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12. Early on in the proof of the Lindemann-Weierstrauss theorem, 
we had an equation 2::;:1 ajeQ;j = 0, and we needed equations 

2::;:1 ajea(Q;j) = 0, where u is an automorphism of an appropriate 
field. If u is continuous, then we can use infinite series to show that 
u( ea ) = eo-(a). Show that if u is an automorphism of a subfield F of 
C, then u is not continuous unless u = id or u is complex conjugation 
restricted to F. 

15 Ruler and Compass Constructions 

In the days of the ancient Greeks, some of the major mathematical ques­
tions involved constructions with ruler and compass. In spite of the ability 
of many gifted mathematicians, a number of questions were left unsolved. 
It was not until the advent of field theory that these questions could be 
answered. We consider in this section the idea of constructibility by ruler 
and compass, and we answer the following four classical questions: 

1. Is it possible to trisect any angle? 

2. Is it possible to double the cube? That is, given a cube of volume V, 
a side of which can be constructed, is it possible to construct a line 
segment whose length is that of the side of a cube of volume 2V? 

3. Is it possible to square the circle? That is, given a constructible circle 
of area A, is it possible to construct a square of area A? 

4. For which n is it possible to construct a regular n-gon? 

The notion of ruler and compass construction was a theoretical one to the 
Greeks. A ruler was taken to be an object that could draw perfect, infinitely 
long lines with no thickness but with no markings to measure distance. The 
only way to use a ruler was to draw the line passing through two points. 
Similarly, a compass was taken to be a device that could draw a perfect 
circle, and the only way it could be used was to draw the circle centered 
at one point and passing through another. The compass was sometimes 
referred to as a "collapsible compass"; that is, after drawing a circle, the 
compass could not be lifted to draw a circle centered at another point with 
the same radius as that of the previous circle. Likewise, given two points a 
distance d apart, the ruler cannot be used to mark a point on another line 
a distance d from a given point on the line. 

The assumptions of constructibility are as follows. Two points are given 
and are taken to be the initial constructible points. Given any two con­
structible points, the line through these points can be constructed, as can 
the circle centered at one point passing through the other. A point is con­
structible if it is the intersection of constructible lines and circles. 
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The first thing we note is that the collapsibility of the compass is not a 
problem, nor is not being able to use the ruler to mark distances. Given two 
constructible points a distance d apart, and a line £ with a point P on £, we 
can construct a point Q on £ a distance d from P. Also, if we can construct 
a circle of radius r, given any constructible point P, we can construct the 
circle of radius r centered at P. These facts are indicated in Figure 15.I. 
It is left as an exercise (Problem 4) to describe the construction indicated 
by the figure. 
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FIGURE 15.1. Construction of Q on e a distance d from P. 

There are some standard constructions from elementary geometry that 
we recall now. Given a line and a point on the line, it is possible to construct 
a second line through the point perpendicular to the original line. Also, 
given a line and a point not on the line, it is possible to construct a second 
line parallel to the original line and passing through the point. These facts 
are indicated in Figure 15.2. 

FIGURE 15.2. Construction of lines perpendicular and parallel to e passing 
through x. 

So far, our discussion has been purely geometric. We need to describe 
ruler and compass constructions algebraically in order to answer our four 
questions. To do this, we turn to the methods of analytic geometry. Given 
our original two points, we set up a coordinate system by defining the x­
axis to be the line through the points, setting one point to be the origin 
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and the other to be the point (1,0). We can draw the line perpendicular to 
the x-axis through the origin to obtain the y-axis. 

Let a E JR. We say that a is a constructible number if we can construct 
two points a distance lal apart. Equivalently, a is constructible if we can 
construct either of the points (a,O) or (O,a). If a and b are constructible 
numbers, elementary geometry tells us that a + b, a - b, ab, and alb (if 
b -I 0) are all constructible. Therefore, the set of all constructible numbers 
is a subfield of JR. Furthermore, if a > 0 is constructible, then so is Va. 
These facts are illustrated in Figures 15.3-15.5. 

f----- a + b -------1 f------ a ------

a ---_+_- b ----1 ---a-b -----+- b ----1 

FIGURE 15.3. Construction of a + b and a-b. 
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FIGURE 15.4. Construction of ab and a/b. 

