
Extension Fields I

Throughout these notes, the letters F , E, K denote fields.

1 Introduction to extension fields

Let F , E be fields and suppose that F ≤ E, i.e. that F is a subfield of E.
We will often view F as the primary object of interest, and in this case refer
to E as an extension field or simply extension of F . For example, R is an
extension field of Q and C is an extension field of R.

Now suppose that E is an extension field of F and that α ∈ E. We have
the evaluation homomorphism evα : F [x]→ E, whose value on a polynomial
f ∈ F [x] is f(α). By definition, the image Im evα = F [α] is a subring of E.
It is the smallest subring of E containing both F and α, and it is an integral
domain as it is a subring of a field. Note that, by definition,

F [α] = Im evα = {f(α) : f ∈ F [x]}.

There are now two cases:

Case I: Ker evα = {0}. In other words, if f ∈ F [x] is a nonzero polynomial,
then f(α) 6= 0, i.e. α is not the root of any nonzero polynomial in f . In
this case, we say that α is transcendental over F . If α is transcendental
over F , then evα : F [x] → E is injective, and hence evα is an isomorphism
from F [x] to F [α] ⊆ E. Note that evα(x) = α. In particular, F [α] is not
a field, since F [x] is not a field. By results on the field of quotients of an
integral domain, evα extends to an injective homomorphism ẽvα : F (x) →
E. Clearly, the image of ẽvα is the set of all quotients in E of the form
f(α)/g(α), where f, g ∈ F [x] and g 6= 0. By general properties of fields of
quotients, f1(α)/g1(α) = f2(α)/g2(α) ⇐⇒ f1(α)g2(α) = f2(α)g1(α) ⇐⇒
f1g2 = f2g1. Defining

F (α) = Im ẽvα = {f(α)/g(α) : f, g ∈ F [x], g 6= 0},
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we see that F (α) is a field and it is the smallest subfield of E containing F
and α.

For example, if F = Q and E = R, “most” elements of R are transcen-
dental over Q. In fact, it is not hard to show that the set of elements of R
which are not transcendental over Q is countable, and since R is uncountable
there are an uncountable number of elements of R which are transcendental
over Q. It is much harder to show that a given element of R is transcen-
dental over Q. For example e and π are both transcendental over Q. (The
transcendence of π shows that it is impossible to “square the circle,” in other
words to construct a square with straightedge and compass whose area is
π.) Hence, the subring Q[π] of R is isomorphic to the polynomial ring Q[x]:
every element of Q[π] can be uniquely written as a polynomial

∑n
i=0 aiπ

i

in π, where the ai ∈ Q. The field Q(π) is then the set of all quotients,
f(π)/g(π), where f, g ∈ Q[x] and g 6= 0. Finally, note that the property of
transcendence is very much a relative property. Thus, π ∈ R is transcen-
dental over Q, but π is not transcendental over R; in fact, π is a root of the
nonzero polynomial x− π ∈ R[x].

For another example, let F be an arbitrary field and consider F (x), the
field of rational functions with coefficients in F . Thus F (x) is the field of
quotients of the polynomial ring F [x], and the elements of F (x) are quotients
f/g, where f, g ∈ F [x] and g 6= 0. However, when we think of F (x) as a
field in its own right, it is traditional to rename the variable x by some
other letter such as t,which we still refer too as an “indeterminate,” to avoid
confusion with x which we reserve for the “variable” of a polynomial. With
this convention, the field F (t) (with t an indeterminate) is an extension field
of F . Moreover, t ∈ F (t) is transcendental over F , since, if f ∈ F [x] is a
nonzero polynomial, then evt f = f(t), which is a nonzero element of F [t]
and hence of F (t).

Case II: Ker evα 6= {0}. In other words, there exists a nonzero polynomial
f ∈ F [x] f(α) = 0. In this case, we say that α is algebraic over F . This will
be the important case for us, so we state the main result as a proposition:

Proposition 1.1. Suppose that E is an extension field of F and that α ∈ E
is algebraic over F . Then Ker evα = (p), where p ∈ F [x] is an irreducible
polynomial. Moreover, if f ∈ F [x] is any polynomial such that f(α) = 0,
then p

∣∣f . The homomorphism evα induces an isomorphism, denoted êvα,
from F [x]/(p) to F [α], with the property that êvα(x + (p)) = α. Finally,
F [α] = Im evα is a field.

