible. We have seen 
above that the origin PI = 0 is constructible. The points P2 = (0,.J3) 
and P3 = (0, -.J3) are constructible, for both lie in C(A; A) n C(A; A), 
and so the y-axis L(P2 , P3 ) can be drawn. Finally, 

Z = (0, 1) E L(P2 , P3 ) n C(O; A). 

In our discussion, we shall freely use any standard result of euclidean ge­
ometry. For example, every angle can be bisected with ruler and compass; 
i.e., if (cos 0, sin 0) is constructible, then so is (cos 0/2, sin 0/2). 

Definition. A complex number z = x + i y is constructible if the point 
(x, y) is a constructible point. 

Example 38 shows that the numbers 1, -1, 0, i.J3, -i.J3, and i are con­
structible numbers. 

Lemma R.t. A complex number z = x + iy is constructible if and only if 
its real part x and its imaginary part yare constructible. 
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Proof. If z is constructible, then a standard euclidean construction draws 
the vertical line L through (x, y) which is parallel to the y-axis. It follows 
that x is constructible, for the point (x, 0) is constructible, being the inter­
section of L and the x-axis. Similarly, the point (0, y) is the intersection of 
the y-axis and a line through (x, y) which is parallel to the x-axis. It fol­
lows that P = (y, 0) is constructible, for it is an intersection point of the 
x -axis and C ( 0; P). Hence, y is a constructible number. 

Conversely, assume that x and y are constructible numbers; that is, Q = 
(x, 0) and P = (y, 0) are constructible points. The point (0, y) is construc­
tible, being the intersection of the y-axis and C(O; P). One can draw the 
vertical line through (x, 0) as well as the horizontal line through (0, y), and 
(x, y) is the intersection of these lines. Therefore, (x, y) is a constructible 
point, and so z = x + i y is a constructible number. • 

Definition. We denote by K the subset of C consisting of all the construc­
tible numbers. 

LemmaR.2. 
(i) If K n JR. is a subfield of JR., then K is a sub field ofC. 

(ii) If K n JR. is a subfield ofJR. and if via E K whenever a E K n JR. is 
positive, then K is closed under square roots. 

Proof. (i) If z = a + ib and w = c + id are constructible, then a, b, c, d E 

K n JR., by Lemma R.1. Hence, a + c, b + d E K n JR., because K n JR. 
is a subfield, and so (a + c) + i(b + d) E K, by Lemma R.1. Similarly, 
zw = (ac -bd) +i(ad +bc) E K. If z =I=- 0, then C l = (a/zZ) -i(b/zz). 
Nowa,b E KnJR.,byLemmaR.I,sothatzZ=a2 +b2 E KnJR.,because 
K n JR. is a subfield of C. Therefore, z -I E K. 

(ii) If z = a + ib E K, then a, b E K n JR., by Lemma R.I, and so 
r2 = a 2 +b2 E K nJR., as in part (i). Since r2 is non-negative, the hypothesis 
gives r E K n JR. and..;r E K n R Now z = re i8 , so that ei8 = r-1z E 

K, because K is a subfield of C. That every angle can be bisected gives 
ei8 / 2 E K. and so Jz = ..;r eiO /2 E K, as desired. • 

Theorem R.3. The set of all constructible numbers K is a subfield of C 
that is closed under square roots and complex conjugation. 

Proof. For the first two statements, it suffices to prove that the properties 
of K n JR. in Lemma R.2 do hold. Let a and b be constructible reals. 
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(i) -a is constructible. 

If P = (a, 0) is a constructible point, then (-a, 0) is the other intersec­
tion of the x-axis and C( 0; P). 

(ii) a + b is constructible. 

I b Q ----,----
\ \ 

\ \ 
\ \ 

\ \ 
a \ b \ 

° P S 

Figure 6 

Let I = (0, 1), P = (a,O) and Q = (b, 1). Now Q is constructible: 
it is the intersection of the horizontal line through I and the vertical line 
through (b,O) [the latter point is constructible, by hypothesis]. The line 
through Q parallel to I P intersects the x-axis in S = (a + b, 0), as de­
sired. Although Figure 6 is drawn with a, b positive, it is clear that this 
construction works for any choice of signs of a, b. 

