Modern Algebra II, fall 2020, Instructor M.Khovanov

Homework 9, due Wednesday November 11.

1. (15 points) (a) Given a field E and an automorphism σ of E, prove that $E^{\sigma} = \{a \in E | \sigma(a) = a\}$ is a subfield of E.

(b) With E and σ as above, let $\tau = \sigma^2$. Explain why E^{σ} is a subfield of E^{τ} . Can you give an example of E and σ such that the inclusion $E^{\sigma} \subset E^{\tau}$ is proper (not an equality)? Can you give an example when both inclusions $E^{\sigma} \subset E^{\tau} \subset E$ are proper (neither one is an equality)?

2. (20 points) For any automorphism σ of a ring R we can define the subring R^{σ} of elements fixed by σ .

(a) Give a definition of R^{σ} .

(b) Suppose R = F[x], where F is a field, and σ takes a polynomial f(x) to f(-x). For instance, if $f(x) = a + bx + cx^2$, then $\sigma(f)$ is the polynomial $a - bx + cx^2$. Prove that the subring R^{σ} of polynomials invariant under σ (equivalently, fixed by σ) is the subring $F[x^2]$ if char $F \neq 2$. What happens when F has characteristic two?

(c) Suppose now $R = \mathbb{C}[x]$, where \mathbb{C} is the field of complex numbers, and $\zeta = e^{2\pi i/m}$ is the first *m*-th root of unity as we go along the unit circle anticlockwise. To ζ assign automorphism σ of R taking f(x) to $f(\zeta x)$. Write down the effect of this automorphism on an arbitrary polynomial $f(x) = a_0 + a_1 x + \cdots + a_n x^n$. Then prove that the subring R^{σ} of invariant polynomials under this automorphism is the subring $\mathbb{C}[x^m]$.

(d) (optional) Consider the automorphism τ of $\mathbb{C}[x]$ that takes f(x) to f(x+1). Show that constant polynomials are the only polynomials fixed by τ .

3. (15 points) How many subfields does finite field \mathbb{F}_{4096} have? What are their cardinalities? What is the order of the Frobenius automorphism of F_{4096} ?