Proof. By hypothesis, Ker evα is a nonzero ideal in F [x]. Moreover, by the
proof of the first isomorphism theorem, the homomorphism evα induces an
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isomorphism, denoted êvα, from F [x]/Ker evα to F [α], and in particular
F [α] ∼= F [x]/Ker evα. By the definition of êvα, if I = Ker evα, then we have
êvα(g + I) = evα(g) = g(α). In particular êvα(x + Ker evα) = α. Since
F [α] is a subring of a field, it is an integral domain. Thus F [x]/Ker evα is
also an integral domain, and hence Ker evα is a prime ideal. But we have
seen that every nonzero prime ideal is maximal, hence F [α] is a subfield
of E, and that the nonzero prime ideals are exactly those of the form (p),
where p ∈ F [x] is an irreducible polynomial. Thus Ker evα = (p) for some
irreducible polynomial p ∈ F [x]. By definition, f(α) = 0 ⇐⇒ f ∈ Ker evα
⇐⇒ p

∣∣f .

Definition 1.2. Let E be an extension field of F and suppose that α ∈ E
is algebraic over F . We set F (α) = F [α]. As in Case I, F (α) is a subfield
of E and is the smallest subfield of E containing both F and α.

With E and α as above, suppose that p1, p2 ∈ F [x] are two polynomials
such that Ker evα = (p1) = (p2). Then p1

∣∣p2 and p2
∣∣p1. Then there exists a

c ∈ F ∗ such that p2 = cp1. In particular, there is a unique monic polynomial
p ∈ F [x] such that Ker evα = (p).

Definition 1.3. Let E be an extension field of F and suppose that α ∈ E
is algebraic over F . The unique monic irreducible polynomial which is a
generator of Ker evα will be denoted irr(α, F ).

Thus, if E is an extension field of F and α ∈ E is algebraic over F , then
irr(α, F ) is the unique monic irreducible polynomial in F [x] for which α is
a root. One way to find irr(α, F ) is as follows:

Lemma 1.4. Suppose that E is an extension field of F and that α ∈ E.
Let p ∈ F [x] be an irreducible monic polynomial such that p(α) = 0. Then
p = irr(α, F ).

Proof. By Proposition 1.1, irr(α, F ) divides p, but since p is irreducible,
there exists a c ∈ F ∗ such that p = c irr(α, F ). Finally, since both p and
irr(α, F ) are monic, c = 1, i.e. p = irr(α, F ).

For example, x2 − 2 = irr(
√

2,Q), since p = x2 − 2 is monic and (as
we have seen) irreducible and p(

√
2) = 0. As in Case I, the definition of

irr(α, F ) is relative to the field F . For example, irr(
√

2,Q(
√

2)) = x −
√

2.
Note that x−

√
2 is a factor of x2 − 2 in Q(

√
2)[x], but that x−

√
2 is not

an element of Q[x].
One problem with finding irr(α, F ) is that we don’t have many ways

of showing that a polynomial is irreducible. So far, we just know that a
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polynomial of degree 2 or 3 is irreducible ⇐⇒ it does not have a root.
Here are a few more examples that we can handle by this method:

Example 1.5. (1) irr( 3
√

2,Q) = x3 − 2 since 3
√

2 is irrational.

(2) There is no element α ∈ Q(
√

2) such that α2 = 3 (by a homework
problem). In other words,

√
3 /∈ Q(

√
2). Thus irr(

√
3,Q(

√
2)) = x2 − 3.

(3) If α =
√

2 +
√

3, then it is easy to check (homework) that α is a root of
the polynomial x4 − 10x2 + 1. Thus irr(α,Q) divides x4 − 10x2 + 1, but we
cannot conclude that they are equal unless we can show that x4 − 10x2 + 1
is irreducible, or by some other method. We will describe one such method
in the next section.

Definition 1.6. Let E be an extension field of F . Then we say that E is
a simple extension of F if there exists an α ∈ E such that E = F (α). Note
that this definition makes sense both in case α is algebraic over F and in
case it is transcendental over F . However, we shall mainly be interested in
the case where α is algebraic over F .

In many cases, we want to consider extension fields which are not nec-
essarily simple extensions.

Definition 1.7. Let E be an extension field of F and let α1, . . . , αn ∈ E.
We define F (α1, . . . , αn) to be the smallest subfield of E containing F and
α1, . . . , αn. If E = F (α1, . . . , αn), we say that E is generated over F by
α1, . . . , αn. It is easy to see that F (α1, . . . , αn) = F (α1, . . . , αn−1)(αn). In
fact, by definition, both sides of this equality are the smallest subfield of E
containing F , α1, . . . , αn−1, and αn. More generally, for every k, 1 ≤ k ≤ n,
F (α1, . . . , αn) = F (α1, . . . , αk)(αk+1, . . . , αn).