(iii) ab is constructible. 

° A B 

Figure 7 

By (i), we may assume that both a and b are positive. In Figure 7, A = 
(1,0), B = (l + a, 0), and C = (0, b). Define D to be the intersection of 
the y-axis and the line through B parallel to AC. Since the triangles OAC 
and ° B D are similar, 

10BI/IOAI = 10DI/I0C!; 
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hence (a + 1)/1 = (b + ICDD/b, and ICDI = abo Therefore, b + ab is 
constructible. Since -b is constructible, by (i), we have ab = (b + ab) - b 
constructible, by (ii). 

(iv) If a =j:. 0, then a-l is constructible. 

T 

1 

S 
a 

o A 

Figure 8 

B 

Let A = (1,0), S = (0, a), and T = (0, 1 +a). Define B as the intersection 
of the x-axis and the line through T parallel to AS; thus, B = (1 + u, 0) 
for some u. Similarity of the triangles OSA and OT B gives 

10TI/IOSI = 10BI/IOAI· 

Hence, (1 + a)/a = (1 + u)/1, and so u = a-l. Therefore, 1 + a-l is 
constructible, and so (1 + a-l) - 1 = a-I is constructible. 

(v) If a ~ 0, then ...;a is constructible. 

o A Q P 

Figure 9 

Let A = (1,0) and P = (1 + a, 0); construct Q, the midpoint of 0 P. 
Define R as the intersection of the circle C(Q; 0) with the vertical line 
through A. The (right) triangles AOR and ARP are similar, so that 

10AI/IARI = IARI/IAPI, 

and so IARI = ...;a. 
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(vi) Ifz = a + ib E K, then z = a - ib is constructible. 

By Lemma R.2, K is a subfield of Co Now a, b E K, by Lemma R.I, and 
i E K, by Example 38. Therefore, -bi E K, and so a - ib E K. • 

Corollary R.4. If a, b, c are constructible, then the roots of the quadratic 
ax2 + bx + c are also constructible. 

Proof. This follows from the theorem and the quadratic formula. • 

We now consider subfields of C to enable us to prove an inductive step 
in the upcoming theorem. 

Lemma R.S. Let F be a subfield of C that contains i and that is closed 
under complex conjugation. Let z = a + ib, W = c + id E F, and let 
P = (a, b) and Q = (c, d). 

(i) If a + ib E F, then a E F and b E F. 
(ii) If the equation of L(P, Q) is y = mx + q, where m, q E lR, then 

m,q E F. 
(iii) If the equation of C(P; Q) is (x - a)2 + (y - b)2 = r2, where 

a, b, r E lR, then r2 E F. 

Proof. (i) If z = a+ib E F, then a = t(z+z) E F and ib = t(z-Z) E F; 
since we are assuming i E F, we have b E F. 

(ii) If L(P, Q) is not vertical, its equation is y - b = m(x - a). Now 
m = (d -b)/(c-a) E F, since a, b, c, dE F, and so q = -ma+b E F. 

(iii) The circle C(P; Q) has equation (x - a)2 + (y - b)2 = r2, and 
r2 = (c - a)2 + (d - b)2 E F. • 

Lemma R.6. Let F be a subfield of C that contains i and that is closed 
under complex conjugation. Let P, Q, R, S be points whose coordinates 
lie in F, and let ex = u + iv E Co If either 

or 

ex E L(P, Q) n L(R, S), where L(P, Q) ::/= L(R, S), 

ex E L(P, Q) n C(R; S), 

ex E C(P; Q) n C(R, S), where C(P; Q) ::/= C(R; S), 

then [F(ex) : F] :::: 2. 

Proof. If L(P, Q) is not vertical, then Lemma R.5(ii) says that L(P, Q) 
has equation y = mx + b, where m, b E F. If L(P, Q) is vertical, then 
its equation is x = b because P = (a, b) E L(P, Q), and so b E F, by 



RULER-COMPASS CONSTRUCTIONS 135 

Lemma R.5(i). Similarly, L(R, S) has equation y = nx + c or x = c, 
where m, b, n, c E F. Since these lines are not parallel, one can solve 
the pair of linear equations for (u, v), the coordinates of ex E L(P, Q) n 
L (R, S), and they also lie in F. In this case, therefore, [F (ex) : F] = 1. 