Suppose that P is a constructible point, and set P = (a, b) in our co­
ordinate system. We can construct the lines through P perpendicular to 
the x-axis and y-axis; hence, we can construct the points (a, 0) and (0, b). 
Therefore, a and b are constructible numbers. Conversely, if a and b are con­
structible numbers, we can construct (a,O) and (0, b), so we can construct 
P as the intersection of the line through (a, 0) parallel to the y-axis with the 
line through (0, b) parallel to the x-axis. Thus, P = (a, b) is constructible 
if and only if a and b are constructible numbers. 

In order to construct a number e, we must draw a finite number of lines 
and circles in such a way that lei is the distance between two points of 
intersection. Equivalently, we must draw lines and circles so that (e, 0) is 
a point of intersection. If we let K be the field generated over Q by all 
the numbers obtained in some such construction, we obtain a subfield of 
the field of constructible numbers. To give a criterion for when a number 
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FIGURE 15.5. Construction of Va. 

is constructible, we need to relate constructibility to properties of the field 
extension K /Q. We do this with analytic geometry. Let K be a subfield of 
R Given any two points in the plane of K, we obtain a line through these 
points. This will be called a line in K. It is not hard to show that a line in 
K has an equation of the form ax + by + c = 0 with a, b, c E K. If P and 
Q are points in the plane of K, the circle with center P passing through Q 
is called a circle in K. Again, it is not hard to show that the equation of a 
circle in K can be written in the form x 2 + y2 + ax + by + c = 0 for some 
a, b, c E K. The next lemma gives us a connection between constructibility 
and field extensions. 

Lemma 15.1 Let K be a subfield of R 

1. The intersection of two lines in K is either empty or is a point in the 
plane of K. 

2. The intersection of a line and a circle in K is either empty or consists 
of one or two points in the plane of K(..JU) for some u E K with 
u 2: o. 

3. The intersection of two circles in K is either empty or consists of one 
or two points in the plane of K(..JU) for some u E K with u 2: o. 

Proof. The first statement is an easy calculation. For the remaining two 
statements, it suffices to prove statement 2, since if x 2 +y2 +ax +by+c = 0 
and x2 + y2 + a' x + b' y + c' = 0 are the equations of circles C and C', 
respectively, then their intersection is the intersection of C with the line 
(a - a')x + (b - b')y + (c - c') = O. So, to prove statement 2, suppose that 
our line L in K has the equation dx + ey + f = O. We assume that d -=I- 0, 
since if d = 0, then e -=I- O. By dividing by d, we may then assume that 
d = 1. Plugging -x = ey + f into the equation of C, we obtain 

(e2 + 1)y2 + (2ef - ae + b)y + (J2 - af + c) = O. 
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Writing this equation in the form o:y2 + j3y + , = 0, if 0: = 0, then y E K. 
If 0: of- 0, then completing the square shows that either L n C = 0 or 
y E K( J 132 - 40:,) with 132 - 40:, ~ O. 0 

From this lemma, we can turn the definition of constructibility into a 
property of field extensions of Q, and in doing so obtain a criterion for 
when a number is constructible. 

Theorem 15.2 A real number c is constructible if and only if there is a 
tower of fields Q = Ko ~ Kl ~ ... ~ Kr such that c E Kr and [Ki+l : 
KiJ :::: 2 for each i. Therefore, if c is constructible, then c is algebraic over 
Q, and [Q(c) : QJ is a power of 2. 

Proof. If c is constructible, then the point (c,O) can be obtained from 
a finite sequence of constructions starting from the plane of Q. We then 
obtain a finite sequence of points, each an intersection of constructible lines 
and circles, ending at (c,O). By Lemma 15.1, the first point either lies in 
Q or in Q( JU) for some u. This extension has degree either 1 or 2. Each 
time we construct a new point, we obtain a field extension whose degree 
over the previous field is either 1 or 2 by the lemma. Thus, we obtain a 
sequence of fields 

Q = Ko ~ Kl ~ K2 ~ ... ~ Kr 

with [Ki+l : KiJ :::: 2 and c E K r . Therefore, [Kr : QJ = 2n for some n. 
However, [Q(c) : QJ divides [Kr : Q], so [Q(c) : QJ is also a power of 2. 