Example 1.8. Consider the field Q(
√

2,
√

3). Then α =
√

2 +
√

3 ∈
Q(
√

2,
√

3), and hence Q(α) ≤ Q(
√

2,
√

3). However, it is another homework
problem to show that

√
2 ∈ Q(α) and that

√
3 ∈ Q(α). Thus Q(

√
2,
√

3) ≤
Q(α) and hence Q(

√
2,
√

3) = Q(α). In conclusion, a field such as Q(
√

2,
√

3)
which is not obviously a simple extension may turn out to be a simple ex-
tension. We shall analyze this in much greater detail later.

2 Finite and algebraic extensions

Let E be an extension field of F . Then E is an F -vector space.

Definition 2.1. Let E be an extension field of F . Then E is a finite
extension of F if E is a finite dimensional F -vector space. If E is a finite
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extension of F , then the positive integer dimF E is called the degree of E
over F , and is denoted [E : F ]. Note that [E : F ] = 1 ⇐⇒ E = F .

Proposition 2.2. Suppose that E = F (α) is a simple extension of F . Then
E is a finite extension of F ⇐⇒ α is algebraic over F . In this case

[E : F ] = degF α,

where by definition degF α is the degree of irr(α, F ). Finally, if α is algebraic
over F and degF α = irr(α, F ) = d, then 1, α, . . . , αd−1 is a basis for F (α)
as an F -vector space.

Proof. First suppose that α is transcendental over F . Then we have seen
that F ≤ F [α] ≤ F (α), and that evα : F [x] → F [α] is an isomorphism,
which is clearly F -linear. Since F [x] is not a finite dimensional F -vector
space, F [α] is also not a finite dimensional F -vector space. But then F (α)
is also not a finite dimensional F -vector space, since every vector subspace
of a finite dimensional F -vector space is also finite dimensional. Hence F (α)
is not a finite extension of F .

Now suppose that α is algebraic over F . Then evα induces an isomor-
phism êvα : F [x]/(irr(α, F )) → F [α] = F (α). Concretely, given g ∈ F [x],
êvα(g + (irr(α, F )) = g(α). Moreover, every coset in the quotient ring
F [x]/(irr(α, F )) can be uniquely written as

∑d−1
i=0 cix

i + (irr(α, F )), where
d = deg irr(α, F ). It follows that every element of F [α] = F (α) can be
uniquely written as

∑d−1
i=0 ciα

i. Thus, 1, α, . . . , αd−1 is a basis for F (α) as
an F -vector space. It then follows that dimF F (α) = d.

To be able to calculate the degree [E : F ] and use it to extract more
information about field extensions, we shall need to consider a sequence of
extension fields:

Proposition 2.3. Suppose that F , E, and K are fields such that F ≤ E ≤
K, i.e. that E is an extension field of F and that K is an extension field
of E. Then K is a finite extension field of F ⇐⇒ K is a finite extension
field of E and E is a finite extension field of F . Moreover, in this case

[K : F ] = [K : E][E : F ].

Proof. First suppose that K is a finite extension field of F . Then E is an F -
vector subspace of the finite dimensional F -vector space K, hence E is finite
dimensional and thus is a finite extension of F . Also, there exists an F -basis
α1, . . . , αn of K. Thus every element of K is a linear combination of the
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αi with coefficients in F and hence with coefficients in E. Thus α1, . . . , αn
span K as an E-vector space, so that K is a finite dimensional E-vector
space. Thus K is a finite extension field of E.

Conversely, suppose that K is a finite extension field of E and E is a
finite extension field of F . The proof then follows from the following more
general lemma (taking V = K):

Lemma 2.4. Let E be a finite extension field of F and let V be an E-vector
space. Then, viewing V as an F -vector space, V is a finite-dimensional
F -vector space ⇐⇒ V is a finite-dimensional E-vector space, and in this
case

dimF V = [E : F ] dimE V.