Let L(P, Q) have equation y = mx +q or x = q, and let C(R; S) have 
equation (x - C)2 + (y - d)2 = r2; by Lemma R.5, we have m, q, r2 E F. 
Since ex = u + iv E L(P, Q) n C(R; S), 

r2 _ (u-c)2+(v-d)2 

(u - C)2 + (mu + q - d)2, 

so that u is a root of a quadratic polynomial with coefficients in F n JR. 
Hence, [F(u) : F] ~ 2. Since v = mu + q, we have v E F(u), and, 
since i E F, we have ex E F(u). Therefore, ex = u + iv E F(u), and so 
[F(ex) : F] ~ 2. 

Let C(P; Q) have equation (x - a)2 + (y - b)2 = r2, and let C(R; S) 
have equation (x - c)2 + (y - d)2 = S2. By Lemma R.5, we have r2, s2 E 

F n llt Since ex E C(P; Q) n C(R; S), there are equations 

(u - a)2 + (v - b)2 = r2 and (u - C)2 + (v - d)2 = s2. 

After expanding, both equations have the form u2 + v2 + something = O. 
Setting the something's equal gives an equation of the form tu + t' v + t" = 
0, where t, t', t" E F. Coupling this with the equation of one of the circles 
returns us to the situation of the second paragraph. • 

Theorem R.7. A complex number Z is constructible if and only if there is 
a tower of fields 

Q = Ko C Kl C ... C Kn, 

where Z E Kn and [K)+l : K j ] ~ 2 for all j. 

Proof. If Z is constructible, there is a sequence of points 1, -1, Zl, .. . ,Zn = 
Z with each Zj obtainable from {I, -1, Zl, ... , zj-d; since i is constructi­
ble, we may assume that Z 1 = i. Define 

K j = Q(ZI, ... , Zj). 

Given u = Z)+l, there are points E, F, G, H E K j with one ofthe follow­
ing: 

U E L(E, F) n L(G, H); 

u E L(E, F) n C(G; H); 

u E C(E; F) n C(G; H). 
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We may assume, by induction on j ::=: 1, that K j is closed under complex 
conjugation, so that Lemma R.6 applies to show that [Kj+l : K j ] ::: 2. 
Finally, note that K j + 1 is also closed under complex conjugation, for if Z j + 1 

is a root of a quadratic f(x) E Kj[x], then Zj+l is the other root of f(x). 
To prove the converse, it suffices to prove that if [B : F] = 2, where 

F C K, then B / F is a pure extension of type 2, say, B = F (fJ), where 
fJ E L(P, Q) n C(R; S) for P, Q, R, S E F; it will then follow that B C 

K. Since [B : F] = 2, thereisa with B = F(a), where a is a root of some 
irreducible quadratic x 2 +bx +c E F[x]. If we define fJ = ..jb2 - 4c, then 
B = F (fJ) displays B / F as a pure extension of type 2. To see that fJ can 
be realized as a point in the intersection of a line and a circle, we use the 
construction in Theorem R.3(v). Let the line L be the vertical line through 
A = (1,0) and let the circle have center Q = (i(l + fJ2), 0) and radius 
i(l + fJ2). • 

Corollary R.S. If a complex number z is constructible, then [Q(z) : Q] is 
a power of2. 

Proof. This follows from the theorem and Lemma 49. • 

Remark. The converse of this corollary is false. In Example 36, we saw 
that p (x) = x4 - 4x + 2 is an irreducible polynomial over Q whose Galois 
group Gal(E/Q) is S4, where E/Q is a splitting field of p(x). Were every 
root of p(x) constructible, then every element of E would be constructi­
ble, for all constructible numbers form a subfield of C, by Theorem R.3. 
If H is a Sylow 2-subgroup of G ~ S4, however, then [G : H] = 3; the 
intermediate field EH thus has degree [E H : Q] = [G : H] = 3, and so 
none of its elements are constructible, by Corollary R.8. This contradiction 
shows that some root of p(x) is not constructible, even though every root 
has degree 4 over Q. 

It is now a simple matter to dispose of some famous problems. 

(1) It is impossible to "square the circle." 

