Lie groups

Homework #1, due Wednesday, September 17.

In the problems below, all representations are assumed to be over \mathbb{C} , unless specified otherwise.

- 1. Classify irreducible representations of the groups \mathbb{Z}/n , $\mathbb{Z}/2 \times \mathbb{Z}/2$, $S_3 \times \mathbb{Z}/2$.
- 2. Write down the character tables of the alternating group A_4 , the symmetric group S_4 , and the 8-element dihedral group D_4 .
- 3. Determine the structure constants of the representation rings $Rep(A_4)$ and $Rep(S_4)$ in the bases of irreducible representations (in other words, compute multiplicities of irreducible representations V_k in tensor products $V_i \otimes V_j$). Do not use brute force utilize symmetries and properties of representations and/or use character tables from exercise 2.
- 4. (a) For each irreducible representation V of the symmetric group S_4 , determine how $\Lambda^2 V$ and $S^2 V$ decompose into irreducibles.
 - (b) Do the same for the alternating group A_4 .
- 5. Show that $\Lambda^2(V^*) \cong (\Lambda^2 V)^*$ for any representation V of a finite group (hint: compare the characters of these representations).
 - 5. (a) Give an example of a representation of \mathbb{Z} which is not completely reducible.
- (b) Show that $\mathbb{k}[G]$ is semisimple (every representation is completely reducible) if and only if G is finite and the characteristic p of \mathbb{k} does not divide the order of G.