Proof. =⇒ : As in the proof above, an F -basis of V clearly spans V over
E, hence if V is a finite-dimensional F -vector space, then it is a finite-
dimensional E-vector space.
⇐= : Let v1, . . . , vn be an E-basis for V and let α1, . . . , αm be an F -

basis for E. We claim that αivj is an F -basis for V . First, the αivj span
V : if v ∈ V , since the vj are an E-basis for V , there exist aj ∈ E such that∑n

j=1 ajvj = v. Since the αi are an F -basis of E, there exist bij ∈ F such
that aj =

∑m
i=1 bijαi. Hence

v =

n∑
j=1

ajvj =
∑
i,j

bijαivj .

Thus the αivj span V .
Finally, to see that the αivj are linearly independent, suppose that there

exist bij ∈ F such that
∑

i,j bijαivj = 0. We must show that all of the bij
are 0. Regrouping this sum as

0 =
∑
i,j

bijαivj =
n∑
j=1

(
m∑
i=1

bijαi

)
vj ,

and using the fact that the vj are linearly independent over E, it follows
that, for every j, the sum

∑m
i=1 bijαi is 0. But since the αi are linearly

independent over F , we must have bij = 0 for all i and j. Hence the αivj
are linearly independent, and therefore a basis.

Corollary 2.5. If F ≤ E ≤ K and K is a finite extension of F , then
[K : E] and [E : F ] both divide [K : F ].

Proof. This is immediate from the formula above.
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The proof also shows the following:

Corollary 2.6. If K is a finite extension field of E with basis β1, . . . , βn and
E is a finite extension field of F with basis α1, . . . , αm, then αiβj, 1 ≤ i ≤ m
and 1 ≤ j ≤ n, is an F -basis of K.

Example 2.7. By a homework problem,
√

3 /∈ Q(
√

2). Thus

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q)] = 2 · 2 = 4.

A Q-basis for Q(
√

2,
√

3) is 1,
√

2,
√

3,
√

6. Furthermore, with α =
√

2 +
√

3,
Q(α) = Q(

√
2,
√

3). Hence [Q(α) : Q] = 4 and so degQ α = 4. In particular,
irr(α,Q) has degree 4 and divides x4 − 10x2 + 1, so that irr(α,Q) = x4 −
10x2 +1. Another basis for Q(

√
2,
√

3) as Q-vector space is then 1, α, α2, α3;
here α =

√
2 +
√

3, α2 = 5 +
√

6, and α3 = 11
√

2 + 9
√

3. Of course there
are many other possible bases.

Example 2.8. The real number
√

2 /∈ Q( 3
√

2), because if it were, then
Q(
√

2) would be a subfield of Q( 3
√

2), hence 2 = [Q(
√

2 : Q] would divide
3 = [Q( 3

√
2) : Q].

Example 2.9. The above corollary is the main point in showing that various
geometric constructions with straightedge and compass such as trisecting
every angle or doubling the cube are impossible.

Returning to a general extension of fields, we have the following basic
definition:

Definition 2.10. Let E be an extension field of F . Then E is an algebraic
extension of F if, for every α ∈ E, α is algebraic over F .

The following two lemmas are then easy corollaries of Proposition 2.3:

Lemma 2.11. Let E be a finite extension of F . Then E is an algebraic
extension of F .

Proof. If α ∈ E, then we have a sequence of extensions

F ≤ F (α) ≤ E.

Since E is a finite extension of F , F (α) is a finite extension of F as well, by
Proposition 2.3. Thus α is algebraic over F .

Lemma 2.12. Let E be an extension field of F and let α, β ∈ E be algebraic
over F . Then α± β, α · β, and (if β 6= 0) α/β are all algebraic over F .
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Proof. Consider the sequence of extensions

F ≤ F (α) ≤ F (α)(β) = F (α, β).

Then F (α) is a finite extension of F since α is algebraic over F . Moreover,
β is the root of a nonzero polynomial with coefficients in F , and hence
with coefficients in F (α). Thus β is algebraic over F (α), so that F (α)(β)
is a finite extension of F (α). By Proposition 2.3, F (α, β) is then a finite
extension of F , and by the previous lemma it is an algebraic extension of
F . Thus every element of F (α, β) is algebraic over F , in particular α ± β,
α · β, and α/β if β 6= 0.

Definition 2.13. Let E be an extension field of F . We define the algebraic
closure of F in E to be

{α ∈ E : α is algebraic over F }.

Thus the algebraic closure of F in E is the set of all elements of E which
are algebraic over F .

Corollary 2.14. The algebraic closure of F in E is a subfield of E con-
taining F . Moreover, it is an algebraic extension of F .

