Introduction to knot theory, Spring 2012 Homework 3, due Thursday, February 14

1. Describe a braid whose closure is (a) the (2, n)-torus knot, (b) (n, m)-torus knot.

2. In class we described configuration spaces C'_n and C_n . Set n = 2 and describe explicitly C'_2 and C_2 . What are the fundamental groups of these spaces? Look for simplest spaces homotopy equivalent to C'_2 and C_2 . Can you show that the universal cover of C_2 is contractible?

3. We constructed an action of the braid group B_n on the free group F_n with generators x_1, \ldots, x_n via

$$\begin{aligned}
\sigma_i(x_j) &= x_j, & \text{if } j \neq i, i+1, \\
\sigma_i(x_i) &= x_{i+1}, \\
\sigma_i(x_{i+1}) &= x_{i+1} x_i x_{i+1}^{-1}.
\end{aligned}$$

(a) Write down the action of σ_i^{-1} on generators x_1, \ldots, x_n .

(b) Check directly that these formulas give an action of the braid group by confirming that the defining relations in the braid group hold for this action.

4. Let B'_n be the subgroup of B_n of braids in which the leftmost strand is "pure" (begins and ends in position 1). Find the center of B'_n for $n \ge 4$. Is B'_n a normal subgroup of B_n ?

5. Draw the 3-braid $\sigma_1 \sigma_2^{-2} \sigma_1$. Check that it is a pure braid and compute or draw its normal (combed) form. Do the same for the 3-braid $\sigma_1^2 \sigma_2^{-2} \sigma_1^{-2}$.