For the converse, suppose that we have a tower Q = Ko ~ Kl ~ ... ~ Kr 
with c E Kr and [Ki+l : KiJ :::: 2 for each i. We show that c is con­
structible by induction on r. If r = 0, then CEQ, so c is constructible. 
Assume then that r > 0 and that elements of K r - 1 are constructible. 
Since [Kr : Kr-1J :::: 2, the quadratic formula shows that we may write 
Kr = Kr-1(Ja) for some a E K r- 1. Since a is constructible by assump­
tion, so is Ja. Therefore, Kr = K r- 1 (Ja) lies in the field of constructible 
numbers; hence, c is constructible. 0 

With this theorem, we are now able to answer the four questions posed 
earlier. We first consider trisection of angles. An angle of measure () is 
constructible if we can construct two intersecting lines such that the angle 
between them is (). For example, a 60° angle can be constructed because 
the point (,;3/2,1/2) is constructible, and the line through this point and 
(0,0) makes an angle of 60° with the x-axis. Suppose that P is the point 
of intersection on two constructible lines. By drawing a circle of radius 1 
centered at P, Figure 15.6 shows that if () is the angle between the two 
lines, then sin () and cos () are constructible numbers. Conversely, if sin () 
and cos () are constructible, then () is a constructible angle (see Problem 
2). In order to trisect an angle of measure (), we would need to be able to 
construct an angle of () /3. 
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FIGURE 15.6. Construction of sines and cosines. 

Theorem 15.3 It is impossible to trisect a 60° angle by ruler and compass 
construction. 

Proof. As noted above, a 60° angle can be constructed. If a 60° angle can be 
trisected, then it is possible to construct the number a = cos 20°. However, 
the triple angle formula cos 3£1 = 4 cos3 £I - 3 cos £I gives 4a3 - 3a = cos 60° = 
1/2. Thus, a is algebraic over IQ. The polynomial 8x3 - 6x -1 is irreducible 
over IQ because it has no rational roots. Therefore, [1Q(a) : IQJ = 3, so a is 
not constructible. A 20° angle cannot then be constructed, so a 60° degree 
angle cannot be trisected. D 

This theorem does not say that no angle can be trisected. A 90° angle 
can be trisected, since a 30° angle can be constructed. This theorem only 
says that not all angles can be trisected, so there is no method that will 
trisect an arbitrary angle. 

The second classical impossibility we consider is the doubling of a cube. 

Theorem 15.4 It is impossible to double a cube of length 1 by ruler and 
compass construction. 

Proof. The length of a side of a cube of volume 2 is ~. The minimal 
polynomial of ~ over IQ is x 3 - 2. Thus, [IQ(~) : IQJ = 3 is not a power 
of 2, so ~ is not constructible. D 

The third of the classical impossibilities is the squaring of a circle. For 
this, we need to use the fact that 7r is transcendental over IQ. 

Theorem 15.5 It is impossible to square a circle of radius 1. 

Proof. We are asking whether we can construct a square of area 7r. To do 
so requires us to construct a line segment of length Vi, which is impossible 
since Vi is transcendental over IQ by the Lindemann-Weierstrauss theorem; 
hence, Vi is not algebraic of degree a power of 2. D 
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Our last question concerns construction of regular n-gons. To determine 
which regular n-gons can be constructed, we will need information about 
cyclotomic extensions. Recall from Section 7 that if w is a primitive nth 
root of unity, then [Q(w) : Q] = ¢(n), where ¢ is the Euler phi function. 

Theorem 15.6 A regular n-gon is constructible if and only if ¢(n) is a 
power of 2. 