Proof. It clearly contains F , since every a ∈ F is algebraic over F , and it is
a subfield of E by Lemma 2.12. By definition, the algebraic closure of F in
E is an algebraic extension of F .

Example 2.15. There are many fields which are algebraic over Q but not
finite over Q. For example, it is not hard to see that the smallest subfield
Q(
√

2,
√

3,
√

5, . . . ) of R which contains the square roots of all of the prime
numbers, and hence of every positive integer, is not a finite extension of Q.

For another important example, let Qalg, the field of algebraic numbers,
be the algebraic closure of Q in C. Thus

Qalg = {α ∈ C : α is algebraic over Q }.

Then Qalg is a subfield of C, and by definition it is the largest subfield of C
which is algebraic over Q. The extension field Qalg is not a finite extension
of Q, since for example it contains Q(

√
2,
√

3,
√

5, . . . ).
Finally, let F be an arbitrary field and consider the extension F (t) of

F , where t is an indeterminate. As we have seen F (t) is not an algebraic
extension of F . In fact, one can show that the algebraic closure of F in
F (t) is F , in other words that if a rational function f(t)/g(t) is the root of
a nonzero polynomial with coefficients in F , then f(t)/g(t) is constant, i.e.
lies in the subfield F of F (t).
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We now give another characterization of finite extensions:

Lemma 2.16. Let E be an extension of F . Then E is a finite extension
of F ⇐⇒ there exist α1, . . . , αn ∈ E, all algebraic over F , such that
E = F (α1, . . . , αn).

Proof. ⇐= : By induction on n. In case n = 1, this is just the statement
that, if α1 is algebraic over F , then the simple extension F (α1) is a finite
extension of F . For the inductive step, suppose that we have showed that
F (α1, . . . , αi) is a finite extension of F . Then αi+1 is algebraic over F , hence
over F (α1, . . . , αi) as in the proof of Lemma 2.12. Thus F (α1, . . . , αi+1) =
F (α1, . . . , αi)(αi+1) is a finite extension of F (α1, . . . , αi). Now consider the
sequence of extensions

F ≤ F (α1, . . . , αi) ≤ F (α1, . . . , αi+1).

Since F (α1, . . . , αi+1) is a finite extension of F (α1, . . . , αi) and F (α1, . . . , αi)
is a finite extension of F , it follows from Proposition 2.3 that F (α1, . . . , αi+1)
is a finite extension of F . This completes the inductive step, and hence the
proof that E = F (α1, . . . , αn) is a finite extension of F .

=⇒ : Let N = [E : F ]. The proof is by complete induction on N , and
the case N = 1 is clear since then E = F and we can just take α1 = 1.
Now suppose that we have showed that, for every finite extension F1 ≤ E1

with degree [E1 : F1] < N , there exist β1, . . . , βk ∈ E1 such that E1 =
F1(β1, . . . , βk). Let E be a finite extension of F with [E : F ] = N >
1. Since E 6= F , there exists an α1 ∈ E with α1 /∈ F . Hence [F (α1) :
F ] > 1. Since N = [E : F ] = [E : F (α1)][F (α1) : F ], it follows that
[E : F (α1)] < N . By the inductive hypothesis, there exist α2, . . . , αn ∈ E
such that E = F (α1)(α2, . . . , αn) = F (α1, . . . , αn). Finally, the αi are
automatically algebraic over F since E is a finite extension of F . This
completes the proof of the inductive step and hence of the lemma.

Lemma 2.17. Let F ≤ E ≤ K be a sequence of field extensions, with E an
algebraic extension of F , and let α ∈ K. Then α is algebraic over F ⇐⇒
α is algebraic over E.

Proof. =⇒ : This is clear since, if α is a root of a nonzero polynomial
f ∈ F [x], then since F [x] ⊆ E[x], α is also a root of the nonzero polynomial
f viewed as an element of E[x].
⇐= : Write irr(α,E) = xn + an−1x

n−1 + · · ·+ a0, where the ai ∈ E and
hence the ai are algebraic over F . By the previous lemma, F (a0, . . . , an−1) is
a finite extension of F , and clearly α is algebraic over F (a0, . . . , an−1) since
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it is the root of a nonzero polynomial with coefficients in F (a0, . . . , an−1).
Thus

F (a0, . . . , an−1)(α) = F (a0, . . . , an−1, α)

is a finite extension of F (a0, . . . , an−1). It follows from Proposition 2.3 that
F (a0, . . . , an−1, α) is a finite extension of F , hence an algebraic extension of
F . Hence α is algebraic over F .

