
Modern Algebra II, fall 2020, Instructor M.Khovanov

Homework 11, due Wednesday November 25.

1. (15 points) 1. Which of the following numbers are constructible using a ruler
and compass? Briefly justify your answer.
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2. (10 points) Briefly sketch the steps involved into constructing numbers√√
2 + 1 and

√√√
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√

3 + 1 using a ruler and compass.

3. (20 points) Suppose we have a ruler and compass, as before, but are given 3
points A,B,C on a line in the plane, with B between A and C and distances
|AB| = 1, |BC| = 3

√
2. Explain how to modify the arguments in Monday’s

lecture to show that 5
√

2 is not constructible with these assumptions. (Hint:
What are the properties of the tower of fields Q ⊂ K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn

where the field Ki is generated by the coordinates of A,B,C and of the next i
points that we create? What can you say about the degree [Kn : Q]?)

4. (20 points) We mentioned in class that x4 + 1 is irreducible over Q. Prove
this using the substitution x = y + 1. Check that the same argument shows
irreducibility of x2

n

+ 1 over Q for any any n. (Hint: reduce coefficients modulo
two to prove that they are even and use the Eisenstein criterion.) Explain how

to use this result to check that the splitting field E of x2
n+1 − 1 over Q has

degree 2n. How many primitive 2n+1-th roots of unity are there in E? What is
the size of the Galois group G = Gal(E/Q)? Explain why the Galois group is
abelian.

5. (15 points) Recall the arguments from the lecture that Gal(E/Q) is isomor-
phic to C2 × C2, where E is the splitting field of x4 + 1, and write a proof of
this result in your own words. Explain how the Galois correspondence between
intermediate fields and Galois groups works in this example.

6. (20 points) (a) Recall the properties of Euler’s phi function φ(n). Prove
that φ(pn) = pn−pn−1 for a prime p. Write down explicitly groups of invertible
elements Z∗

5, Z∗
7, Z∗

8. What result do we use to conclude that the first two groups
are cyclic? Alternatively, you can find explicit generators for these groups.
(b) Check that the group Z∗

8 is not cyclic. Can you use this result to show that
Z∗
2n is not cyclic for any n ≥ 3? (Hint: set up a surjective ring homomorphism

Z2n −→ Z8 and investigate the effect of this homomorphism on the groups of
invertible elements of these two rings.)

7. (20 points) (a) Explain why the field Fp that we defined in the last lecture,
the algebraic closure of Fp, has countably many elements.

(b) Show that the group F∗
p of invertible elements is not cyclic.



(c) Show that the Frobenius map a 7→ ap is an automorphism of Fp of infinite
order.

(d) Show that the group F∗
p of invertible elements does not contain a cyclic

group of order p. Hint: such a cyclic group would consists of p-th roots of unity.
What can we say about p-th roots of unity in a finite field Fq, q = pn?

8. [This is a review exercise to recall finite fields and factorizations of polyno-
mials over Fp, do not write down a solution.]

(a) What do we know about factorization of the polynomial xp
n − x over the

prime field Fp? How does it factor in the special case xp − x?

(b) Write down a factorization of the polynomial f(x) into the product of irre-
ducibles over the field Fp, where

(1) f(x) = x9 − x and p = 3,

(2) Recall that any element a of Fp has a p-th root in Fp. Why? How can we
factor the polynomial f(x) = xp − 2 over Fp if we are given b ∈ Fp such that
bp = a?

9. [another review exercise, do not submit] Find all monic irreducible polyno-
mials of degree two over the field F4. For this exercise, first choose an explicit
model of F4 as F2[α]/(α2 + α + 1). How can one list all monic degree two
polynomials over F4? You’d then need to exclude reducible polynomials.

The midterm will also cover field extensions (degree of the extension, algebraic
versus transcendental extensions), isomorphisms of fields and how they extend to
larger fields, finite fields, Gauss lemma, Eisenstein criterion, and the technique
from homework to check for roots in Q of a polynomial in Z[x]. Separable
and normal extensions and splitting fields. Examples of field extensions, their
degrees and Galois groups. Galois main theorem and Galois correspondence
between intermediate fields and subgroups of the Galois group. Euler’s phi
function and cyclotomic extensions. Algebraic closure of Fp.
Please use Friedman notes ”Galois theory I” and his earlier notes, posted on
our website, for a review. Rotman’s book is another resource.
If you’d like to see a more involved example of Galois groups and Galois cor-
respondence, take a look at Friedman’s notes ”Galois theory III” (link on the
website). In the middle of these notes he works out the correspondence for the
splitting field of x4− 2 over Q, with the dihedral group D4 as the Galois group.
There are more choices there for subgroups and subfields than in the examples
worked out in class. It’s an excellent practice to go through his arguments and
fill in the details.