Proof. We point out that a regular n-gon is constructible if and only 
if the central angles 27f / n are constructible, and this occurs if and only 
if cos(27f/n) is a constructible number. Let w = e2rri / n = cos(27f/n) + 
i sin(27f In), a primitive nth root of unity. Then cos(27f In) = ~ (w + w- 1 ), 

since w- 1 = cos(27f/n) - isin(27f/n). Thus, cos(27f/n) E Q(w). However, 
cos(27f/n) E IR and w ~ IR, so Q(w) f:. Q(cos(27f/n)). But w is a root of x 2 _ 

2cos(27f/n)x + 1, as an easy calculation shows, so [Q(w) : Q(cos(27f/n))] = 
2. Therefore, if cos(27f/n) is constructible, then [Q(cos(27f/n)) : Q] is a 
power of 2. Hence, ¢(n) = [Q(w) : Q] is also a power of 2. 

Conversely, suppose that ¢(n) is a power of 2. The field Q(w) is a 
Galois extension of Q with Abelian Galois group by Proposition 7.2. If 
H = Gal(Q(w)/Q(cos(27f/n))), by the theory of finite Abelian groups there 
is a chain of subgroups 

with IHi+l : Hil = 2. If Li = F(Hi ), then [Li : Li+d = 2; thus, Li = 
Li+l(yUi) for some Ui. Since Li <;;; Q(cos(27f/n)) <;;; IR, each of the Ui 2: 
O. Since the square root of a constructible number is constructible, we 
see that everything in Q(cos(27f/n)) is constructible. Thus, cos(27f/n) is 
constructible, so a regular n-gon is constructible. 0 

This theorem shows, for example, that a regular 9-gon is not constructible 
and a regular 17-gon is constructible. An explicit algorithm for constructing 
a regular 17-gon was given by Gauss in 1801. If n = p"'{" ... p;!'r is the prime 
factorization of n, then ¢(n) = f1 pmi-l(Pi -1). Therefore, ¢(n) is a power 
of 2 if and only if n = 2S ql ... qr, where r, s 2: 0, and the qi are primes of the 
form 2m + 1. In order to determine which regular n-gons are constructible, 
it then reduces to determining the primes of the form 2m + 1. 

Problems 

1. Use the figures in this section to describe how to construct a+b, a-b, 
ab, alb, and Va, provided that a and b are constructible. 

2. If sin () and cos () are constructible numbers, show that () is a con­
structible angle. 
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3. If an angle () can be constructed, show that a line passing through 
the origin can be constructed such that the angle between this line 
and the x-axis is (). 

4. Use the figures of this section to answer the following questions. 

(a) Given two points a distance d apart and a constructible point P 
on a line C, show that it is possible to construct a point Q on C 
a distance d from P. 

(b) Given that some circle of radius T can be constructed, if P is a 
constructible point, show that the circle of radius T centered at 
P can be constructed. 

(c) Given a line C and a point P on C, show that it is possible to 
construct the line through P perpendicular to C. 

(d) Given a line C and a point P not on C, show that it is possible 
to construct the line through P parallel to C. 

5. Let c E lR. be a root of an irreducible quartic over Q. Let N be the 
normal closure of Q(c)/Q. 

(a) If Gal(N/Q) is isomorphic to either D4 or a group of order 4, 
show that c is constructible. 

(b) If Gal(N/Q) is isomorphic to either A4 or 8 4 , show that c is not 
constructible. 

6. Let c E lR. be algebraic over Q, and let N be the normal closure of 
Q(c)/Q. If [N : QJ is a power of 2, show that c is constructible. 

7. This problem gives a partial converse to Theorem 15.2. If c E lR. is 
algebraic over Q and if N is the normal closure ofQ(c)/Q, then show 
that c is constructible if and only if [N : QJ is a power of 2. 
(The criterion for constructibility proven in this section is much like 
the definition of solvable by radicals given in Section 16. If you work 
this problem, some proofs of the next section will be easier to under­
stand.) 

8. A Fermat number is a number of the form 22r + 1 for some T. Suppose 
that p is an odd prime such that a regular p-gon is constructible. Show 
that p is a Fermat number. 

16 Solvability by Radicals 

In this section, we address one of the driving forces of mathematics for hun­
dreds of years, the solvability of polynomial equations. As we saw in Section 