The problem is to construct, with ruler and compass, a square whose area 
is equal to the area of a circle of radius 1; in other words, one asks whether 
..j1i is constructible. But it is a classical result, proved by F. Lindemann in 
1882, that 1f, hence ..j1i, is transcendental over Q (see [Hadlock, p. 47]), 
and so it does not lie in any finite extension of Q, let alone one of degree a 
power of 2. 
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(2) It is impossible to "duplicate the cube. " 

The problem is to construct a cube whose volume is 2; in other words, 
is the real cube root of 2, call it a, constructible? Now x 3 - 2 is irreducible 
over Q, by Eisenstein, and so [Q(a) : Q] = 3, which is not a power of 2. 
Corollary R.8 gives the result. This result was first proved by P. L. Wantzel 
in 1837. 

(3) It is impossible to trisect an arbitrary angle. 

An angle () is given by two intersecting lines; it is no loss in generality to 
assume the lines intersect at the origin and that one line is the x-axis. If we 
could draw the angle trisector, then the point (cos () /3, sin () /3), which is 
the intersection of the trisector and the unit circle, would be constructible; 
hence cos () /3 would also be constructible, by Lemma R.I. 

We will now show that 60° cannot be trisected. Computing the real part 
of e3iIJ = (cos () + i sin ())3 gives the trigonometric identity: 

cos 3() = 4 cos3 () - 3 cos (). 

Defining u = 2 cos () and () = 20°, we arrive at the equation 

u3 - 3u - 1 = O. 

It is easy to see that this cubic is irreducible (it has no rational root, by Ex­
ercise 63), and so [Q(u) : Q] = 3. Corollary R.8 shows that u is not con­
structible. This result was also proved by P. L. Wantzel in 1837. 

(4) Regular p-gons. 

Galois theory will be used in discussing this problem. 

Theorem R.9 (Gauss). If p is an odd prime, then a regular p-gon is con­
structible if and only if p = 22' + 1 for some t 2: O. 

Proof. This is again a question of constructibility of a point on the unit 
circle, namely, z = e2rri / p • Now the irreducible polynomial of z over Q is 
the cyclotomic polynomial <l>p(x) of degree p - 1 (Corollary 41). 

Assume z is constructible. By Corollary R.8, p - 1 = 2s for some s. 
We claim that s itself is a power of 2. Otherwise, there is an odd number 
k > 1 with s = km. But xk + 1 factors over IF, (because -1 is a root); 
setting x = 2m thus gives a forbidden factorization of p. 
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Conversely, assume p = 221 + 1 is prime. Since z is a primitive pth root 
of unity, Q(z) is the splitting field of <l>p(x) over Q. Hence Gal(Q(z)/Q) 
has order 221 , and so the Galois group is a 2-group. But a 2-group has a 
normal series in which each factor group has order 2 (this follows easily 
from Theorem G.23); by the fundamental theorem of Galois theory, there is 
a tower of fields Q = Ko C Kl C ... C Km = Q(z) with [KH1 : Ki ] = 2 
for all i, that is, z is constructible, by Theorem R. 7. • 

Remark. Primes of the form 221 + 1 are called Fermat primes. The values 
o ::s t ::s 4 do give primes (they are 3, 5, 17,257,65,537), the next few 
values of t do not give primes, and it is unknown whether any other Fermat 
primes exist. 

Gauss actually gave a geometric construction of the regular 17 -gon. 

Corollary R.IO. It is impossible to construct a regular 7-gon, a regular 
ll-gon, ora regular 13-gon. 

Proof. 7, 11, and 13 are not Fermat primes. • 

The following result is known (see [Hadlock, p. 106]): 

Theorem R.ll. A regular n-gon is constructible if and only if n is a prod­
uct 0/ a power 0/2 and distinct Fermat primes. 

It follows that regular 9-gons and regular 14-gons are not constructible; 
on the other hand, a regular I5-gon is constructible. It is possible that there 
are only finitely many constructible regular n-gons with n is odd, for there 
may be only finitely many Fermat primes. 

Appendix D 

Old-fashioned Galois Theory 

Gimme that old-time Galois theory; 

/fit's good enough/or Galois, then it's good enough/or me! 