Corollary 2.18. Let F ≤ E ≤ K be a sequence of field extensions. Then
K is an algebraic extension of F ⇐⇒ K is an algebraic extension of E
and E is an algebraic extension of F .

Proof. =⇒ : If K is an algebraic extension of F , then clearly E is an
algebraic extension of F . Moreover, every element α of K is the root of
a nonzero polynomial with coefficients in F and hence in E, hence α is
algebraic over E. Thus K is an algebraic extension of E.
⇐= : Follows immediately from the preceding lemma.

Definition 2.19. A field K is algebraically closed if every nonconstant
polynomial f ∈ K[x] has a root in K.

Lemma 2.20. Let K be a field. Then the following are equivalent:

(i) K is algebraically closed.

(ii) If f ∈ K[x] is a nonconstant polynomial, then f is a product of linear
factors. In other words, the irreducible polynomials in K[x] are linear.

(iii) The only algebraic extension of K is K.

Proof. (i) =⇒ (ii): Let f ∈ K[x] be a nonconstant polynomial. Then f
factors into a product of irreducible polynomials, so it suffices to show that
every irreducible polynomial is linear. Let p be irreducible. Then, since K
is algebraically closed, there exists a root α of p in K, and hence a linear
factor x−α ∈ K[x] of p. Since p is irreducible, p = c(x−α) for some c ∈ K∗,
and hence p is linear.

(ii) =⇒ (iii): Let E be an algebraic extension of K and let α ∈ E.
Then p = irr(α,K) is a monic irreducible polynomial, hence necessarily of
the form x− α. Since p ∈ K[x], it follows that α ∈ K.

(iii) =⇒ (i): If f ∈ K[x] is a nonconstant polynomial, then there exists
an extension field E of K and an α ∈ E which is a root of f . Clearly, α is
algebraic over K and hence the extension field F (α) is an algebraic extension
of K. By assumption, K(α) = K, i.e. α ∈ K. Hence there exists a root of
f in K.
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The most important example of an algebraically closed field comes from
the following theorem, essentially due to Gauss (1799):

Theorem 2.21 (The Fundamental Theorem of Algebra). The field C of
complex numbers is algebraically closed.

Despite its name, the Fundamental Theorem of Algebra cannot be a the-
orem strictly about algebra, since the real numbers and hence the complex
numbers are not defined algebraically. There are many proofs of the Fun-
damental Theorem of Algebra. A number of proofs use some basic complex
analysis, or some topological properties of the plane. We will give a (mostly)
algebraic proof at the end of the course.

Definition 2.22. Let F be a field. Then an extension field K of F is an
algebraic closure of F if the following hold:

1. K is an algebraic extension of F , and

2. K is algebraically closed.

With this definition, C is not an algebraic closure of Q, because C is not
an algebraic extension of Q.

So far, we have defined three confusingly similar sounding concepts: the
algebraic closure of the field F in an extension field E, when a field K
is algebraically closed (with no reference to any subfield), and when an
extension field K is an algebraic closure of the field F . One way these
concepts are related is as follows:

Proposition 2.23. Let F be a field, let K be an extension field of F , and
suppose that K is algebraically closed. Then the algebraic closure of F in K
is an algebraic closure of F .

Proof. Let E be the algebraic closure of F in K. Then E is an algebraic
extension of F , and we must prove that E is algebraically closed. Let f ∈
E[x] be a nonconstant polynomial. Then, since E[x] ⊆ K[x], there exists
a root α ∈ K of f . Clearly α is algebraic over E. By Lemma 2.17, α is
algebraic over F , hence α ∈ E. Thus E is algebraically closed.

Corollary 2.24. The field Qalg of algebraic numbers is an algebraic closure
of Q.

The following theorem, which we shall not prove, guarantees the exis-
tence of an algebraic closure for every field:
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Theorem 2.25. Let F be a field. Then there exists an algebraic closure
of F . Moreover, every two algebraic closures of F are isomorphic. More
precisely, if F ≤ K1 and F ≤ K2, then there exists an isomorphism ρ : K1 →
K2 such that ρ(a) = a for all a ∈ F , viewing F as a subfield both of K1 and
K2.

The isomorphism ρ in the previous theorem is far from unique. In fact,
understanding the possible isomorphisms is, in a very vague sense, the cen-
tral problem in Galois theory.

12


